DESIGN OF RF POWER AMPLIFIER WITH DIFFERENT BIASING BASED ON GREEN DESIGN TECHNIQUE

MUHAMMAD ASHRAF BIN SABRI

This report is submitted in partial of requirements for the award of Bachelor Degree of Electronics Engineering (Electronic Telecommunication) With Honours.

> Faculty of Electronics and Computer Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> > **JUNE 2016**

C Universiti Teknikal Malaysia Melaka

INIVERSITI TEKNIKAL MALAYSIA MELARA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Fakulti kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek :	DESIGN OF RF POWER AMPLIFIER WITH DIFFERENT BIASING BASED ON GREEN DESIGN TECHNIQUE
Sesi Pengajian :	1 5 / 1 6
Saya MUHAMMAD A disimpan di Perpustaka	SHRAF BIN SABRI mengaku membenarkan Laporan Projek Sarjana Muda ini an dengan syarat-syarat kegunaan seperti berikut:
1 Lanoran adalah ha	kmilik Universiti Teknikal Malaysia Melaka.
and the second	narkan membuat salinan untuk tujuan pengajian sahaja.
	narkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULI	T* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TER	HAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDA	K TERHAD
(TANDATANGAN PE	Azahari Bin Salleh Sentor Lecturer relati dejuntisan Odronit Dan Aljeransan Derpote Uptyprio Teknical Malavsia Malavsia Malavsia Malavsia
Tarikh: 20/6/1	6 Tarikh 20/6/26 Tarikh

"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature	-fa-
Author	: MUHAMMAD ASHRAF BIN SABRI
Date	20/6/16

iii

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Electronic Telecommunication)* with Honours."

Signature

Supervisor's Name

Date

m : : MR. AZAHARI BIN SALLEH 2016/16

iv

To my beloved mother, father and family

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Assalamualaikum W.B.T

Alhamdulillah. Firstly, I want to praise, to Allah S.W.T because give me strength to finish this report successfully. On this occasion, I want to thank to our project supervisor Mr. Azahari Bin Salleh for his cooperation and encouragement in preparing this report, either directly or otherwise. Without him, I cannot finish up the project and report successfully and he also supported me to solve any problem during finished this project and report.

Secondly, I also want to thank all lectures of Universiti Teknikal Malaysia Melaka especially to lecturer in Faculty Electronic and Computer Engineering (FKEKK) for their ideas, knowledge, guidance and encouragement that help I finished this report completely. Besides that, I also want to thank my friends and also to my beloved family that help to provide facilities, information, produced brilliant ideas and give support for me to complete this report for this final semester.

Finally, my grateful thank goes to all of them who help me a lot. A big contribution from those involved during report preparing. During the final year project, the lecturers and technicians introduced and deliver all the basic knowledge about engineering and electronics. Good appreciation to instructors and technicians in assisting us for final year project.

Thank you.

vi

ABSTRACT

Nowadays, the development of low-cost, low-power radio frequency (RF) for a base station application grows rapidly. The high power consumption of a base station is caused by poor efficiency in RF power amplifier design. The project is based on RF power amplifiers and green design technique that have been used in a variety of applications for example are the wireless communication. Green design technique is used to improve the performance of power amplifier and thus lower the power consumption. The main purpose of an RF power amplifier is to boost radio signal to a sufficient power level for transmission through the air interface from transmitter to receiver. The most important parameter is the gain, return loss, efficiency, output power and power consumption of the amplifier. This parameter is to ensure the design amplifier can work at the desired frequency. The aim of this project is to design and compare a power amplifier for base station application at 5.8 GHz operating frequency that using two different biasing network, with a power amplifier gain above 10 dB and required to achieve low power consumption. Advance Design System (ADS) software is used in power amplifier design simulation. At the end of the project, it shows that between two biasing, the passive biasing is better compared to active biasing since it produce gain of 10.857 dB and low power consumption which is 0.986 W. The output power and return loss achieved are 20.858 dBm and -44.099 dB while the Power Added Efficiency (PAE) is 24.54 %.

ABSTRAK

Pada masa kini, pembangunan peranti frekuensi radio (RF) untuk aplikasi stesen pangkalan berkos rendah dan berkuasa rendah berkembang pesat. Penggunaan kuasa yang tinggi oleh stesen pangkalan adalah disebabkan oleh kecekapan penguat kuasa (RF) yang kurang. Projek ini adalah berdasarkan kepada penguat kuasa RF dan teknik reka bentuk teknologi hijau yang telah digunakan dalam pelbagai aplikasi contohnya ialah komunikasi tanpa wayar. Teknik reka bentuk teknologi hijau digunakan untuk meningkatkan prestasi penguat kuasa dan sekaligus mengurangkan penggunaan kuasa. Tujuan utama penguat kuasa RF adalah untuk meningkatkan isyarat radio ke tahap kuasa yang mencukupi untuk penghantaran isyarat melalui udara dari penghantar kepada penerima. Parameter yang paling penting adalah gandaan, kehilangan pulangan, kecekapan, kuasa keluaran dan penggunaan kuasa. Parameter ini adalah untuk memastikan reka bentuk penguat boleh bekerja pada frekuensi yang dikehendaki. Tujuan projek ini adalah untuk mereka bentuk dan membandingkan penguat kuasa bagi aplikasi stesen pangkalan pada frekuensi 5.8 GHz yang menggunakan dua rangkalan pincangan yang berbeza, dengan gandaan penguat kuasa melebihi 10 dB dan diperlukan untuk mencapai penggunaan tenaga yang rendah. Perisisan Advance Design System (ADS) digunakan dalam simulasi reka bentuk penguat kuasa. Pada akhir projek ini, ia menunjukkan bahawa antara dua pincangan, pincangan pasif adalah lebih baik berbanding pincangan aktif kerana ia menghasilkan gandaan sebanyak 10.857 dB dan penggunaan kuasa yang rendah iaitu 0.986 W. Kuasa keluaran dan kehilangan pulangan dicapai adalah 20.858 dBm dan -44.099 dB manakala PAE adalah 24.54%.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE	
	PROJECT TOPIC	1	
	BORANG PENGESAHAN STATUS LAPORAN	ii	
	DECLARATION	10	
	DEDICATION	v	
	ACKNOWLEDGEMENT	vi	
	ABSTRACT	vii	
	ABSTRAK	viii	
	TABLE OF CONTENT	ix	
	LIST OF TABLES	xii	
	LIST OF FIGURES	xiii	
	LIST OF ABBREVIATIONS	xv	
	LIST OF SYMBOLS	xvi	
	LIST OF APPENDICES	xviii	
i	INTRODUCTION		
	1.1 Devloyed		

1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of Project	5
1.4	Scope of Project	5
1.5	Thesis Outline	6

LITERATURE REVIEW

2

ix

2.1	Introduction 8			
2.2	Revie	Reviews of Power Amplifier		
2.3	Power	r Amplifier Parameter	12	
	2.3.1	Stability	12	
	2.3.2	Linearity	13	
	2.3.3	Efficiency	14	
	2.3.4	Output Power	15	
	2.3.5	1-dB Compression Point (P1-dB)	17	
	2.3.6	Gain	17	
	2.3.7	Intermodulation Distortion (IMD)	18	
2.4	Bias N	Network	18	
	2.4.1	Passive Bias	19	
	2.4.2	Voltage Divider Bias	20	
	2.4.3	Active Bias	22	
	2.4.4	Current Mirror Bias	23	
2.5	Revie	w of Previous Paper	24	
	2.5.1	Overall Summary of Previous Paper	28	

METHODOLOGY

3

3.1	Flowc	Flowchart of Project Methodology 30		
3.2	Desig	n Methodology	33	
	3.2.1	Power Amplifier Design	33	
	3.2.2	Specification of Power Amplifier	34	
	3.2.3	Advanced Design System	35	
	3.2.4	Selection of Transistor	36	
		3.2.4.1 Transistor Analysis and Theory	37	
	3.2.5	Stability	38	
	3.2.6	Biasing	40	
	3.2.7	Input and Output Matching Network	43	
	3.2.8	Optimization	44	

4

5

RESULT AND DISCUSSIONS

4.1	Basic	Power Amplifier Design	45
	4.1.1	Biasing Point Simulation	46
	4.1.2	Transistor Parameter Simulation	47
		4.1.2.1 Stability and S - Parameter	47
	4.1.3	Two Port Network	50
	4.1.4	Maximum Gain (Conjugate Matching)	51
	4.1.5	Power Added Efficiency	53
4.2	Match	ing Network Design	54
	4.2.1	Microstrip Line Implementation	55
4.3	Biasir	ng Network Simulation	58
	4.3.1	Passive Biasing	58
	4.3.2	Active Biasing	60
4.4	Single	Stage Amplifier Design	62
	4.4.1	Single Stage Power Amplifier with Passive Biasing	63
		4.4.1.1 S – Parameter Analysis	64
		4.4.1.2 One Tone Simulation Analysis	65
	4.4.2	Single Stage Power Amplifier with Active Biasing	67
		4.4.2.1 S – Parameter Analysis	68
		4.4.2.2 One Tone Simulation Analysis	69
4.5	Analy	sis Summary for Biasing Comparison	71
CON	CLUSI	ON AND FUTURE WORK	

5.1	Conclusion	73
5.2	Future Work	75
REF	TERENCES	76
APPENDICES		79

LISTS OF TABLE

TABLE NO. CONTENT

PAGE

2.1	Overall Summarized Parameter for Reviewed Paper	2	
3.1	The specifications of the power amplifier design	2	
4.1	The S-parameter value of the transistor	3	
4.2	Input and Output Matching	3	
4.3	Summarized results for the comparison of biasing networks	6	

xii

LISTS OF FIGURES

CHAPTER CONTENT

PAGE

2.1	Schematic diagram of a class A amplifier	11
2.2	Passive bias circuits for MESFET	20
2.3	Voltage Divider Bias configuration	21
2.4	Active Bias configuration	22
2.5	Current Mirror Bias configuration	23
2.6	Schematic diagram of RF amplifier module	27
3.1	Flowchart of project design	31
3.2	Basic Amplifier Circuit	34
3.3	Flowchart for simulation process	36
3.4	S – Parameter simulation circuit	39
3.5	Circuit for DC bias point by using FET curve tracer	40
4.1	Transistor IV curve	47
4.2	Stability Factor, K	49
4.3	Noise Figure	50
4.4	Smith Chart of Source and load reflection Coefficient	53
4.5	Power Added Efficiency	54
4.6	Schematic for Input and Output Matching for Single Stub	58
4.7	Passive biasing design	60
4.8	Active biasing design	62
4.9	Single Stage Amplifier with Passive Biasing	63
4.10	S-Parameter Power Amplifier with Passive Biasing	65
4.11	Output Power Simulation Passive Biasing	66

4.12	PAE Simulation Passive Biasing	67
4.13	Single Stage Amplifier with Active Biasing	68
4.14	S-Parameter Power Amplifier with Active Biasing	69
4.15	Output Power Simulation Activeive Biasing	70
4.16	PAE Simulation Active Biasing	71

LISTS OF ABBREVIATIONS

AC	-	Alternating Current
ADS	÷.	Advance Design System
BJT	-	Bipolar Junction Transistor
BW	4	Bandwidth
DC	÷	Direct Current
EDA	÷ .	Electronic Design Automation
EM	÷.,	Electromagnetic
GA	-	Available Gain
GaAs FET	÷	Galium Arsenide Field Effect Transistor
Gmax	+	Maximum Transducer Gain
GP	÷.	Power Gain
GT	-	Transducer Gain
IEEE	-	Institute of Electrical and Electronic Engineers
IMD	44	Intermodulation Distortion
MAG	4	Maximum Available Gain
MMDS	÷	Multichannel Multipoint Distribution Services
MOS	÷.	Metal Oxide Semiconductor
PA	÷.	Power Amplifier
PAE	-	Power Added Efficiency

LISTS OF SYMBOLS

С	-	Capacitor
d	-	Thickness
dB	•	Decibel
dBm	4	MiliDecibels
GHz	÷	Gigahertz
ĸ	-	Rollet's Stability Factor
mA	-	Miliampere
Mbit/s	-	Megabit per second
Mm	a -	Milimeter
mW	З.	MiliWatt
MW	3	MegaWatt
Р	-	Power
R	-	Resistance
S	-	Scattering
S ₁₁	÷	Input Return Loss
S ₂₂	- 1	Output Return Loss
S ₂₁	-	Gain
S ₁₂	2	Insertion Loss
v	-	Voltage
Z	÷. I.	Impedance
0	÷.	Degree
E _r	911	Dielectric constant
η	-	Efficiency
Ω	÷	Ohm

xvi

П	-	Pi
Г	-	Reflection Coefficient
λ	-	Wavelength

C Universiti Teknikal Malaysia Melaka

xvii

xviii

PAGE

LISTS OF APPENDICES

APPENDIX TITLE

Transistor Datasheet (Agilent ATF 54143) A 79

CHAPTER 1

INTRODUCTION

In this chapter, an introduction with motivations and objectives of this project are present. Thus, this chapter focuses on the project background, problem statements, project objectives, scope of work and thesis outline.

1.1 Project Background

The green technology definition, in simple words, it means the technology, which is environmentally friendly, developed and used in such a way so that it doesn't disturb our environment and conserves natural resources. We may also hear green technology being referred to as environmental technology and clean technology. In the stages of its development, the future only promises to bring bigger and better things in this field. It will in fact be a necessity of the future. A radio frequency power amplifier (RF power amplifier) is a type of electronic amplifier that converts a low-power radio-frequency signal into a higher power signal. Typically, RF power amplifiers drive the antenna of a transmitter. Biasing in electronics is the method of establishing predetermined voltages or currents at various points of an electronic circuit for the purpose of establishing proper operating conditions in electronic components.

Radio Frequency (RF) power amplifiers are commonly used in wireless communication devices such as cellular phone, radios and wireless modem amplify and transmit (RF) signals. Radio frequency transmission of an electrical signal requires corresponding power amplification for the intended transmission range. RF signals typically have a broad frequency spectrum from several Megahertz (MHz) to tens of Gigahertz (GHz) and higher. A power amplifier amplifies a radio frequency signal at the output of a transmitter prior to transmission in a small-size communication device. A typical radio transmitter uses an (RF) power amplifier to amplify outbound signals for transmission by an antenna. RF power amplifiers are generally designated to provide maximum efficiency at the maximal output power. Within the amplifier assemblies are typically the plural printed circuit boards on which components that process the RF signals are mounted. Typically, an RF power amplifier consists of an integrated circuit chip having the transistors and other circuitry associated with the amplifier and a number of off-chip components that filter the signal or provide impedance matching at a particular operating frequency. RF signals are transmitted between the various processing components.

The main purpose of this project is to design and compare different types of biasing network for RF power amplifier for base station application which operating at 5.8 GHz. In this project a 5.8 GHz frequency will be used. Important parameters for RF

power amplifier are Power Added Efficiency (PAE), gain, output power, return loss and DC power consumption.

1.2 Problem statement

In the recent years, wireless devices and mobile communication systems have increasingly become very popular. Currently, 3% of the world-wide energy is consumed by the (Information and Communication Technology) ICT infrastructure, which causes about 2% of the world-wide CO2 emissions. Today, more than four billion people in the world have access to the mobile phones. The overall energy consumption of mobile devices seems to be more than those of base-stations. Good environmental control and less energy consumption will contribute to slow down the abnormal temperature variation. Recently, green technologies that can reduce energy consumption and carbon-dioxide emission and reuse the resources have been attracting many people. Especially, green Information Communication Technology (ICT) has been studied widely to achieve high Energy Efficiency (EE), and to resolve the conflict between high demands of Quality-of-Service (QoS) and energy saving [1].

Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since the traffic load on mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. To reduce the energy consumption of cellular networks, precise knowledge about base station energy consumption and the influence of the traffic load on the instantaneous base station power consumption can be of great importance. Generally, it is assumed that the traffic load variations have a small influence on the power consumption of the base station [2].

Inside a base station, there is an RF power amplifier. The level of performance of RF power amplifier is determined from the bias points of an RF power amplifier. Based on the bias points of power amplifier approaches, it can evaluate value for output power, efficiency, linearity, and other parameters of power amplifier.

Without a power amplifier in a system, the receiver of a system cannot receive the full information from the transmit signal. The information signals that transmit by, the transmitter will attenuate itself and the information which is not having the full info that transmitted to the receiver also known as a loss signal. The signal can attenuate itself because of its natural consequence of signal transmission over long distances. Thus, the power amplifier can be concluded that it acts as a booster for a signal before being transmitted to ensure the receiver to receive all the signal information without any loss.

The design of RF power amplifier might have two major problems. The first problem is the lower breakdown voltage due to scaling down in technology that restricts the maximum output power and second problem is the reduced transconductance of transistors, leading to inferior power gain and poorer efficiency that leads to high power consumption. In order to solve this problem, there are many methods and technique being established and one of them is green design technique. For the green design technique, there are many method uses to achieve low power consumption. Therefore the purpose of this project is to design an RF power amplifier based on green design technique in order solve the high power consumption problem of RF power amplifier design by using different biasing network. In this project, the biasing network will be manipulated in order to achieve high efficiency [1].

1.3 Project Objective

The objective of the project is to design a 5.8 GHz green RF power amplifier with different type of biasing network. The simulation power amplifier is done by comparing between two types of biasing network by using the Advance Design System (ADS) software.

1.4 Scope of Work

The scope of works for this project is to design an RF power amplifier for a base station application which operate at the frequency of 5.8 GHz by using two different types of biasing networks.

In order to achieve the objective of this project, below are the following scopes that will be covered:

- a) To study the concept of power amplifier and green technique
- b) All parts of the design are operating at 5.8 GHz
- c) The power amplifier will be simulated by using the Advance Design System (ADS).
- d) Selecting the suitable transistor to be used for the design
- e) The analysis of the power amplifier will be made based on parameter such as stability, PAE, DC power consumption, return loss, gain, and output power.
- f) Compare the performance of power amplifier with different biasing network.

 g) Compare the calculated value and simulation value of the parameter state above.

1.5 Thesis Outline

This thesis is a document that delivers the ideas generated and the concept applied. In chapter one briefly introduces the overall of the project. The introduction consists of the project background, objective, problem statement, scopes and thesis outline.

Meanwhile, chapter two contains the literature review of the power amplifier and green technique. It discusses the researches done upon the related project, and data obtained through journals, books, magazine, and internet.

Chapter three briefing more about power amplifier that includes the type of matching networks, a type of transistor, types of biasing network and more details on the power amplifier design.

Chapter four describes the methodology of the project, which includes the project flow and its functional block diagram. It also discusses the methods used for the project such as software applied, hardware and the reasons behind it.