

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

COMPARISONS OF MECHANICAL PROPERTIES BETWEEN PURE POLYPROPYLENE AND POLYPROPYLENE FILLED WITH TALC USING SINGLE GATE AND TWIN GATE MOULD

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Process) (Hons.)

by

SHAHRUL AZWAN BIN ISMAIL B051210210 930302-06-5549

FACULTY OF MANUFACTURING ENGINEERING 2016

🔘 Universiti Teknikal Malaysia Melaka

☑ UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Comparisons of Mec Polypropylene Filled	hanical Properties Between Pure Polypropylene and with Talc Using Single Gate and Twin Gate Mould		
SESI PENGAJIAN: 2015/16 S	emester 2		
Saya Shahrul Azwan Bin Isma	il		
mengaku membenarkan Lap Teknikal Malaysia Melaka (l	ooran PSM ini disimpan di Perpustakaan Universiti JTeM) dengan syarat-syarat kegunaan seperti berikut:		
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 			
 SULIT TERHAD TIDAK TERHAD 	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:		
Alamat Tetap: NO. 22, Lorong 5,	Cop Rasmi:		
Taman Sri Inderapura, 2532	20,		
Kuantan, Pahang			
Tarikh:	Tarikh:		
** Jika Laporan PSM ini SULIT ata berkenaan dengan menyatakan sek atau TERHAD.	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT		

-(C) Universiti Teknikal Malaysia Melaka-

DECLARATION

I hereby, declared this report entitled "Comparisons of Mechanical Properties between Pure Polypropylene and Polypropylene Filled with Talc Using Single Gate and Twin Gate Mould" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	SHAHRUL AZWAN BIN ISMAIL
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Process) (Hons.). The member of the supervisory is as follow:

.....

Dr. Mohd Amran bin Md Ali (Project Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Polypropylene (PP) adalah salah satu bahan paling popular pada masa sekarang. Ia adalah sejenis plastik yang boleh diproses dengan mudah dan menjimatkan kos. Penambahan serbuk tepung ke dalam polypropylene boleh mempengaruhi prestasi polypropylene. Jadi, objektif kajian ini adalah untuk mengenalpasti ciri-ciri mekanikal maksimum yang ada pada produk plastik *dumbbell* di mana ia melalui laluan tunggal dan laluan berkembar menggunakan polypropylene asli dan polypropylene yang ditambah serbuk tepung. Ciri-ciri mekanikal yang dikaji adalah kekuatan tegangan, modulus kekuatan, dan peratus pemanjangan. Pertama sekali, suntikan acuan dilakukan untuk mendapatkan spesimen. Parameter yang telah ditetapkan untuk proses suntikan plastik adalah suhu acuan, suhu pencairan, masa suntikan, dan masa penyejukan. Nilai untuk setiap parameter bagi proses suntikan plastik diperolehi daripada simulasi Moldflow. Kemudian, ujian ketegangan dilakukan terhadap spesimen yang terhasil daripada proses suntikan acuan. Hasil ujian ketegangan seterusnya dianalisis oleh perisian Minitab 17 menggunakan kaedah taguchi dan analisis ANOVA. Kedua-dua kaedah ini membantu dalam menngenalpasti parameter yang paling signifikan terhadap hasil ujian. Keputusan menunjukkan kekuatan ketegangan tertinggi terhasil daripada polypropylene asli menggunakan laluan berkembar dengan parameter paling signifikan adalah suhu acuan. Untuk modulus kekuatan, nilai tertinggi adalah daripada *polypropylene* yang ditambah serbuk dengan suhu acuan menjadi parameter yang paling mempengaruhi keputusan. Untuk peratus pemanjangan, nilai tertinggi datang daripada *polypropylene* asli menggunakan laluan tunggal dan suhu acuan merupakan parameter paling signifikan. Keputusan ujian ini jelas dapat menyumbang dalam mana-mana sektor terutamanya industri automotif. Bahan terbaik untuk bahagian kereta seperti spoiler boleh ditentukan berdasarkan hasil dapatan kajian.

ABSTRACT

Polypropylene (PP) is one of the most popular plastic material nowadays. It is a type of plastic materials that can be processed easily and consume less cost. The addition of talc into polypropylene may affect the polypropylene performance. Thus, the objective of this study is to find out the maximum mechanical properties of dumbbell plastic products having single gate and twin gate using pure polypropylene and polypropylene filled with talc. The mechanical properties that investigated are tensile strength, modulus of strength and percent of elongation. Firstly, the injection moulding process was performed to get the specimens. The parameter that has been set for injection moulding process were mould temperature, melt temperature, injection time and cooling time. The suggested value of parameters for injection moulding process was gained from moldflow simulation. Then, tensile test applied to the specimens obtained from injection moulding. The result gained from tensile strength then analysed using Minitab 17 software by applying S/N ratio in taguchi method and ANOVA analysis. Both of this method helps in determining the optimum values of parameter to achieve highest value of mechanical properties. They also help in determine which parameter is the most significance to the responses. The result obtained shows that the highest tensile strength belongs to pure polypropylene using twin gate mould with the most significance parameter is mould temperature. For modulus of strength, the highest value comes from polypropylene filled with talc using single gate mould while the result most affected by mould temperature. For percent of elongation, the highest value gained from pure polypropylene using single gate mould with mould temperature as the most significance parameters. The results of this study clearly can contribute in any sectors especially in automative industry. The best material for the car parts such as spoiler can be determined based on the result obtained from this study.

DEDICATION

To My Father, Ismail Bin Mohamad Amin, To My Mother, Rosmiah Binti Husin, To My Sister, Nurul Fariha Binti Ismail, To all my lecturers, for their continuous idea and guidance, To all my friends, for keep giving motivation and support.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim

Alhamdulillah, my Projek Sarjana Muda (PSM) are finally completed after worked on it for both semester on 2015/2016 session. This project which requires high dedication and hardwork come to an end with His help. Firstly, the highest appreciation dedicated to my supervisor, Dr. Mohd Amran Bin Md. Ali. From the first meeting until the last one, lots of guidance and advices came from him to make sure this project completed. Thanks for him for sharing knowledge and continuous support throughout this process. Without his assist, this project surely cannot be completed.

Then my appreciation goes to my teammates who also supervised by Dr. Amran. Ameir Asyraff, Nadia Aidreina, and Fatin Shaa'rani are the persons who always together with me through thick and thin along the process of completing this project. Without them, I may not motivated and faces trouble upon completing this project. My appreciation also goes to the technicians and staff of Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for continuous help especially when completing my experiments.

Lastly, for my parents, the continuous support and caring that have been supplied cannot be forgotten. Without their support, I surely will not be able to get to this point. Thanks for the bless and prayer that always be with me along the time.

TABLE OF CONTENT

Abst	rak		i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledge	ement	iv
Table	e of Con	tent	v
List	of Tables	5	xi
List	of Figure	28	xiv
List .	Abbrevia	ations, Symbols and Nomenclatures	xvi
CHA	PTER 1	1: INTRODUCTION	1
1.1	Backg	ground	1
1.2	Proble	em Statement	3
1.3	Objec	tives	3
1.4	Scope	e of Study	4
1.5	Organ	nisation of Final Year Project	5
СПА	DTED ^). I ITEDATIDE DEVIEW	6
			0
2.1	Inject	ion Moulding	6
	2.1.1	Process Cycle of Injection Moulding	7
	2.1.2	Injection Moulding Machine	7
	2.1.3	Injection Unit	8
	2.1.4	Clamping Unit	9

	2.1.5	Power Unit / Drive System	10
	2.1.6	Control Unit	11
2.2	Inject	ion Mould	11
	2.2.1	Runner System	10
	2.2.2	Cavity	13
	2.2.3	Ejector System	13
	2.2.4	Tempering System / Cooling System	15
2.3	Defec	ets in Injection Moulding	16
2.4	Plasti	c Materials	20
	2.4.1	Polypropylene	21
	2.4.2	Properties of Polypropylene	21
	2.4.3	Polypropylene Filled With Talc	23
	2.4.4	Properties of Polypropylene Filled With Talc	23
2.5	Tensi	le test	26
	2.5.1	Tensile Test Machine	26
	2.5.2	Experiment of Tensile Test	28
2.6	Desig	n of Experiment	32
	2.6.1	Taguchi Method	33
	2.6.2	ANOVA Analysis	36
СНА	PTER 3	3: METHODOLOGY	39
3.1	Introd	luction	39
3.2	Flow	Chart	40
3.3	Select	tion of Parameters	42
3.4	Inject	ion Moulding	43
	3.4.1	Injection Moulding Machine	44
	3.4.2	Raw Plastic Material	44
	3.4.3	Mould	45
3.5	Tensi	le Test	47
	3.5.1	Specimen	47
	3.5.2	Testing Machine	48

3.6	Result	Determination	49
	3.6.1	Tensile Strength	49
	3.6.2	Modulus of Strength	50
	3.6.3	Percent of Elongation	50
3.7	Analys	sation of Data Using DOE	51
	3.7.1	Taguchi Method	54
СНА	PTER 4	: RESULT AND DISCUSSIONS	60
4.1	Result	ts of Pure PP using Single Gate Mould	60
	4.1.1	Results of Tensile Strength	61
	4.1.2	S/N Response for Tensile Strength	62
	4.1.3	S/N Response Plot for Tensile Strength	63
	4.1.4	Analysis of Variance (ANOVA)	66
	4.1.5	Validation of Parameters for Tensile Strength	67
	4.1.6	Results for Modulus of Strength	68
	4.1.7	S/N Response for Modulus of Strength	69
	4.1.8	S/N Response Plot for Modulus of Strength	70
	4.1.9	Analysis of Variance (ANOVA)	73
	4.1.10	Validation of Parameters for Modulus of Strength	74
	4.1.11	Results for Percent of Elongation	75
	4.1.12	S/N Response for Percent of Elongation	76
	4.1.13	S/N Response Plot for Percent of Elongation	77
	1.14	Analysis of Variance (ANOVA)	80
	4.1.15	Validation of Parameters for Percent of Elongation	81
4.2	Result	ts of Pure PP using Twin Gate Mould	82
	4.2.1	Results of Tensile Strength	82
	4.2.2	S/N Response for Tensile Strength	83
	4.2.3	S/N Response Plot for Tensile Strength	84
	4.2.4	Analysis of Variance (ANOVA)	87
	4.2.5	Validation of Parameters for Tensile Strength	88
	4.2.6	Results for Modulus of Strength	89
	4.2.7	S/N Response for Modulus of Strength	90
	4.2.8	S/N Response Plot for Modulus of Strength	91

	4.2.9	Analysis of Variance (ANOVA)	94
	4.2.10	Validation of Parameters for Modulus of Strength	95
	4.2.11	Results for Percent of Elongation	96
	4.2.12	S/N Response for Percent of Elongation	97
	4.2.13	S/N Response Plot for Percent of Elongation	98
	4.2.14	Analysis of Variance (ANOVA)	101
	4.2.15	Validation of Parameters for Percent of Elongation	102
4.3	Result	s of PP Filled with Talc Single Gate Mould	103
	4.3.1	Results of Tensile Strength	103
	4.3.2	S/N Response for Tensile Strength	104
	4.3.3	S/N Response Plot for Tensile Strength	106
	4.3.4	Analysis of Variance (ANOVA)	108
	4.3.5	Validation of Parameters for Tensile Strength	109
	4.3.6	Results for Modulus of Strength	110
	4.3.7	S/N Response for Modulus of Strength	111
	4.3.8	S/N Response Plot for Modulus of Strength	112
	4.3.9	Analysis of Variance (ANOVA)	115
	4.3.10	Validation of Parameters for Modulus of Strength	116
	4.3.11	Results for Percent of Elongation	117
	4.3.12	S/N Response for Percent of Elongation	118
	4.3.13	S/N Response Plot for Percent of Elongation	119
	4.3.14	Analysis of Variance (ANOVA)	122
	4.3.15	Validation of Parameters for Percent of Elongation	123
4.4	Result	s of PP Filled With Talc using Twin Gate Mould	124
	4.4.1	Results of Tensile Strength	124
	4.4.2	S/N Response for Tensile Strength	126
	4.4.3	S/N Response Plot for Tensile Strength	127
	4.4.4	Analysis of Variance (ANOVA)	129
	4.4.5	Validation of Parameters for Tensile Strength	130
	4.4.6	Results for Modulus of Strength	131
	4.4.7	S/N Response for Modulus of Strength	132
	4.4.8	S/N Response Plot for Modulus of Strength	133
	4.4.9	Analysis of Variance (ANOVA)	136

4.4.10 Validation of Parameters for Modulus of Strength	137
4.4.11 Results for Percent of Elongation	138
4.4.12 S/N Response for Percent of Elongation	139
4.4.13 S/N Response Plot for Percent of Elongation	141
4.4.14 Analysis of Variance (ANOVA)	143
4.4.15 Validation of Parameters for Percent of Elongation	144
Summarization of Result for Mechanical Properties	145
4.5.1 Tensile Strength	145
4.5.2 Modulus of Strength	149
4.5.3 Percent of Elongation	152
APTER 5: CONCLUSIONS AND FUTURE WORKS	
Conclusions	155
Sustainability	157
Future Works	158
FERENCES	160
PENDICES	165
Gantt Chart for PSM 1	
Gantt Chart for PSM 2	
Stress Strain Curve For Pure Pp Single Gate (Run 1)	
Stress Strain Curve For Pure Pp Single Gate (Run 2)	
Stress Strain Curve For Pure Pp Single Gate (Run 3)	
Stress Strain Curve For Pure Pp Single Gate (Run 4)	
Stress Strain Curve For Pure Pp Single Gate (Run 5)	
Stress Strain Curve For Pure Pp Single Gate (Run 6)	
Stress Strain Curve For Pure Pp Single Gate (Run 7)	
Stress Strain Curve For Pure Pp Single Gate (Run 8)	
Stress Strain Curve For Pure Pp Single Gate (Run 9)	
Stress Strain Curve For Pure Pp Double Gate (Run 1)	
Stress Strain Curve For Pure Pp Double Gate (Run 2)	
Stress Strain Curve For Pure Pp Double Gate (Run 3)	
	 4.4.11 Results for Percent of Elongation 4.4.12 S/N Response for Percent of Elongation 4.4.13 S/N Response Plot for Percent of Elongation 4.4.14 Analysis of Variance (ANOVA) 4.4.15 Validation of Parameters for Percent of Elongation Summarization of Result for Mechanical Properties 4.5.1 Tensile Strength 4.5.2 Modulus of Strength 4.5.3 Percent of Elongation SPTER 5: CONCLUSIONS AND FUTURE WORKS Conclusions Sustainability Future Works ERENCES ENDICES Gantt Chart for PSM 1 Gantt Chart for PSM 1 Stress Strain Curve For Pure Pp Single Gate (Run 1) Stress Strain Curve For Pure Pp Single Gate (Run 2) Stress Strain Curve For Pure Pp Single Gate (Run 3) Stress Strain Curve For Pure Pp Single Gate (Run 4) Stress Strain Curve For Pure Pp Single Gate (Run 5) Stress Strain Curve For Pure Pp Single Gate (Run 7) Stress Strain Curve For Pure Pp Single Gate (Run 7) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 7) Stress Strain Curve For Pure Pp Single Gate (Run 7) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 9) Stress Strain Curve For Pure Pp Single Gate (Run 1) Stress Strain Curve For Pure Pp Single Gate (Run 1) Stress Strain Curve For Pure Pp Single Gate (Run 1) Stress Strain Curve For Pure Pp Double Gate (Run 1) Stress Strain Curve For Pure Pp Double Gate (Run 2) Stress Strain Curve For Pure Pp Double Gate (Run 3) Stress Strain Curve For Pure Pp Double Gate (Run 3) Stress Strain Curve For Pure Pp Double Gate (Run 3)

- O. Stress Strain Curve For Pure Pp Double Gate (Run 4)
- P. Stress Strain Curve For Pure Pp Double Gate (Run 5)
- Q. Stress Strain Curve For Pure Pp Double Gate (Run 6)
- R. Stress Strain Curve For Pure Pp Double Gate (Run 7)
- S. Stress Strain Curve For Pure Pp Double Gate (Run 8)
- T. Stress Strain Curve For Pure Pp Double Gate (Run 9)

LIST OF TABLES

2.1	Parameters of Injection Moulding	17
2.2	Properties of unfilled PP	22
2.3	Impact Strength Result of PP and PP/talc	25
2.4	The value of parameters for miniature tensile test machine	27
2.5	Machining parameters of EDM and their level	33
2.6	Parameters and values for electrochemical machining	35
3.1	Recommended value for injection moulding	42
3.2	Parameters value for injection moulding	43
3.3	Injection Moulding Machine Capabilities	44
3.4	Properties of Propelinas G112	45
3.5	The components of mould	46
3.6	The dimensions and standard for tensile test	47
3.7	Run of Test Using Taguchi Method (Pure PP)	52
3.8	Run of Test Using Taguchi Method (PP + Talc)	53
3.9	Orthogonal Array (Pure PP)	58
3.10	Orthogonal Array (PP + Talc)	59

Pure PP Using Single Gate Mould

4.1	Result of Tensile Strength	61
4.2	Result of S/N ratio for Tensile Strength	63
4.3	Response Table for S/N Ratio of Tensile Strength	64
4.4	Combination of Parameters for highest results	65
4.5	One-Way ANOVA for Tensile Strength	66
4.6	Result for Modulus of Strength	68
4.7	Result of S/N ratio for Modulus of Strength	70
4.8	Response Table for S/N Ratio for Modulus of Strength	71
4.9	Combination of Parameters for highest results	72
4.10	One-Way ANOVA for Modulus of Strength	73
4.11	Result for Percent of Elongation	75

4.12	Result of S/N ratio for Percent of Elongation	77
4.13	Response Table for S/N Ratio for Percent of Elongation	78
4.14	Combination of Parameters for highest results	79
4.15	One-Way ANOVA for Percent of Elongation	80

Pure PP Using Twin Gate Mould

4.16	Result of Tensile Strength	83
4.17	Result of S/N ratio for Tensile Strength	84
4.18	Response Table for S/N Ratio of Tensile Strength	85
4.19	Combination of Parameters for highest results	86
4.20	One-Way ANOVA for Tensile Strength	87
4.21	Result for Modulus of Strength	89
4.22	Result of S/N ratio for Modulus of Strength	91
4.23	Response Table for S/N Ratio for Modulus of Strength	92
4.24	Combination of Parameters for highest results	93
4.25	One-Way ANOVA for Modulus of Strength	94
4.26	Result for Percent of Elongation	96
4.27	Result of S/N ratio for Percent of Elongation	98
4.28	Response Table for S/N Ratio for Percent of Elongation	99
4.29	Combination of Parameters for highest results	100
4.30	One-Way ANOVA for Percent of Elongation	101

PP Filled With Talc Using Single Gate Mould

4.31	Result of Tensile Strength	104
4.32	Result of S/N ratio for Tensile Strength	105
4.33	Response Table for S/N Ratio of Tensile Strength	106
4.34	Combination of Parameters for highest results	107
4.35	One-Way ANOVA for Tensile Strength	108
4.36	Result for Modulus of Strength	110
4.37	Result of S/N ratio for Modulus of Strength	112
4.38	Response Table for S/N Ratio for Modulus of Strength	113
4.39	Combination of Parameters for highest results	114
4.40	One-Way ANOVA for Modulus of Strength	115

4.41	Result for Percent of Elongation	117
4.42	Result of S/N ratio for Percent of Elongation	119
4.43	Response Table for S/N Ratio for Percent of Elongation	120
4.44	Combination of Parameters for highest results	121
4.45	One-Way ANOVA for Percent of Elongation	122

PP Filled With Talc Using Twin Gate Mould

126 127 128 129 131 133
127 128 129 131 133
128 129 131 133
129 131 133
131 133
133
134
135
136
138
140
141
143
144
146
147
149
150
152
153

LIST OF FIGURES

2.1	Main parts of injection moulding machine	8		
2.2	Injection Unit			
2.3	Structure of a five-point Twin-toggle clamping mechanism			
2.4	Gear pump in hydraulic drive system			
2.5	Design of Mould with 2 Cavities			
2.6	Disk gate and ring gate			
2.7	Pin Ejection System			
2.8	Mould with Conformal Cooling Passages			
2.9	Cooling system version 3			
2.10	Main Effect Plot	17		
2.11	Warpage Caused By Non-Uniform Wall Thickness			
2.12	Effect of Melt Temperature & Holding Pressure with Constant	19		
	Mould Temperature to Warpage			
2.13	Factors affecting the properties of weld line	20		
2.14	Stress-strain curve of unfilled polypropylene	22		
2.15	Effect of talc percentage to flexural modulus	24		
2.16	Yield stress of virgin and recycled neat PP and PP filled with talc	24		
2.17	Result of acid rain on polypropylene/talc	25		
2.18	Control design of Human Machine Interface	27		
2.19	Miniature tensile testing machine	28		
2.20	Specimen ruptured after tensile test	29		
2.21	Stress-Strain Curve for Dynamic Tensile Test	29		
2.22	Stress-strain response with respect to crosshead speed	30		
2.23	Stress Strain Curve for Tensile Test of Recycled HDPE	30		
2.24	Instron 1195 UTM equipped with environmental chamber	31		
2.25	Stress-strain curve for PVC under various temperatures	32		
2.26	Main effect plot for SN ratio	34		

2.27	Interaction Plot for SN ratio	34		
2.28	Orthogonal Array of MRR	35		
2.29	Effect of Process Parameter on MRR	37		
2.30	Formula on constructing ANOVA table	37		
2.31	ANOVA values for UTS	38		
2.32	ANOVA values for BHN	38		
3.1	Flow chart of PSM 1			
3.2	Injection moulding machine at FKP			
3.3	Universal testing machine at FKP	48		
Pure	Polypropylene Using Single Gate Mould			
4.1	Response Plot for S/N Ratio of Tensile Strength	65		
4.2	Response Plot for S/N Ratio of Modulus of Strength	72		
4.3	Response Plot for S/N Ratio of Percent of Elongation	79		
Pure	Polypropylene Using Single Gate Mould			
4.4	Response Plot for S/N Ratio of Tensile Strength	86		
4.5	Response Plot for S/N Ratio of Modulus of Strength	93		
4.6	Response Plot for S/N Ratio of Percent of Elongation			
Pure	Polypropylene Using Single Gate Mould			
4.7	Response Plot for S/N Ratio of Tensile Strength	107		
4.8	Response Plot for S/N Ratio of Modulus of Strength	114		
4.9	Response Plot for S/N Ratio of Percent of Elongation	121		
Pure	Polypropylene Using Single Gate Mould			
4.10	Response Plot for S/N Ratio of Tensile Strength	128		
4.11	Response Plot for S/N Ratio of Modulus of Strength	135		
4.12	Response Plot for S/N Ratio of Percent of Elongation	142		
4.13	Average Value for Tensile Strength	148		
4.14	Average Value for Tensile Strength	151		
4.15	Average Value for Tensile Strength	154		

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ASTM	-	American Society for Testing and Materials
EDM	-	Electrical Discharge Machining
°C	-	Degree Celcius
MPa	-	Mega Pascal
PP	-	Polypropylene
UTM	-	Universal Testing Machine
S	-	Seconds

CHAPTER 1 INTRODUCTION

This chapter provides the introduction related to this project. It gives brief review about the study that to be held which is comparisons of mechanical properties between pure polypropylene and polypropylene filled with talc using single gate and twin gate mould. This chapter has been simplified into 5 subtopics which are background, problem statement, objectives, scope of study and organisation of final year project.

1.1 Background

Among the numerous types of polymer, polypropylene (PP) is one of the most popular plastic materials. PP is a thermoplastic polymer resin. The benefits of PP are it can be easily processed and consume less cost (Azuma, Takeda, Watanabe, & Nakatani, 2009).Without human realised that most of the items around them are made from PP. Example plastic products that are produced from PP are household goods, packaging, industrial application and etc.

When designing the mould, gate location is needed to be considered. The selection of gate location decides the manner of material flows into the mould cavity (Yatish & Nagaraja, 2014). Then, the position of gate also important measures that affects the quality of injection moulding process (Yatish & Nagaraja, 2014). Besides that gate location and number of gate, others processing parameters that may result the product plastic quality are injection pressure, injection time, packing pressure, and melting temperature (Alireza & Mohammad, 2011).

To get the best parameters, design of experiment (DOE) using Taguchi method and ANOVA analysis are performed. In injection moulding, DOE is used to minimise the number of runs needed to obtain which set of experiment is significant to the desired output response(Rajalingam, Bono, & Bin Sulaiman, 2012). Analysis of variance (ANOVA) is statistically based, it functions as decision-making tool for detecting any differences in the average performance of groups of items tested (Prasad, 2011). These two methods are used to give out the processing optimum parameters. The parameters are not tested one by one on the Universal Testing Machine as it involves the huge amount of cost.

Injection moulding is widely used process especially for plastic-based products. As in other forming processes, the setting of injection moulding parameters are significantly affected to the plastic products. By adjusting the injection moulding machine parameters, it gives numerous benefits such as minimal losses from scrap and minimal finishing requirement. The defects that always found in plastic injection moulding product are voids, flash jetting, short-shot, flow mark, weld line, war page, and surface blemish (Mohamed, Yusoff, Harun, Hamid, & Ramly, 2007).

In this study, tensile testing is performed to find the mechanical properties such as tensile strength, tensile modulus and percentage of elongation. It well known that tensile

testing, it is one of the most basic type of testing that can be applied to any material. The specimens of tensile testing used is ASTM D638 (Saad, Mohammed, & Hashim, 2012). This project focuses on the mechanical properties between pure polypropylene and polypropylene filled talc using single gate and twin gate mould.

1.2 Problem Statement

Gate location is very important that affected the mechanical properties of plastic products. Therefore, the different gate location between single gate and twin gate is investigated. Two types of plastic materials used to be compared are pure polypropylene and polypropylene filled with talc. By addition of other materials such as talc to pure polypropylene may change the mechanical properties of pure polypropylene. Then, the tensile testing to be conducted to identify which one between pure polypropylene and polypropylene filled with talc to produce highest mechanical properties. Further, the flow front of twin gate always produced weldline between meetings of two flow fronts. Therefore, the tensile test is performed to compare which mechanical properties better between single gate and twin gate of plastic part.

1.3 Objectives

The main objective of this project is to find out the maximum mechanical properties of dumbbell plastic products having single gate and twin gate using pure polypropylene and polypropylene filled with talc.

- i. To find out the input injection moulding parameters such as melt temperature, mould temperature, injection time and cooling time on mechanical properties of dumbbell plastic products.
- ii. To investigate the mechanical properties such as tensile strength, modulus strength, and percentage of elongation of the polypropylene and polypropylene filled with talc.
- iii. To optimize the processing injection moulding parameters on the highest mechanical properties between the pure polypropylene and polypropylene filled with talc using Taguchi method and ANOVA.

1.4 Scope of Study

The main focus of this study is to investigate the maximum mechanical properties of polypropylene and polypropylene filled with talc. Both of them are in the form of dumbbell plastic parts that have single gate and twin gate. These two materials mechanical properties are compared based on modulus strength, tensile strength, and percentage of elongation. All of these properties are obtained through the tensile testing. The machine used for the testing is Universal Testing Machine (UTM). To get the optimum parameters for the output responses, design of experiment (DOE) using Taguchi method and ANOVA analysis are to be used.