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ABSTRACT 

 

 

 

 

The main objective for this project is to design a customizable assembler for 

dynamic instruction set architecture and to verify the assembler is compatible with 

the UTeMRISC processor architecture. In order to meet the objectives, a new 

assembler has been designed using Visual Basic 2015. The benchmark processor 

that is used for this project is UTeMRISC processor. In the development of 

processor architecture, one of the crucial part is the creation of a compatible 

assembler to the processor's instruction set architecture (ISA). Reconfigurable 

processor such as UTeMRISC03 requires a flexible assembler design in order to 

accommodate the modification being made to its ISA. The new assembler is capable 

in converting an assembly language program to its instruction word dictated by the 

processor's opcode file. The correct object files are also generated in line with the 

selected ISA width determined by the users. The object file is successfully loaded to 

the processor architecture in the FPGA platform in order to verify its compatibility. 

With the customizable feature achieved in this assembler design, the assembler 

would be beneficial as the main tool in the development of a complete package in a 

reconfigurable processor development in the future. 
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ABSTRAK 

 

 

 

 

Objektif utama projek ini adalah untuk mereka bentuk pemasang disesuaikan 

untuk dinamik seni bina set arahan dan untuk mengesahkan pemasang itu serasi 

dengan seni bina pemproses UTeMRISC. Dalam usaha untuk memenuhi objektif, 

pemasangan baru telah direka dengan menggunakan Visual Basic 2015. Pemproses 

penanda aras yang digunakan untuk projek ini adalah pemproses UTeMRISC. 

Dalam pembangunan seni bina pemproses, salah satu bahagian yang penting ialah 

kejadian pemasang yang serasi untuk seni bina set arahan pemproses (ISA). 

pemproses konfigur seperti UTeMRISC03 memerlukan reka bentuk pemasang yang 

fleksibel untuk menampung pengubahsuaian sedang dilakukan untuk ISA itu. 

Pemasang baru mampu menukarkan program bahasa himpunan untuk perkataan 

arahannya ditentukan oleh fail Opcode pemproses. Fail objek yang betul juga 

dihasilkan selaras dengan lebar ISA yang telah dipilih oleh pengguna. Fail objek 

berjaya dimuatkan kepada seni bina pemproses dalam platform FPGA untuk 

mengesahkan keserasian. Dengan ciri yang disesuaikan dicapai dalam reka bentuk 

pemasang ini, penghimpun akan bermanfaat sebagai alat utama dalam pembangunan 

pakej yang lengkap dalam pembangunan pemproses pembentukan semula pada masa 

akan datang. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Project Overview 

 

This project is to design a dynamic assembler for reconfigurable processor. 

Reconfigurable processor is a microprocessor with erasable hardware that can rewire 

itself dynamically. This allows the chip to adapt effectively to the programming 

tasks demanded by the particular software they are interfacing with at any given 

time. Within the internal architecture, the instruction set architecture act as the 

intermediate module between user program code (software) and hardware 

implementation. The processor’s assembler must follow the changes of an 

Instruction Set Architecture (ISA). An assembler is a program that takes basic 

computer instructions and converts them into a pattern of bits that the computer’s 

processor can use to perform its basic operations. The assembler program takes each 

program statements in the source program and generates a corresponding bit stream 

or pattern (a series of 0’s and 1’s of a given length). The assembler is design using 

Visual Basic and using two-pass assembly method. The output of the assembler as a 

coefficient file formatted will be used to burn into the FPGA implementation of the 

processor core. 
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1.2 Objectives 

 

The objective of this project is to design and to develop a dynamic assembler 

for a reconfigurable processor. 

 

 

1.3 Problem Statement 

 

An assembler will not compatible with the processor if the reconfigurable 

processor’s architecture is change to another system configuration. An assembler of 

the processor is tied up to its architecture. The changes of new instruction set, bus 

modification, and memory expansion would change the system configuration inside 

the architecture of the processor. Processor could not run or there will have an error 

if architecture and assembler is not matched up. A customizable assembler could 

help to match up a multiple design of processor’s architecture. The machine code 

need to update with the latest version of the architecture. Reconfigurable processor 

required an assembler that compatible to the processor’s architecture. Thus, having a 

customizable assembler that producing an output of object files that matched up to 

the processor could solve this problem. 

 

 

1.4 Scope 

 

The assembler is developed using two-pass assembler approach. It could 

support 2 type of processor. The dynamic instruction set architecture is to be mode 

optional16-bit and 22-bit. Visual Basic 2013 used to design the assembler. 

 

 

1.5 Report Structure 

 

This thesis delivery the concept applied, method used, problem solving, 

finding analysis and result of Visual Basic. This thesis consists of five chapters and 

the following briefly describe what contents each chapter has. 



3 
 
 

In chapter 1, the purpose is to give reader an overall picture about what is 

actually this project doing. Introduction, objectives, scope of project, problem 

statement and summary of methodology are able to introduce this project to reader.  

 

In chapter 2, the literature review of project is explained in detail. Study was 

done for existing assembler and the disadvantages of existing assembler were found. 

Describe about the introduction, problem statement, methodology used in the 

project, and the result that can be referred to improve in this project. Then, the 

theoretical concept that applied in the project based on the Visual Basic 

programming technique and target hardware also state in this chapter.  

 

In chapter 3, the methodology of project is described. The processes of 

design are shown step by step. There are four main functions need to be designed 

which are load, tokenization, lexical analysis and decode to get the output. The 

assembler also will explain on how the main functions of existing assembler 

working. Then, the programming using the Visual Basic also will explain on how to 

design the new interface assembler. 

 

In chapter 4, all results from project are included. The results are majority 

focus on assembler are using Visual Basic. That’s mean the result assembler will 

show as Visual Basic interface. The COE file, LST file, and ERR file will generate 

after the assembler is done. The file also will test at FPGA processor to verify the 

file is creating well. 

 

In chapter 5, a conclusion is made for the project that carried out in final 

year. The conclusion included project discovering, analysis achieved and future 

enhancement. Besides, the accuracy of project results will be concluded by 

comparing with objectives and problem statement. Finally, the important of this 

project to the target user will also describe. 
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CHAPTER II 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 An OpenCL Optimizing Compiler for Reconfigurable Processors [1] 

 

2.1.1 Introduction 

 

This project is about simple and efficient optimization techniques for an 

OpenCL compiler that targets reconfigurable processor. The target architecture 

consists of a general purpose processor core and an embedded reconfigurable 

accelerator with vector unit. The accelerator is able to switches its architecture 

between the VLIW mode and the Coarse Grained Reconfigurable Array (CGRA) 

mode to achieve high performance. One big problem of this architecture is 

programming difficulty and OpenCL can be a good solution. However, since 

OpenCL does not guarantee performance portability, hardware dependant 

optimization is still necessary. Hence, an OpenCL compiler framework that exploits 

the mode switching capability and vector units was developed. To measure the 

effectiveness of the techniques, the OpenCL framework was implemented and 

evaluates their performance with fourteen OpenCL benchmark applications. 
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2.1.2 Problem Statement 

 

Conventional application processors in ASICs provide sufficient 

computational power to process various functions in current mobile devices. 

However, as the complexity of the applications for the mobile devices grows, the 

programmability of processors has become a major concern. Reconfigurable 

processors have been studied intensively as a programmable alternative to the 

ASICs. 

 

 

2.1.3 Methodology 

 

The reconfigurable processor typically consists of multiple basic 

components, e.g., functional units (FUs) and register files (RFs). Those components 

comprise processing elements (PEs), which are connected by dedicated wires for 

fast communication. The PEs and overall topology can be configured flexibly during 

runtime. In such architectures, the major challenge is programming difficulty. 

Application programmers need to explicitly control the accelerator, manage 

communications between the host and the accelerator, and guarantee coherence and 

consistency between memory blocks. Figure 2.1 shows the target architecture for the 

project. Figure 2.2 shows the compilation process and Figure 2.3 shows the 

vectorization example. 

 

 
Figure 2.1: The target architecture 
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Figure 2.2: Compilation process 

 

 
Figure 2.3: A vectorization example 

 

 

2.1.4 Result 

 

The baseline is C code obtained by base SnuCL translator, which is 

represented by the bar labelled Base. Most of the kernels are mapped to CGRA 

successfully and average speedup is 1.84. Six kernels of the benchmark applications 

are vectorised, average speedup of vectorization is 2.4 and the maximum speedup is 

7.21. To increase efficiency of vectorization, the conditional statement optimization 

was applied, it is applied to Alpha Blending and it shows 4.21 speedup. The bar 

labelled WP+OPT shows the speedup over the baseline after applying work-item 

pruning and other optimizations. Average speedup of WP+OPT is 2.69 and the 

maximum speedup is 9.39. In case of Gaussian-Fan1 and Gaussian-Fan2, about half 

of the iteration range is pruned by work-item pruning. For VectorAdd, it can 

efficiently vectorize the code because control flow divergence is removed by work-

item pruning. However, for the other kernels, performance improvements are limited 
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to 1% - 3% because they are not vectorized and pruned iteration ranges are small. 

Figure 2.4 shows the output result of OpenCL kernel speedup. 

 

 
Figure 2.4: OpenCL kernel speedup 

 

 

2.2 A Compiler Back-End for Reconfigurable, Mixed-ISA Processors with 

Clustered Register Files [2] 

 

2.2.1 Introduction 

 

Abstract—Reconfigurable tile-based architectures can dynamically 

interconnect several tiles in order to establish processor instances with varying 

resource, performance, and energy characteristics at run time. These flexible 

processor instances offer a new degree of freedom for adapting to changing 

applications’ requirements while optimizing resource and energy consumption. The 

solution for dynamic interconnection of tiles requires a flexible Run-Time Scalable 

Issue-Width (RSIW) Instruction Set Architecture (ISA) that changes dependent on 

the configuration. In order to enable high-level programmability of the architecture 

in C/C++ a novel compiler back-end is needed. 

 

 

 

 

 


