I hereby confirm that I have examined this project paper entitled:

Examining the relationship between the maintenance machine downtime and firm's production yield: The case of manufacturing companies in Malaysia

By

MUHAMMAD SYAZWAN BIN HJ TAJUL ARUS

'I hereby acknowledge that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the Bachelor of Technology Management (Innovation)'

Signature

Name of supervisor	: Madam Edna Binti Buyong
Date	: June 2016
Signature	:
Name of panel	:
Date	: June 2016

.

EXAMINING THE RELATIONSHIP BETWEEN THE MAINTENANCE MACHINE DOWNTIME AND FIRM'S PRODUCTION YIELD: THE CASE OF MANUFACTURING COMPANIES IN MALAYSIA

MUHAMMAD SYAZWAN BIN HJ TAJUL ARUS

This report is submitted in fulfilment of the requirement for the Bachelor of Technology Management (Innovation Technology)

Faculty of Technology Management and Technopreneurship Universiti Teknikal Malaysia Melaka

JUNE 2016

DECLARATION

ʻI	declare that	this	report i	is my	own	work	except	the	sumr	nary	and	exce	rpts of
			everyt	hing I	have	e to ex	kplain 1	the s	ource	,			

Signature

Name : Muhammad Syazwan Bin Hj Tajul Arus

Date : June 2016

DEDICATION

This research paper is dedicated to my parents and family who have been my constant source inspiration. They have given unconditional support with my studies. I am honoured to have their as my parents. Thank you for giving me a chance to prove and improve myself through all my walk of life. Additionally, thank you for conditional support from my beloved friends who helping me incomplete this study to all my family thank you for believing me to further my studies.

ACKNOWLEDGEMENT

I was deeply grateful and wish to express my warm and sincere thanks to my supervisor Madam Edna Binti Buyong for her guidance and encouragement throughout this final year project journey. Her wide knowledge and passion was helped of great value for me.

Furthermore I would also like to acknowledge to my panel presentation, Dr. Fam Soo Fen for her advices and suggestions while I do a presentation in front of her. Last but not least, I also appreciate all those members involved either directly or indirectly towards this final year project.

ABSRACT

Maintenance is defined as the arrangement of all technical and managerial actions intended to preserve the item and restore it to the state in which it can perform its required function. The essence of this function is that the maintenance has become a cornerstone for a manufacturing organization to sustain its competitiveness (Al-Najjar, B., and Alsyouf, 2004). Production efficiency and effectiveness are among top business priorities. The requirements of outstanding performance force companies to substantially consider reducing their machines downtime frequency and its consequential costs (Nepal, M. P., and Park, M, 2004). This research examines the relationship between the maintenance machine downtime and firm's production yield for manufacturing companies in Malaysia. The aims of the research is to identify the causes of longer production machine set-up time, to determine the appropriate measures to reduce downtime, and to determine the appropriate operation strategies to improve the firm's production yield. The research is purely quantitative because reliable questionnaire was used to collect data. Fabtronic Sdn. Bhd and Advance Micro Devices (AMD) are chosen as the case study because the firm is advancing in high-technology operations. The researcher employs a case study by distributing questionnaire to the 100 respondents ranging from production employees, technicians, quality control, process engineer to unit head of the Production Department and IBM Statistical Product and Service Solution (SPSS) was used in order to analyse the data. Reducing of machine downtime will succeed if the firm focus on the factor causing longer machine downtime. It will give a big impact to the industries of enhance the productivity and innovation. The firm will use it as a main of important things to consider and focus to generate the creative thinking of innovation.

Keywords: Maintenance, production, quantitative

ABSTRAK

Penyelenggaraan ditakrifkan sebagai susunan semua tindakan teknikal dan pengurusan bertujuan untuk mengekalkan item dan mengembalikannya kepada keadaannya di mana ia boleh melakukan fungsi yang diperlukan. Intipati fungsi ini adalah bahawa penyelenggaraan telah menjadi asas kepada sebuah organisasi pembuatan untuk mengekalkan daya saing (Al-Najjar, B., dan Alsyouf, 2004). Kecekapan dan keberkesanan pengeluaran adalah antara keutamaan perniagaan. Keperluan prestasi cemerlang memaksa syarikat untuk mempertimbangkan dengan ketara mengurangkan kekerapan masa henti mesin dan kos berbangkit (Nepal, M. P. dan Taman, M, 2004). Kajian ini mengkaji hubungan antara masa henti mesin penyelenggaraan dan hasil pengeluaran firma untuk syarikat-syarikat pembuatan di Malaysia. Tujuan penyelidikan ini adalah untuk mengenal pasti punca masa penyediaan mesin pengeluaran lebih lama, untuk menentukan langkah-langkah yang sesuai untuk mengurangkan masa henti, dan untuk menentukan strategi operasi yang sesuai untuk meningkatkan hasil pengeluaran firma. Kajian ini adalah semata-mata kuantitatif kerana soal selidik telah digunakan untuk mengumpul data. Fabtronic Sdn. Bhd dan Advance Micro Devices (AMD) dipilih sebagai kajian kes kerana firma itu yang maju dalam operasi berteknologi tinggi. Kajian ini menggunakan kajian kes dengan mengedarkan soal selidik kepada 100 responden yang terdiri daripada pekerja pengeluaran, juruteknik, kawalan kualiti, jurutera proses sehingga kepada Ketua Unit Jabatan Pengeluaran dan IBM Statistik Produk dan Penyelesaian Perkhidmatan (SPSS) telah digunakan untuk menganalisis data. Mengurangkan masa henti mesin akan berjaya jika tumpuan tegas mengenai faktor yang menyebabkan masa henti mesin lebih lama. Ia akan memberi impak yang besar kepada industri untuk meningkatkan produktiviti dan inovasi. Firma akan menggunakannya sebagai perkara utama yang perlu dipertimbangkan dan memberi tumpuan untuk menjana pemikiran kreatif inovasi.

Kata kunci: Penyelenggaraan, pengeluaran, kuantitatif

LIST OF CONTENTS

	TITLE	PAGES
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	LIST OF CONTENTS	vii
	LIST OF TABLE	xii
	LIST OF FIGURE	xiv
	LIST OF ABBREVIATIONS	XV
CHAPTER 1	INTRODUCTION	
	1.0 Introduction	1
	1.1 Background of the Project	2
	1.2 Problem Statement	3
	1.3 Research Question	5
	1.4 Objective	5
	1.5 Scope	6
	1.6 Limitation	6
	1.7 Significant of the Study	6
	1.8 Summary	7

CHAPTER 2	LIT	ERATURE REVIEW	
	2.0	Introduction	8
	2.1	Improved production yield	8
	2.2	Annual Maintenance	9
		2.2.1 Employee	12
		2.2.2 Technology Equipment	13
	2.3	Quality Maintenance	20
		2.3.1 Reliable Production Equipment	23
		2.3.2 Production Defect Free	24
	2.4	Theoretical Framework	25
	2.5	Hypothesis	26
	2.6	Summary	26
CHAPTER 3	RES	SEARCH METHODOLOGY	
CHAPTER 3	RES 3.1	SEARCH METHODOLOGY Introduction	27
CHAPTER 3	3.1		27 28
CHAPTER 3	3.1	Introduction	
CHAPTER 3	3.1 3.2	Introduction Research Design	28
CHAPTER 3	3.1 3.2	Introduction Research Design Methodological Choices	28 28
CHAPTER 3	3.1 3.2	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method	28 28 29
CHAPTER 3	3.1 3.2 3.3	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method 3.3.2 Correlation	28 28 29 30
CHAPTER 3	3.1 3.2 3.3	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method 3.3.2 Correlation Data Collection	28 28 29 30 30
CHAPTER 3	3.1 3.2 3.3	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method 3.3.2 Correlation Data Collection 3.4.1 Primary Data	28 29 30 30 30
CHAPTER 3	3.1 3.2 3.3	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method 3.3.2 Correlation Data Collection 3.4.1 Primary Data 3.4.2 Secondary Data	28 29 30 30 30 31
CHAPTER 3	3.1 3.2 3.3	Introduction Research Design Methodological Choices 3.3.1 Quantitative Research Method 3.3.2 Correlation Data Collection 3.4.1 Primary Data 3.4.2 Secondary Data Data Analysis	28 29 30 30 30 31

	3.7	Scienti	ic Canons		34
		3.7.1	Reliability		34
		3.7.2	Validity		35
		3.7.3	Internal Validity		36
		3.74	External Validity		37
	3.8	Pilot T	est		37
	3.9	Time I	orizon		38
	3.10	Summ	ary		38
CHAPTER 4	DAT	ΓΑ ΑΝΑ	LYSIS		
	4.0	Introdu	ction		39
	4.1	Pilot T	est		40
		4.1.1	Reliability Analysis		40
		4.1.2	Validity Analysis of E	ach Question	42
	4.2	Descr	otive Statistic		46
		4.2.1	Respondent Demograp	ohic Profile	46
		4.2.2	Gender		46
		4.2.3	Race		47
		4.2.4	Qualification		48
		4.25	Work Experiences		49
		4.2.6	Job Category		50
		4.2.7	Monthly Income		51
	4.3	Data A	nalysis		52
		4.3.1	Section B		52
			4.3.1.1 Annual Mair	ntenance	52
			4.3.1.2 Quality Mair	ntenance	54

		4.3.2	Section	C	56		
			4.3.2.1	Improved Production Yield	56		
	4.4	Result	t of Meas	urement	58		
		4.4.1	Test Va	lidity	58		
		4.4.2	Reliabil	ity Test	60		
	4.5	Hypot	thesis test	ing and Objective	62		
		4.5.1	Simple	Regression Analysis	63		
		4.5.2	Multiple	e Regression Analysis.	66		
	4.6	Summ	nary		69		
CHAPTER 5	CON	NCLUS	CLUSION AND RECOMMENDATION				
	5.1	Introd	uction		70		
	5.2	Summ	Summary of Descriptive				
	5.3	Scale	Measurer	nent	71		
		5.3.1	Validity	,	71		
		5.3.2	Reliabil	ity	72		
	5.4	Discus	ssion of C	Objectives and Hypothesis Test	72		
		5.4.1	Objectiv	ve 1: To identify the causes	72		
			of longe	er production machine set-up			
			time.				
		5.4.2	Objectiv	ve 2: To determine the	74		
			appropr	iate measures to reduce			
			downtin	ne.			
		5.4.3	Objectiv	ve 3: To determine the	75		
			appropr	iate operation strategies to			
			improve	the firm'sproduction yield.			

REI	FERENCES	79
).1	Conclusion	/ (
5 7	Conclusion	78
5.6	Recommendation for Future Research	77
5.5	Limitations	76

LIST OF TABLE

TABLE	TITLE	PAGES
Table 2.1	Maintenance strategies, policies and characteristics	22
Table 3.1	Pearson Correlation Coefficient Range	30
Table 4.1	Cronbach's Alpha for Pilot Test	41
Table 4.2	Validity for 30 respondents for pilot test	42
Table 4.3	Correlation table of Annual Maintenance for 30	43
	respondents	
Table 4.4	Correlations table of Quality Maintenance for 30	44
	respondents	
Table 4.5	Correlation table of Improved Production Yield for 30	45
	respondents	
Table 4.6	Respondent's Gender	46
Table 4.7	Respondent's Race	47
Table 4.8	Respondent's Qualification	48
Table 4.9	Respondent's work experiences	49
Table 4.10	Respondent's Job Category	50
Table 4.11	Respondent's monthly income	51
Table 4.12	Statistic Annual Maintenance	52
Table 4.13	Statistics of Quality Maintenance	54

Table 4.14	Statistics of Improved Production Yield	56
Table 4.15	Result of Descriptive Statistic for Annual Maintenance,	57
	Quality Maintenance and Improved Production Yield	
Table 4.16	The result of correlation analysis for all variables	59
Table 4.17	Cronbach's Alpha Coefficient range and its strength	61
	of association	
Table 4.18	Reliability Statistics	62
Table 4.19	Simple Regression Result for Hypothesis 1	63
Table 4.20	Simple Regression Result for Hypothesis 2	65
Table 4.21	Model Summary of Multiple Regressions	67
Table 4.22	ANOVA	67
Table 4.23	Coefficients	68

LIST OF FIGURE

FIGURE	TITLE	PAGES
Figure 2.1	Conceptual process of maintenance impact on firms'	21
	profits	
Figure 2.2	The sequential steps of RCM analysis	24
Figure 4.1	Respondent Gender	46
Figure 4.2	Respondent Race	47
Figure 4.3	Respondent Qualification	48
Figure 4.4	Work Experiences	49
Figure 4.5	Job Category	50
Figure 4.6	Respondents monthly income	51

LIST OF ABBREVIATIONS

5M: Man, Material, Machines, Methods and Money

TPM: Total Productive Maintenance

TQM: Total Quality Managements

JIT: Just in Time

FMOCR: Flat Mail Optical Character Reader

FLM: Flats Lift Module

AIS: Auto Induction Station

SMED: Single Minute Exchange of Die

ABC: Activity Based Costing

RCA: Resource Consumption Accounting

OEE: Overall Equipment Effectiveness

RCM: Reliability Centred Maintenance

TEEP: Total Equipment Effectiveness Performance Tool

RM: Reactive Maintenance

PM: Preventive Maintenance

SPSS: Statistical Package for the Social Science

CHAPTER 1

INTRODUCTION

1.0 Introduction

Globalization, trade liberalization, rationalization and competitive markets necessitate firms to embark on positive actions to increase its production yield to meet customer's demands. Equally important is for company is to be capable of producing a wide range of products to meet high demands. Customers with high products demand, look for manufacturers that have the most sophisticated and advanced production capabilities and facilities to satisfy their requirement. Companies with production power in constant competition to compete in order to get more customers. Produce quality products at competitive prices have becoming one of the most important challenges for the production manufacturing processes.

Many firms try to stay up to date with all the new manufacturing processes and formulations methodologies to create a more efficient production. One of these methods is part of lean manufacturing is setup reduction time. Set up time or downtime can be defined as the period during which machine or equipment is not functioning or cannot work. It may be caused by a technical failure, machine adjustment, maintenance, or non-availability of inputs such as material, labour, and power. Average downtime is usually built into the price of goods produced to recover its cost from the sales revenue. (Erin Sullivan, 2012)

In the system of high production, the amount of work over and over accounted for the bulk of the product lead time, the rest is usually set up time. The company seeks to minimize and if possible eliminate setup time. Although many companies seeking the set up time reduction methods today, the reduction in setup time is not a new concept. (Mario A. Aquilar, 2011)

1.1 Background of the Project

The background of a project is important to create an overview of the project activities and goals. The aim of this research is to examine the relationship between Maintaining Machine Downtime and Firm's Production Yield: The Case of Manufacturing Companies in Malaysia. The report provides the production plant with a concrete analysis of their current changeover method, occasionally complicated, and suggest alternatives in short term and long term periods of time to reduce machine's setup time.

Production efficiency and effectiveness of spending is among top business priorities. Therefore, the production equipment becoming the main focus of interest as it is the backbone of the manufacturing process and key performance indicator of productivity. Excellent performance power companies needs to consider significantly reducing machines downtime frequency and its consequential costs (Nepal, M. P., and Park, M, 2004).

The business view regarding the availability indicates to the duration of process set up time along the supply chain. The higher the availability, the most increased system through put and so returns on assets and investment. The term downtime potently marked by periods when the system is unavailable due to planned or unplanned stoppages. The unplanned stoppages are primarily refers to equipment failures or interruption process. Instead, stop scheduled considered established

procedures carried out activities as calculated duration for which the machine has to be stopped. For example, the planned maintenance, setups, adjustments, inspections, shutdowns, training, breaks, cleaning, standby stated (Muchiri, P., and Pintelon, L., 2008).

In implementing this project, several causes that contribute the longer machine downtime will be identified. After identifying the causes, several strategies will be proposed identified and recommendations be implemented to reduce machine downtime. This research also aims to identify the appropriate operation systems that can adopted by firms to improve production yield.

1.2 Problem Statement

Critical evaluation on the existing production lines includes the longer set up time, complex and complicated, stopping production, thereby causing firms in wasting resources, production and money. Firm need to take into account the cost of spares, overtime for maintenance personnel, communications, and resources to restore the systems in the form of lean. Clark (2009) stated that lean is an all encompassing philosophy that takes the 5M's (Man, Material, Machines, Methods and Money), and harmonizes or helps orchestrates them together for the best possible outcome in manufacturing operations. These problems would disrupt production activities and will increase the quantity of product units rejected. Corresponding to these issues, there will be also other larger issues that firm will lose customer's order for want of time agreed upon by the client. Late delivery surcharges for delayed shipments causing direct reduction in profits.

Based on A. Raouf (1994), every company has a target but if this problem occurs frequently and allowed to persist without any action, the company will fail to reach the production schedule target. After analyzing the problem at production

process, there are fall into several categories. There are maintenance/set up duration, disorganization in the workplace, disorganization of work training, and disorganization of equipment. Solving these problems would give as a result a time efficient changeover process, saving time, resources and money. Several short term and long term ideas were proposed to compensate for these problems.

According to Lincoln, A. R. (2013), the downtime costing methods that have been used by manufacturing companies they are often static in nature and inappropriate of measuring the dynamic nature of production lines. These methods lack the ability of identifying the hidden cost categories and instead emphasized on the direct cost that levied itself. Additionally, the traditional paradigms of costing downtime did not accurately trace the consequential costs of changing system behaviour in accordance to random downtime events. The downtime cost bundled with other costs in an overhead bucket, where managers cannot have a clear vision about the individual cost of downtime and thus conduct practical decisions in line of improvements.

On the light of this, the research has been previously estimated that 80% of industrial facilities were unable to quantify the cost of downtime. Furthermore, many companies underestimating the total cost by a factor of 200-300% (Crumrine, D., and Post, D. 2006). However, the research did not mention any remarkable work about the real cost of planned stoppages and how it contributes to downtime total cost (James, P.F., Jadd, R. B., and Prasad, K.Y. (2008).

Under those circumstances, the common attempts toward decreasing downtime events and further costs were restricted to applied maintenance, in which consider the crucial pivot in assuring the availability of production equipment. Nevertheless, the difficulty of selecting the optimal maintenance policy or by practicing the inefficient maintenance tactic, not only will fail to reduce downtime incidents but rather will lead to added-costs (Faccio, M., Persona, a., Sgarbossa, F., and Zanin, G. 2014). In return to Swedish industries, the role of maintenance is not exceedingly recognized. There is a need to invest more in productive maintenance, which is considered by the majority as a necessary expense (Alsyouf, I. 2009).

1.3 Research Questions

This research explored the following key question:

- 1. What are the factors that contribute to complex and complicated machine setup, thereby causing longer machine downtime?
- 2. What strategies can be implemented to reduce machine set-up?
- 3. What operation systems can be implemented to improve the firm's production yield?

1.4 Objective

The main objective of this project is to examining the relation between maintenance of machine downtime and firm's production yield. In order to make this project successful, the objectives have been declared these objectives must be achieved in completing this project. Objectives are a guidance of any project, so the objectives have been listed below.

- 1. To identify the causes of longer production machine set-up time
- 2. To determine the appropriate measures to reduce downtime.
- 3. To determine the appropriate operation strategies to improve the firm's production yield.

1.5 Scope

The scope of this project encompasses the causes and various measures to improve production yield through proper maintenance of machine downtime. This is based on the stated objectives and to provide for the most appropriate solutions to the problems. Fabtronic Sdn. Bhd and Advance Micro Devices (AMD) are chosen as the case study because the firms are advancing in high-technology operations. The researcher employs a case study by distributing questionnaire to the respondents ranging from production employees, technicians, quality control, Process Engineers to unit head of the Production Department.

1.6 Limitation

This research will examine and focus on the process of changing the different methods and solution for the production line and will make the process more orderly and efficient by reducing the setup and maintaining machine downtime. If any process that not involved directly with this research would be out of scope. This research is limited to the companies in Malaysia.

1.7 Significant of the Study

The research explores relationship between maintaining machine downtime and firm's production yield. It provides benefits to firm to learn about the best operation systems and strategies to improve production. This study can identify the causes of longer production machine set-up time and devise the appropriate measures to reduce downtime.

1.8 **Summary**

Reducing of machine downtime will succeed if the firm focus on the factor causing longer machine downtime. It will give a big impact to the industries of enhance the productivity and innovation. The firm will use it as a main of important things to consider and focus to generate the creative thinking of innovation.

In this research, the main reason is to examining the relation between maintenance of machine downtime and firm's production yield. It consists of identifying what are the factors of causing longer machine downtime. So, from this research, the researcher will determine and identify the factors that need to have in the industries to improve production yield.

CHAPTER 2:

LITERATURE REVIEW

2.0 Introduction

In this chapter, reviews of the previous researches project that are related with this project will be discussed. The information will be become additional source for the project in becoming more successful. To have a brief understanding of the researches related to the project, a few literature reviews had been done. This chapter will describe the related literature reviews.

2.1 Improved production yield

"Production is a process of combining various material inputs and immaterial inputs (plans, know-how) in order to make something for consumption (the output). It is the act of creating output, a good or service which has value and contributes to the utility of individuals." (Kotler, P., Armstrong, G., Brown, L., and Adam, S, 2006)

"Many multinational firms have suggested they can improve production by developing strategic production improvement programmes and implementing them in their dispersed network of plants. Instead of leaving every subsidiary to solve their own improvement issues, they offer a company-specific production system: an XPS.