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ABSTRACT 

 

 

 

 

Aggressive scaling of n-channel metal oxide semiconductor (NMOS) device will 

increase the transistor density and performance. However, continual gate oxide scaling 

will require high-k gate dielectric, since the leakage current (IOFF) is increasing with 

reducing physical thickness of gate oxide (SiO2). In this project, the effect of high-k 

dielectrics for electrical characteristic in 19nm NMOS device were investigated. The 

two electrical characteristics that were considered are threshold voltage (VTH) and IOFF. 

The device was virtual fabricated by using the ATHENA simulation module while the 

electrical characteristic response was stimulated using ATLAS module. The 

performance of Titanium Oxide (TiO2) and Hafnium Oxide (HfO2) as high-k dielectric 

materials with different metal gates such as Tungsten Silicides (WSix) and Titanium 

Silicides (TiSix) have been made. As conclusion, the TiO2 has been recognized to be 

the most suitable high-k dielectric material for metal gate, WSix. This is because 

TiO2/WSix device has the lowest leakage current (1.92pA/µm) and the highest drive 

current (578.8µA/µm) if compare with other devices include SiO2/Poly device. The 

result obtained are well within International Technology Roadmap Semiconductor 

(ITRS) prediction for the year 2015. Moreover, the TiO2/WSix device has an excellent 

power consumption due to its higher ION/IOFF ratio.  
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ABSTRAK 

 

 

 

 

Pengecilan agresif peranti n-saluran logam oksida semikonduktor saluran -n(NMOS) 

akan meningkatkan ketumpatan transistor dan prestasi.Walaubagaimanapun, 

pengecilan beterusan get oksida akan memerlukan high-k get dielektrik, kerana arus 

bocor (IOFF) semakin meningkat dengan mengurangkan ketebalan fizikal get oksida 

(SiO2). Dalam projek ini, kesan dielektrik high k untuk ciri elektrik bagi peranti 

NMOS 19nm telah disiasat. Kedua-dua ciri-ciri elektrik yang dipertimbangkan adalah 

ambang voltan (VTH) dan IOFF. Peranti telah difabrikasi secara maya menggunakan 

modul simulasi ATHENA manakala sambutan ciri elektrik dirangsang menggunakan 

modul ATLAS. Prestasi Titanium Oxide (TiO2) dan Hafnium Oxide (HfO2) sebagai 

bahan high-k dengan get logam yang berbeza seperti Tungsten Silicides (WSix) dan 

Titanium Silicides (TiSix) telah dibuat. Sebagai kesimpulan, TiO2 telah diiktiraf untuk 

sebagai bahan high-k paling sesuai untuk get logam, WSix. Ini adalah kerana peranti 

TiO2/WSix mempunyai arus bocor paling rendah (1.92pA/µm) dan arus salir yang 

tinggi (578.8μA/µm) jika dibandingkan dengan peranti lain termasuk peranti 

SiO2/Poli. Hasil lingkungan International Technology Roadmap Semiconductor 

(ITRS)2013 ramalan bagi tahun 2015. Selain itu, peranti TiO2/WSix mempunyai 

penggunaan kuasa yang sangat baik kerana nisbah ION / IOFF yang lebih tinggi 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

With new technologies, many industries to rely on a manufacturing of smaller, 

faster, cheaper and good quality of the MOSFET. With increasing global competition, 

modern industries have to adapt their production process to be more efficient and 

competitive. In order to more advanced technologies have to employ to scale down the 

MOSFET into nanoscale [1]. Silicon oxide (SiO2) has been used as the gate dielectric 

material over the years. Nowadays, high-k dielectric is widely accepted as a better 

approach for the gate dielectric of the MOSFET.  

 

In this project, the fundamental understanding of the physical and the electrical 

characteristics of the 19nm gate length NMOS device containing high dielectric 

constant will be investigated. For this project, the performance of high-k dielectric 

Titanium Oxide (TiO2) will be compared with SiO2 as gate dielectric. Besides, design 

nanoscale of NMOS transistor device using ATLAS module in generating the current-

voltage (I-V) Characteristic, structure and the value of threshold voltage. Meanwhile, 

the NMOS transistor will be stimulated by using fabrication tools ATHENA module 

SILVACO software. In order to know how it is a good affected on the electrical 

characteristics of 19nm gate length NMOS device. 

 

 



 

2 
 

 

1.2 Objectives of this project 

 

The objectives of this project are: 

i) To design the 19nm gate length NMOS device by using SILVACO 

TCAD Tools. 

ii) To analyze the effect of high-k dielectrics for electrical characteristic of 

19nm NMOS devices. 

iii) To compare the performance of Titanium Oxide (TiO2) and Hafnium 

Oxide (HfO2) as high-k dielectric with Silicon Oxide (SiO2) dielectric 

with different metal gate which are Titanium Silicides (TiSix) and 

Tungsten Silides (WSix) 

 

1.3 Problem Statement 

 

In trend of global competition, modern industries have to adjust their production 

process to be more efficient and competitive. Regarding that, more advanced 

technologies have to employ to scale down the MOSFET into nanometer. A few 

decades ago, SiO2 known as widely used as the gate dielectric material and it requires 

the film thickness to be as thin. However, the further scaling of SiO2 is below 2nm 

gate layer thickness which can result in a large increase of the leakage current and 

short channel effect. In order to overcome this problem, many researchers are focusing 

on the metal gate with high –k materials that have the ability to be integrated in 

MOSFET flow. Among the high-K materials are compatible with silicon and also 

materials have too low or high dielectrics constant may not be an adequate choice for 

alternative gate dielectric [1]. Therefore, replacing the SiO2 with a high-K materials 

allows increased gate capacitance [2].  

 

1.4 Scope of Project  

 

First and foremost, based on the journal, previous research and reference books 

will be reviewed in more detail. The literature review of this project regarding of 

objective this project will be covered. The physical and electrical characteristics of  
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19nm gate length NMOS device will be learned through out of this project. During 

this project, TiO2 and HfO2 will be used as the material gate dielectric with gate oxide  

thickness is scaled to get the same Equivalent Oxide Thickness (EOT) for physical 

models of 19nm NMOS. Besides, process design of the NMOS device also will be 

learned. Then, the virtual design and fabrication of the device will be performed by 

using Athena module. Meanwhile, electrical characteristic performance will be 

stimulated by using an Atlas module of SILVACO software.   

 

 

1.5 Report Structure 

 

This thesis is a combination of five chapters that contain the introduction, 

literature review, methodology, result and discussion and the last chapter is the 

conclusion and recommendation of the project. 

 

Chapter 1 is an introduction to the project. In this chapter, we will explain the 

background and objectives of the project. The concept behind the project and an 

overall overview of the project also will be discussed within this chapter. Chapter 2 

discuss about the literature review of the effect of high-k dielectric value based upon 

previous research done.  

 

Chapter 3 will explain about the project methodologies of the project. This 

chapter will show the steps and flow for problem solving in such a specific method 

used to design and develop the NMOS MOSFET structure, also the other factor and 

characteristic need to be focused on. 

 

Chapters 4 describe the expected result from this project and justify its 

performance to make sure it meets the objectives of the research. Finally, Chapter 5 

concludes the whole research and proposes the future progress of the project. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction  

 

MOSFET stands for Metal-Oxide Semiconductor Field-Effect-Transistor. 

MOS (Metal-Oxide-Semiconductor) shows the basic physical device materials. The 

metal is used for contact electrodes and interconnections, the oxide is present for 

barriers. For developing the characteristics the isolation and semiconductor substrate 

with a specified doping profile provides the necessary physics. A MOSFET is referred  

at as a unipolar device because the nature of its design it. Specifically, the majority 

carriers in the channel region can be of only one type (electrons or holes). The 

MOSFET with electrons as the majority carriers in the channel is entitled a n-channel 

MOSFET or NMOS. Similarly, the MOSFET with holes as the majority carriers in the 

channel is a p-channel MOSFET or PMOS [3]. 

 

Since the 1970s the MOSFET has been the prevailing device in 

microprocessors, memory circuits and logic applications of many kinds. The 

fabrication process for MOSFET has become very mature over the 25 to 30 year 

lifetime of this device [3]. These mature fabrication processes leads to less errors and 

variances in circuit construction and gives rise to a higher yield of good devices. Size 

cost reduction has followed the MOSFET through its history. In the initial stages of  
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the MOSFETs development at 10-micron gate length was a standard design goal [3]. 

This length would prove to decrease significantly as time past with engineers striving  

to increase speed and component count per unit area. The gate length (the natural 

measure of the device technology) has been reduced by a factor 2 about every 5 years  

[3]. Since 2001, when bulk MOSFET was fabricated with the technology node of 130 

nm by Intel as Under this technology, the device was produced using gate length and 

oxide thickness of 60 nm and 1.5 nm respectively. 

 

 

2.2 Basic Mosfet Structure 

 

The construction of the Metal Oxide Semiconductor FET is very different to 

that of the Junction FET. Both the Depletion and Enhancement type MOSFETs use an 

electrical field produced by a gate voltage to alter the flow of charge carriers, electrons 

for n-channel or holes for P-channel, through the semi conductive drain-source 

channel. The gate electrode is placed on top of a very thin insulating layer and there 

are a pair of small n-type regions just under the drain and source electrodes. The gate 

of a junction field effect transistor (JFET) must be biased in such a way as to reverse-

bias the pn-junction. With an insulated gate MOSFET device no such limitations apply 

so it is possible to bias the gate of a MOSFET in either polarity, positive (+ve) or 

negative (-ve). This makes the MOSFET device valuable as electronic switches 

because with no bias they are normally non-conducting and this high gate input 

resistance means that very little or no control current is needed as MOSFETs are 

voltage controlled devices [4]. 
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Figure 2.1:  MOSFET Structure 

 

2.3          Types of MOSFET 

 

Both the p-channel and the n-channel MOSFETs are available in two basic 

forms, which are the Enhancement type and the Depletion type. Figure 2.2 shows the 

channel and symbol of n-channel MOSFET and p-channel MOSFET [4]. 
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Figure 2.2:  Channel and Symbols of n-channel MOSFET and p-channel MOSFET 

 

 

2.3.1 Depletion-mode MOSFET 

 

The Depletion-mode MOSFET, which is less common than the enhancement 

mode types is normally switched “ON” (conducting) without the application of a gate 

bias voltage. That is the channel conducts when VGS=0V makes it a   ‘normally-closed’  

device. The circuit symbol shown in Figure 2.2 for a depletion MOS transistor uses a 

solid channel line to signify a normally closed conductive channel. For the n-channel  
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depletion MOS transistor, a negative gate-source voltage (-VGS) will deplete (hence its 

name) the conductive channel of its free electrons switching the transistor ‘OFF’. 

Likewise for a p-channel depletion MOS transistor a positive gate-source voltage 

(+VGS) will deplete the channel of its free holes turning it ‘OFF’. In other words, for a 

n-channel depletion mode MOSFET: +VGS means more electrons and more current. 

Meanwhile a -VGS means less electrons and less current. The opposite is also true for 

the p-channel types. Then the depletion mode MOSFET is equivalent to a ‘normally-

closed’ switch. The depletion-mode MOSFET is constructed in a similar way to their 

JFET transistor counterparts were the drain-source channel is inherently conductive 

with the electrons and holes already present within the n-type or p-type channel. This 

doping of the channel produces a conducting path of low resistance between the Drain 

(D) and Source (S) with zero Gate (G) bias. Figure 2.3 shows graph of drain current 

(ID) versus drain voltage (VDS) for n-channel MOSFET device [4]. 

 

 
Figure 2.3:  ID-VDS graph n-channel MOSFET  

 

 

 

 

 

 

 


