
i

DYNAMIC ASSEMBLER FOR RECONFIGURABLE PROCESSOR

MOHAMAD AZMAN BIN BASIRAN

This Report is Submitted in Partial Fulfillment of Requirements for the Bachelor

Degree of Electronic Engineering (Computer Engineering)

Faculty of Electronics & Computer Engineering

Universiti Teknikal Malaysia Melaka

JUNE 2016

ii

UNIVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : DYNAMIC ASSEMBLER FOR RECONFIGURABLE PROCESSOR

 …

Sesi Pengajian

:

1 5 / 1 6

 Saya MOHAMAD AZMAN BIN BASIRAN mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (√) :

SULIT*

*(Mengandungi maklumat yang berdarjah keselamatan atau

kepentingan Malaysia seperti yang termaktub di dalam
AKTA RAHSIA RASMI 1972)

TERHAD**

**(Mengandungi maklumat terhad yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

__ ________________________ ___________________________________
 (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Tarikh: 15 JUN 2016 Tarikh: 15 JUN 2016

iii

“I hereby declare that the work in this project is my own except for summaries and
quotations which have been duly acknowledge.”

Signature : ...

Author : MOHAMAD AZMAN BIN BASIRAN

Date : 15 JUNE 2016

iv

“I acknowledge that I have read this report and in my opinion this report is sufficient
in term of scope and quality for the award of Bachelor of Electronic Engineering

(Computer Engineering) with Honours.”

Signature : ...

Supervisor’s Name : MR. SANI IRWAN BIN MD SALIM

Date : 15 JUNE 2016

v

Dedicated to my beloved family especially father & mother, lecturer and to all my

beloved friends.

vi

ACKNOWLEDGEMENT

 Thanks and praise to Allah, because of His grace, I have been able to finish

this project successfully. The success and final outcome of this project required a lot

of guidance and assistance from many people and I am extremely fortunate to have

got this all along the completion of my FYP project. Whatever I have done is only

due to such guidance and assistance and I would not to forget to thank them.

 I respect and thank to my project guide Mr. Sani Irwan Bin Md Salim for

giving me an opportunity to do the project work in FKEKK and took keen interest

on my project and guide me all along, till the completion of my project by providing

all the necessary information for developing a good assembler, and which made me

complete the project on time. I am extremely grateful to him for providing such a

nice support and guidance though he had busy with the phD’s research.

 I want to thank to my father, mother, and all my family for support me in

surviving at UTeM and continuing my study till at this degree level. Thanks also

goes to my friend who contributed ideas and teach a little bit of computer

programming using the Visual Basic software.

vii

ABSTRACT

The main objective for this project is to design a customizable assembler for

dynamic instruction set architecture and to verify the assembler is compatible with

the UTeMRISC processor architecture. In order to meet the objectives, a new

assembler has been designed using Visual Basic 2015. The benchmark processor

that is used for this project is UTeMRISC processor. In the development of

processor architecture, one of the crucial part is the creation of a compatible

assembler to the processor's instruction set architecture (ISA). Reconfigurable

processor such as UTeMRISC03 requires a flexible assembler design in order to

accommodate the modification being made to its ISA. The new assembler is capable

in converting an assembly language program to its instruction word dictated by the

processor's opcode file. The correct object files are also generated in line with the

selected ISA width determined by the users. The object file is successfully loaded to

the processor architecture in the FPGA platform in order to verify its compatibility.

With the customizable feature achieved in this assembler design, the assembler

would be beneficial as the main tool in the development of a complete package in a

reconfigurable processor development in the future.

viii

ABSTRAK

Objektif utama projek ini adalah untuk mereka bentuk pemasang disesuaikan

untuk dinamik seni bina set arahan dan untuk mengesahkan pemasang itu serasi

dengan seni bina pemproses UTeMRISC. Dalam usaha untuk memenuhi objektif,

pemasangan baru telah direka dengan menggunakan Visual Basic 2015. Pemproses

penanda aras yang digunakan untuk projek ini adalah pemproses UTeMRISC.

Dalam pembangunan seni bina pemproses, salah satu bahagian yang penting ialah

kejadian pemasang yang serasi untuk seni bina set arahan pemproses (ISA).

pemproses konfigur seperti UTeMRISC03 memerlukan reka bentuk pemasang yang

fleksibel untuk menampung pengubahsuaian sedang dilakukan untuk ISA itu.

Pemasang baru mampu menukarkan program bahasa himpunan untuk perkataan

arahannya ditentukan oleh fail Opcode pemproses. Fail objek yang betul juga

dihasilkan selaras dengan lebar ISA yang telah dipilih oleh pengguna. Fail objek

berjaya dimuatkan kepada seni bina pemproses dalam platform FPGA untuk

mengesahkan keserasian. Dengan ciri yang disesuaikan dicapai dalam reka bentuk

pemasang ini, penghimpun akan bermanfaat sebagai alat utama dalam pembangunan

pakej yang lengkap dalam pembangunan pemproses pembentukan semula pada masa

akan datang.

ix

TABLE OF CONTENT

CHAPTER TITLE PAGE

PROJECT TITLE i

 REPORT STATUS VERIFICATION FORM ii

 STUDENT’S DECLARATION iii

 SUPERVISOR’S DECLARATION iv

 DEDICATION v

 ACKNOWLEDGEMENT vi

 ABSTRACT vii

 ABSTRAK viii

 TABLE OF CONTENT ix

 LIST OF TABLE xiii

 LIST OF FIGURE xiv

 LIST OF ABBREVIATIONS xvi

 LIST OF APPENDIX xvii

I INTRODUCTION 1

1.1 Project Overview 1

1.2 Objectives 2

1.3 Problem Statement 2

1.4 Scope 2

x

1.5 Report Structure 2

II LITERATURE REVIEW 4

2.1 An OpenCL Optimizing Compiler for Reconfigurable

 Processors [1] 4

2.1.1 Introduction 4

2.1.2 Problem Statement 5

2.1.3 Methodology 5

2.1.4 Result 6

2.2 A Compiler Back-End for Reconfigurable, Mixed-ISA

 Processors with Clustered Register Files [2] 7

2.2.1 Introduction 7

2.2.2 Problem Statement 8

2.2.3 Methodology 8

2.2.4 Result 10

2.3 A new Coarse-Grained Reconfigurable Architecture

 with Fast Data Relay and its Compilation Flow [3] 11

2.3.1 Introduction 11

2.3.2 Problem Statement 12

2.3.3 Methodology 12

2.3.4 Result 13

2.4 Conversion of an 8-Bit to a 16-Bit Soft-Core RISC

 Processors [4] 14

2.4.1 Introduction 14

2.4.2 Problem Statement 15

2.4.3 Methodology 15

2.4.4 Result 16

III METHODOLOGY 19

3.1 Project Activities 19

3.2 System flow chart 20

3.3 Assembler To Reconfigurable processor Block Diagram 20

3.3.1 Field-Programmable Gate Array (FPGA) 21

xi

3.3.2 Read Only Memory (ROM) 22

3.3.3 Random Access Memory (RAM) 22

3.3.4 Register 23

3.3.5 Arithmetic Logic Unit (ALU) 23

3.3.6 Instruction Register (IR) 23

3.3.7 Program Counter (PC) 24

3.3.8 Verilog Programming Language 24

3.3.9 Hardware Description Language (HDL) 24

3.3.10 Visual Basic (CPU Simulation) 25

3.3.11 Reconfigurable Processor 25

3.4 Assembling System Block Diagram 25

3.4.1 Assembler 26

3.4.2 Source Code 26

3.4.3 Encoder and Decoder 26

3.4.4 Look-Up Table 27

3.4.5 Instruction Set 27

3.4.6 COE file format 27

3.4.7 HEX file format 28

3.4.8 ASM file format 28

3.4.9 ERR file format 28

3.5 What is an Assembler? 28

3.5.1 Main component and operation of assembler 29

3.5.2 One Pass assembler 30

3.5.3 Two Pass Assembler 32

3.6 Visual Basic Software 33

3.7 Project Design 34

3.7.1 Basic Compilation Techniques 35

3.7.2 Code Assembly Procedure 36

3.8 Instruction Set Architecture Design 37

3.9 Test Program File 38

IV RESULT AND DISCUSSION 40

4.1 Introduction 40

xii

4.2 Assembler Interface 40

4.3 Operation 41

4.3.1 Load Assembly File 42

4.3.2 Load Opcode File 43

4.3.3 Button Functionality 43

4.3.4 Output File Generated 44

V CONCLUSION AND RECOMMENDATION 49

5.1 Introduction 49

5.2 Conclusion 49

5.3 Recommendation 50

 REFERENCES 51

 APPENDIX A 56

 APPENDIX B 57

 APPENDIX C 58

xiii

LIST OF TABLE

NO. TITLE PAGE

2.1 4-tile configuration results 14

2.2 Single-tile configuration results 14

2.3 Specification of 8-bit RISC processor VS.

 Targeted 16-bit RISC processor 16

2.4 Comparison Between 8-bit and 16-bit processor architecture 18

xiv

LIST OF FIGURE

NO. OF FIGURE TITLE PAGE

2.1 The target architecture 5

2.2 Compilation process 6

2.3 A vectorization example 6

2.4 OpenCL kernel speedup 7

2.5 Overview of LLVM back-end enabling

 mixed-ISA code generation for clustered-VLIW 9

2.6 Speedup by Scaling KAHRISMA Resources 9

2.7 Multi-cluster compared to single-cluster RSIW configurations 10

2.8 Three reconfiguration scenarios showing the operations per

 instruction and number of involved EDPEs over time. 11

2.9 FDR-CGRA system overview 13

2.10 (a) Architectural support for Fast Data Relay at the PE level,

(b) Companion channels and Fast Data Relay 13

2.11 Instruction Set Architecture (a) Literal operation,

 (b) byte-oriented operation with direction and

 (c) bit-oriented operation 16

2.12 CPUSim Layout and Simulation Result 17

2.13 Behavioral Simulation Results using ISim 17

2.14 FPGA Implementation Results using Chipscope Pro 18

3.1 Project system design flow chart 20

3.2 Overall System Block Diagram 20

3.3 Xilinx System on Chip 21

3.4 General Architecture of Xilinx FPGA 22

xv

3.5 Assembling System Block Diagram 25

3.6 Main Component and Operation of Assembler [7] 29

3.7 One Pass Assembler Part 1[7] 30

3.8 One Pass Assembler Part 2[7] 31

3.9 Two Pass Assembler [7] 32

3.10 Graphical User Interface using Visual Basic 33

3.11 Flow Chart of Project 34

3.12 Typical Compilation Process Flow 35

3.13 Assembly Procedure 36

3.14 ISA Format a) Byte-oriented Operation,

 b) bit-oriented Operation, c) Literal and Control Operation 37

3.15 16-bit Instruction Set Architecture 37

3.16 22-bit Instruction Set Architecture 38

3.17 Assembly file are used 38

3.18 Opcode file are used 39

4.1 Assembler Interface Using Visual Basic 41

4.2 Load Assembly Program File for 16 bit ISA 42

4.3 Load Assembly Program File for 22 bit ISA 42

4.4 Load Opcode File 43

4.5 Button Functionality 43

4.6 Output file 16 bit ISA 44

4.7 Output file 22 bit ISA 45

4.8 Caption Box 45

4.9 List File 45

4.10 Conversion from assembly language to machine code 46

4.11 Example output error for 16-bit and 22-bit 47

4.12 Error file occur in assembly program 47

4.13 Location of all files 48

xvi

LIST OF ABBREVIATIONS

FPGA – Field Programmable Gate Array

ROM – Read Only Memory

FKEKK – Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer

IEEE – Institute of Electrical and Electronics Engineers

ISA – Instruction Set Architecture

RISC – Reduce Instruction Set Computer

UTeM – Universiti Teknikal Malaysia Melaka

COE – Coefficient

LST – Listing

INT – Intermediate

FYP – Final Year Project

ERR – Error

CPU – Central Processing Unit

RAM – Random Access Memory

ALU – Arithmetic Logic Unit

IR – Instruction Register

PC – Program Counter

HDL – Hardware Description Language

HEX – Hexadecimal

ASM – Assembly

CD – Compact Disc

LSB – Lowest Significant Bit

xvii

LIST OF APPENDIX

NO. TITLE PAGE

A ASCII Table 56

B Microsoft Visual Studio 2015 57

C Visual Basic Code Program 58

1

CHAPTER I

INTRODUCTION

1.1 Project Overview

This project is to design a dynamic assembler for reconfigurable processor.

Reconfigurable processor is a microprocessor with erasable hardware that can rewire

itself dynamically. This allows the chip to adapt effectively to the programming

tasks demanded by the particular software they are interfacing with at any given

time. Within the internal architecture, the instruction set architecture act as the

intermediate module between user program code (software) and hardware

implementation. The processor’s assembler must follow the changes of an

Instruction Set Architecture (ISA). An assembler is a program that takes basic

computer instructions and converts them into a pattern of bits that the computer’s

processor can use to perform its basic operations. The assembler program takes each

program statements in the source program and generates a corresponding bit stream

or pattern (a series of 0’s and 1’s of a given length). The assembler is design using

Visual Basic and using two-pass assembly method. The output of the assembler as a

coefficient file formatted will be used to burn into the FPGA implementation of the

processor core.

2

1.2 Objectives

The objective of this project is to design and to develop a dynamic assembler

for a reconfigurable processor.

1.3 Problem Statement

An assembler will not compatible with the processor if the reconfigurable

processor’s architecture is change to another system configuration. An assembler of

the processor is tied up to its architecture. The changes of new instruction set, bus

modification, and memory expansion would change the system configuration inside

the architecture of the processor. Processor could not run or there will have an error

if architecture and assembler is not matched up. A customizable assembler could

help to match up a multiple design of processor’s architecture. The machine code

need to update with the latest version of the architecture. Reconfigurable processor

required an assembler that compatible to the processor’s architecture. Thus, having a

customizable assembler that producing an output of object files that matched up to

the processor could solve this problem.

1.4 Scope

The assembler is developed using two-pass assembler approach. It could

support 2 type of processor. The dynamic instruction set architecture is to be mode

optional16-bit and 22-bit. Visual Basic 2013 used to design the assembler.

1.5 Report Structure

This thesis delivery the concept applied, method used, problem solving,

finding analysis and result of Visual Basic. This thesis consists of five chapters and

the following briefly describe what contents each chapter has.

3

In chapter 1, the purpose is to give reader an overall picture about what is

actually this project doing. Introduction, objectives, scope of project, problem

statement and summary of methodology are able to introduce this project to reader.

In chapter 2, the literature review of project is explained in detail. Study was

done for existing assembler and the disadvantages of existing assembler were found.

Describe about the introduction, problem statement, methodology used in the

project, and the result that can be referred to improve in this project. Then, the

theoretical concept that applied in the project based on the Visual Basic

programming technique and target hardware also state in this chapter.

In chapter 3, the methodology of project is described. The processes of

design are shown step by step. There are four main functions need to be designed

which are load, tokenization, lexical analysis and decode to get the output. The

assembler also will explain on how the main functions of existing assembler

working. Then, the programming using the Visual Basic also will explain on how to

design the new interface assembler.

In chapter 4, all results from project are included. The results are majority

focus on assembler are using Visual Basic. That’s mean the result assembler will

show as Visual Basic interface. The COE file, LST file, and ERR file will generate

after the assembler is done. The file also will test at FPGA processor to verify the

file is creating well.

In chapter 5, a conclusion is made for the project that carried out in final

year. The conclusion included project discovering, analysis achieved and future

enhancement. Besides, the accuracy of project results will be concluded by

comparing with objectives and problem statement. Finally, the important of this

project to the target user will also describe.

4

CHAPTER II

LITERATURE REVIEW

2.1 An OpenCL Optimizing Compiler for Reconfigurable Processors [1]

2.1.1 Introduction

This project is about simple and efficient optimization techniques for an

OpenCL compiler that targets reconfigurable processor. The target architecture

consists of a general purpose processor core and an embedded reconfigurable

accelerator with vector unit. The accelerator is able to switches its architecture

between the VLIW mode and the Coarse Grained Reconfigurable Array (CGRA)

mode to achieve high performance. One big problem of this architecture is

programming difficulty and OpenCL can be a good solution. However, since

OpenCL does not guarantee performance portability, hardware dependant

optimization is still necessary. Hence, an OpenCL compiler framework that exploits

the mode switching capability and vector units was developed. To measure the

effectiveness of the techniques, the OpenCL framework was implemented and

evaluates their performance with fourteen OpenCL benchmark applications.

5

2.1.2 Problem Statement

Conventional application processors in ASICs provide sufficient

computational power to process various functions in current mobile devices.

However, as the complexity of the applications for the mobile devices grows, the

programmability of processors has become a major concern. Reconfigurable

processors have been studied intensively as a programmable alternative to the

ASICs.

2.1.3 Methodology

The reconfigurable processor typically consists of multiple basic

components, e.g., functional units (FUs) and register files (RFs). Those components

comprise processing elements (PEs), which are connected by dedicated wires for

fast communication. The PEs and overall topology can be configured flexibly during

runtime. In such architectures, the major challenge is programming difficulty.

Application programmers need to explicitly control the accelerator, manage

communications between the host and the accelerator, and guarantee coherence and

consistency between memory blocks. Figure 2.1 shows the target architecture for the

project. Figure 2.2 shows the compilation process and Figure 2.3 shows the

vectorization example.

Figure 2.1: The target architecture

6

Figure 2.2: Compilation process

Figure 2.3: A vectorization example

2.1.4 Result

The baseline is C code obtained by base SnuCL translator, which is

represented by the bar labelled Base. Most of the kernels are mapped to CGRA

successfully and average speedup is 1.84. Six kernels of the benchmark applications

are vectorised, average speedup of vectorization is 2.4 and the maximum speedup is

7.21. To increase efficiency of vectorization, the conditional statement optimization

was applied, it is applied to Alpha Blending and it shows 4.21 speedup. The bar

labelled WP+OPT shows the speedup over the baseline after applying work-item

pruning and other optimizations. Average speedup of WP+OPT is 2.69 and the

maximum speedup is 9.39. In case of Gaussian-Fan1 and Gaussian-Fan2, about half

of the iteration range is pruned by work-item pruning. For VectorAdd, it can

efficiently vectorize the code because control flow divergence is removed by work-

item pruning. However, for the other kernels, performance improvements are limited

7

to 1% - 3% because they are not vectorized and pruned iteration ranges are small.

Figure 2.4 shows the output result of OpenCL kernel speedup.

Figure 2.4: OpenCL kernel speedup

2.2 A Compiler Back-End for Reconfigurable, Mixed-ISA Processors with

Clustered Register Files [2]

2.2.1 Introduction

Abstract—Reconfigurable tile-based architectures can dynamically

interconnect several tiles in order to establish processor instances with varying

resource, performance, and energy characteristics at run time. These flexible

processor instances offer a new degree of freedom for adapting to changing

applications’ requirements while optimizing resource and energy consumption. The

solution for dynamic interconnection of tiles requires a flexible Run-Time Scalable

Issue-Width (RSIW) Instruction Set Architecture (ISA) that changes dependent on

the configuration. In order to enable high-level programmability of the architecture

in C/C++ a novel compiler back-end is needed.

