DESIGN AND DEVELOPMENT OF MICROSTRIP ARRAY ANTENNA AT

28 GHz

MUHAMAD AKLIFF BIN ABD RAHIM

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Telecommunication Electronic)

> Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

> > JUNE 2016

C Universiti Teknikal Malaysia Melaka

UTEM INVERSITI TEKNIKAL MALAYSIA MELAKA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA akulti kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan projek sarjana muda ii
Tajuk Projek : D	esign and Development of Microstrip Array Antenna at 28 GHz
Sesi Pengajian :	1 5 / 1 6
	ff Bin Abd Rahim mengaku membenarkan Laporan Projek Sarjana Muda an dengan syarat-syarat kegunaan seperti berikut:
	lik Universiti Teknikal Malaysia Melaka. an membuat salinan untuk tujuan pengajian sahaja.
	an membuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	** (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TI	ERHAD
a /	Disahkan oleh:
(TANDATAN) AN PENUI	Engr. Imran Bin Hohd ibrahim Sanior Lecturer
Tarikh: 15th JUNE D.C	Faculty Electronic and Computer Engineering (FKEKK) University Teknikal Melaysia Melaka (UTeM) Tarikh:

ii

"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

: Ň

i

Signature Author

: Muhamad Akliff Bin Abd Rahim

Date : 15th June 2016

iii

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics/ Computer Engineering/ Electronic Telecommunication/ Wireless Communication)* with Honours."

: _____

Signature

Supervisor's Name

: Dr. Imran Bin Mohd Ibrahim

Date

: 15th June 2016

DEDICATION

I dedicate this thesis to my beloved Father *Abd Rahim Bin Mohd*

And

To the loving memory of my Mother *Noormah binti Hj. Hussien*

You have successfully made me the person I am now

And

will always be remembered

ACKNOWLEDGEMENT

First and foremost, I would like to extend my highest gratitude and thanks to my project supervisor, Dr Imran bin Mohd Ibrahim for his valuable guidance, critics and encouragement throughout the duration of my project. His willingness to spare time and guide me throughout the project has contributed tremendously to my project. With his continuous encouragement and support, this project finally had been presented.

Apart from that, I would like to express my deepest thanks and appreciation to my beloved Father, family, my roommate and also my friends, for gracing me with strength, wisdom, and confidence to complete this project.

ABSTRACT

5G technologies undergo a huge research to meet the fast growing wireless communication whereby the high frequency is required to fulfil the high data capacity demands. Mircostrip antenna is preferred due to its low profile, easy in feeding and array configurations. The natural low gain of this antenna can be overcome by constructing patch array antenna. In this project, configurations of patch array antennas are designed by following the specification from ETSI EN 301 215 part 1-4, to investigate their radiation patterns with different orientation ,excitation phase and gain at 28 GHz for 5G application. Simulated Retur loss, VSWR and simulated radiation patterns are presented. In future work, this project will be more focus on antenna array because to achived the higher gain.

ABSTRAK

Teknologi 5G telah dijalankan kajian secara menyeluruh untuk mengatasi perkembangan yang pesat pada teknologi komunikasi tanpa wayar dimana frequensi tinggi diperlukan untuk memenuhi sistem muatan data yang tinggi. Antena microstrip dipilih disebabkan susuk rendah, dan kemudahan pengeluaran serta kemudahan konfigurasi array. Keuntungan rendah pada antena ini boleh diatasi dengan konfigurasi array. Di dalam project ini, konfigurasi tampal array antena direkabentuk, simulasi dan fabrikasi untuk menganalisa mengikut spesifikasi daripada ETSI EN 301 215 bahagian 1-4 pada frekuensi 28 GHz. Pengukuran dan simulasi pekali pantulan, VSWR telah dipaparkan adalah untuk mecapai spesifikasi yg ditentukan. Pada masa hadapan, projek ini akan lebih fokus kepada antena tampal susunan.

TABLE OF CONTENT

CHAPTER	TITLE DECLARATION	PAGE ii
	DEDICATION	v
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENT	ix
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
1	INTRODUCTION	1
	1.1 Background study of 5G	1
	1.2 Spectrum for 5G	3
	1.3 Why do we need 5G?	4
	1.4 Problem Statement	7
	1.5 Objective of the Project	7
	1.6 Scope of the Project	7
2	LITERATURE REVIEW	8
	2.1 Millimeter-Wave Mobile Communications Microstrip	8
	Antenna (28GHz or 38GHz)	
	2.2 Dense Dielectric Patch Array Antenna With Improved	11
	Radiation Characteristics Using EBG Ground Structure	
	and Dielectric Superstrate	
	2.3 Single element microstrip patch antenna on Duroid	13
	2.4 28 GHz High Efficiency Planar Array Antenna with Hybrid Feed Network	14

C Universiti Teknikal Malaysia Melaka

2.5 CPW fed Microstrip Antenna for Indoor Broadband	17
Wireless Communications	
2.6 28-GHz Patch Antenna Arrays with PCB and LTCC	18
Substrates	
2.7 28 GHz CRLH Antenna on Silicon Substrate	22
2.8 Microstrip Antenna for 5G Broadband Communications:	25
Overview of Design Issues	
2.9 Corporate-Fed 2x2 Planar Microstrip Patch Sub-Array	28
for the 35 GHz Band	
2.10 Design and Simulation of Double Ridged Horn (DRH)	31
Antenna Operating For UWB Applications	
2.11 Multiband Smart Fractal Antenna Design for	35
Converged 5G Wireless Networks	
2.12 Gain Enhancement In Microstrip Patch Antenna Using	38
The Multiple Substrate Layer Method	
2.13 Performance Comparison between Rectangular and	40
Circular Patch Antenna Array	
2.14 Design, Substrates Comparison and Fabrication of 8-	42
Element High Gain Microstrip Patch Antenna	
2.15 Summarization researches for 28GHz Antenna	46
PROJECT METODOLOGY	49
3.1 Basic introduction	49
3.2 Feeding Technique	53
3.3 Polarization	56
3.4 Array Characteristic	57
3.5 Basic theory of Microstrip Antenna Operation	59
3.6 Flowchart of the Project Methodology	64
3.7 Gantt Chart of the Project Methodolgy	65
DESIGN AND SIMULATION OF ANTENNAS	66
4.1 Design Specification	66
4.2 The Rectangular Patch Dimensions	67
4.3 Single Patch Design	68

3

4

	4.4 2-Element patch Array Antenna	72
	4.5 4-Element Patch Array Antenna	77
	4.6 8-Element Patch Array Antenna	80
	4.7 16-Element Patch Array Antenna	83
	4.8 32-Element Patch Array Antenna	87
	4.9 Comparison Of Every Patch Of Element	91
	4.10 32-Element Patch Array Antenna (Mirror Design)	94
	4.11 32-Element Patch Array Antenna (Bend Design)	96
	4.12 Summary of every patch of 32-Element	98
5	CONCLUSION AND FUTURE WORK	100
	5.1 Conclusion	100
	5.2 Future Work	101

REFERENCE	102

LIST OF TABLE

NO	TITLE	PAGE
1.1	Comparison of all generations of mobile technologies	5
1.2	Design Specification From Etsi En 301 215 1-4	7
2.1	Table of parameters	9
2.2	Parametes of the DD antenna	12
2.3	Parameter of Single element micro strip patch antenna on	13
	Duroid	
2.4	Dimension of 4X1 and 2X2 patch antenna array	20
2.5	Dimensions Of The Proposed Drh Antenna	32
2.6	Antenna substrate dimension	36
2.7	Result of single layer and multiple layer parameters	39
2.8	Result for Multiple of Antenna Array	41
2.9	Single element microstrip patch antenna dimentions using FR4	42
2.10	Single element microstrip patch antenna dimentions using RT	42
	5880	
2.11	Result of single patch (fr4-eproxy) antenna parameters	43
2.12	Result of Single patch (RT/duroid 5880) antenna Parameters	43
2.13	Array dimensions	44
2.14	Result of Patch array (RT/duroid 5880) antenna Parameters	44
2.15	Summarization researches for microsrip patch antenna	46
3.1	Advantages and disadvantages of microstrip antenna	50
3.2	The comparisons between the feeding methods for MPA	56
4.1	The ETSI specification	66
4.2	Design parameters single patch	69
4.3	The feed design for 50 ohm, 70 ohm and 100 ohm	78
4.4	The design paraneter for 32-element patch array antenna in	88

4.5	Comparison from single patch untill 32-Element patch array	91
4.6	Comparison of 32-Element, Bend and Mirror patch array	98

xiii

LIST OF FIGURE

NO	TITLE	PAGE
1.1	5G contain all communication	2
1.2	The figure 5G wireless-access solution consisting of	3
	LTE evolution and new technology	
1.3	Frequency spectrum for 5G	4
1.4	Every 60 second happens in the Internet	6
2.1	Design of antenna on ADS	9
2.2	Result of a Design of antenna on ADS	10
2.3	Design of DD patch antenna	11
2.4	Result of the DD antenna on CST	12
2.5	Design of Single element micro strip patch antenna on	13
	Duroid	
2.6	Result of Single element micro strip patch antenna on	14
	Duroid	
2.7	Two layer series-fed microstrip array with slot-coupled	15
	SIW feed line	
2.8	Result of return loss and gain	16
2.9	Design of CPW fed patch antenna	16
2.10	Result of CPW fed patch antenna	16
2.11	Design of 2x2 patch antenna array	20
2.12	Design of 4x1 patch antenna array	20
2.13	Result for S11 of 2x2 patch antenn	21
2.14	Result of 2x2 patch antenna for (a) E-pane (b) H-plane	21
2.15	Result of 4x1 patch antenna for (a) E-pane (b) H-plane	21

2.16	CPW CRLH elementary cell that is used in antenna	22
	construction	
2.17	CPW CRLH elementary cell that is used in antenna	23
	construction	
2.18	Result of CPW CRLH elementary cell that is used in	24
	antenna construction	
2.19	Geometry of the patch antennas	26
2.20	Photo of the prototypes fabricated at 28 and 60GHz	26
2.21	Comparison of theoretical S11(f) between design	27
	optimized without and with connector for patch at	
	28GHz	
2.22	Comparison of theoretical S11(f) between design	27
	optimized without and with connector for patch at	
	28GHz	
2.23	Design of the sub-array	28
2.24	Design of the 4x4 array	29
2.25	Result of the 4x4 array	29
2.26	Design of the 8x8 array	30
2.27	Result of the 8x8 array	30
2.28	The designed antenna has been simulated using Ansoft	32
	HFSS	
2.29	Return Loss for designed horn antenna	33
2.30	Result for Simulated VSWR	33
2.31	Gain obtained for Horn antenna	34
2.32	Radiation Pattern	34
2.33	Multiband Antenna Structure	35
2.34	Return loss plot	37
2.35	VSWR Plot	37
2.36	Multiple Substrate Antenna proposed design	38
2.37	S11 Parameters glass substrate	39
2.38	S11 parameters for silicon/glass/silicon substrate	39
2.39	Design Layout of Four-Patches Rectangular Microstrip	41
	Antenna Array and Four-Patches Circular	

2.40	S11 response and VSWR	43
2.41	S11 response and VSWR	43
2.42	Array dimensions	44
2.43	S11 response and VSWR	45
3.1	Various shapes of microstrip patch antenna	50
3.2	Rectangular patch antenna	51
3.3	Cicular patch antenna	52
3.4	Annular resonator patch antenna	53
3.5	Geometry of Micro-Strip Feed line (a) directly feed (b)	54
	Inset feed	
3.6	Geometry of Coaxial Probe Feed microstrip patch	54
	antenna (a) Top view (b) Side view	
3.7	Geometry Aperture Coupled Feed microstrip patch	55
	antenna (a) Top view (b) Side view	
3.8	Geometry of proximity coupled feed microstrip patch	55
	antenna (a) Top view (b) Side view	
3.9	Illustrations of a 3-dB beam width	58
3.10	Physical and effective length of microstrip patch	60
	antenna	
3.11	Aperture Coupled Microstrip Patch Antenna	61
4.1	The front view of single patch antenna	68
4.2	The prespective view and back of single patch	69
	antenna	
4.3	Gain at 28GHz	69
4.4	a) Bandwidth b) Return loss	70
4.5	Return loss for width patch 3.6 to 4.5	71
4.6	Return loss for length gap 0.77mm to 0.9mm	71
4.7	The front view of 2x1 patch antenna	72
4.8	The calculation done by emtalk.com for 50 ohm feed	73
4.9	The calculation done by emtalk.com for 70 ohm feed	73
4.10	The calculation done by emtalk.com for 100 ohm feed	73

4.11	The calculation done by emtalk.com for patch width	74
	and length	
4.12	Return loss for 2-Element patch antenna	75
4.13	Voltage standing wave ratio(VSWR) for 2-Element	75
	patch antenna	
4.14	Gain for 2-Element patch antenna in 3D model	76
4.15	Farfield array for 2-Element patch antenna in polar	76
	model (phi=90)	
4.16	The front view of 2x2 patch antenna	77
4.17	The s-parameter of 2x2 patch antenna	78
4.18	The voltage standing wave ratio(VSWR) of 2x2	79
	patch antenna	
4.19	Farfield pattern of 2x2 patch antenna	79
4.20	4.20 Farfield array for 4-Element patch antenna in	80
	polar model	
4.21	The front view of 4x2 patch antenna	80
4.22	The Return loss for 8-Element patch Array antenna	81
4.23	The VSWR for 8-Element patch array antenna	82
4.24	The Farfield result for 8-Element patch array	82
	antenna	
4.25	The Farfield result (polar) for 8-Element patch array	83
	antenna	
4.26	The front view of 4x4 patch antenna	84
4.27	Return loss of 4x4 patch antenna	84
4.28	VSWR for 4x4 patch antenna	85
4.29	Farfield result (3D) of 4x4 patch antenna	86
4.30	Farfield result (polar) of 4x4 patch antenna	86
4.31	The front view of 4x8 patch antenna	87
4.32	The Return loss for 32-Element patch array antenna	88
4.33	The VSWR for 32-Element patch array antenna	89
4.34	The Gain (3D) for 32-Element patch array antenna	90
4.35	The Directivity (polar) for phi 0 and phi 90 for 32-	90
	Element	

4.36	The Directivity (polar) for phi 0 and phi 90 for 32-	91
	Element	
4.37	Comparison of return loss from single patch untill	92
	32-Element	
4.38	Comparison of radiation pattern (polar) from single	93
	patch untill 32-Element	
4.39	Design of 32-Element patch array antenna (Mirror)	94
4.40	Return loss for 32-Element patch array antenna	95
	(mirror)	
4.41	Radiation pattern (3D) for 32-Element patch array	95
	antenna (mirror) design	
4.42	Radiation pattern (polar) for 32-Element patch array	96
	antenna	
4.43	Design of 32-Element Patch Array Antenna (Bend	96
	Design)	
4.44	Return loss for 32-Element Patch Array Antenna	97
4.45	Radiation pattern for 32-Element Patch Array	98
	Antenna (Bend)	
4.46	Retun loss for 32-Element, Bend and Mirror patch	99
	array	
4.47	Radiation pattern for 32-Element, Bend and Mirror	99
	patch array	

CHAPTER 1

INTRODUCTION

1.0 Introduction

In this project we are designing and develop the antenna of 28 GHz Mircostrip Antenna Array. The problem statement of the project, is the compact of the previous service provider. Other than that, there are so many type Antenna but to fiind the cheaper antenna that follow the specification are hard to had . The main objective of the antenna is to understand the 5G oprate on 28 GHz antenna, to design the antenna and fabricate the design on selected substrate. The scope of the project, is to design antenna on many type on difference type of substrate to see the result of the parameters. This project will be divide into 2 categories that is simulation and hardware. The design will undergo by CST. The expectation of the project is, the operating frequency (28 GHz) with specification can be achieved in the simulation and also on the hardware.

1.1 Background study of 5G

5G is the next step in the evolution of mobile communication. It will be a key component of the Networked Society and will help realize the vision of essentially unlimited access to information and sharing of data anywhere and anytime for anyone and anything [1]. 5G will therefore not only be about mobile connectivity for people. Rather, the aim of 5G is to provide ubiquitous connectivity for any kind of device and any kind of application that may benefit from being connected.

Mobile broadband will continue to be important and will drive the need for higher system capacity and higher data rates. But 5G will also provide wireless connectivity for a wide range of new applications and use cases, including wearables, smart homes, traffic safety/control, and critical infrastructure and industry applications, as well as for very-high-speed media delivery.

Figure 1.1 5G contain all communication

In contrast to earlier generations, 5G wireless access should not be seen as a specific radio-access technology. Rather, it is an overall wireless-access solution addressing the demands and requirements of mobile communication beyond 2020.

LTE will continue to develop in a backwards-compatible way and will be an important part of the 5G wireless-access solution for frequency bands below 6GHz. Around 2020, there will be massive deployments of LTE providing services to an enormous number of devices in these bands. For operators with limited spectrum resources, the possibility to introduce 5G capabilities in a backwards-compatible way, thereby allowing legacy devices

to continue to be served on the same carrier, is highly beneficial and, in some cases, even vital.

In parallel, new radio-access technology (RAT) without backwardscompatibility requirements will emerge, at least initially targeting new spectrum for which backwards compatibility is not relevant. In the longer-term perspective, the new non-backwards-compatible technology may also migrate into existing spectrum

Figure 1.2 The figure 5G wireless-access solution consisting of LTE evolution and new technology

Although the overall 5G wireless-access solution will consist of different components, including the evolution of LTE as well as new technology, the different components should be highly integrated with the possibility for tight interworking between them. This includes dual-connectivity between LTE operating on lower frequencies and new technology on higher frequencies. It should also include the possibility for user-plane aggregation, that is, joint delivery of data via both LTE and a new RAT

1.2 Spectrum for 5G

In order to further extend traffic capacity and to enable the transmission bandwidths needed to support very high data rates, 5G will extend the range of frequencies used for mobile communication. This includes new spectrum below 6GHz, expected to be allocated for mobile communication at the World Radio Conference (WRC) 2015, as well as spectrum in higher frequency bands, expected to be on the agenda for WRC 2019.

It is still unclear what spectrum in higher frequency bands will be made available for mobile communication, and the entire frequency range up to approximately 100GHz is considered at this stage. The lower part of this frequency range, below 30GHz, is preferred from the point of view of propagation properties. At the same time, very large amounts of spectrum and the possibility of very wide transmission bandwidths, in the order of 1GHz or even more, will only be available in frequency bands above 30GHz.

Thus, spectrum relevant for 5G wireless access ranges from below 1GHz up to in the order of 100GHz, as Figure 2 shows.

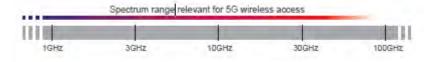


Figure 1.3 Frequency spectrum for 5G

It is important to understand that high frequencies, especially those above 10GHz, can only serve as a complement, providing additional system capacity and very wide transmission bandwidths for extreme data rates in dense deployments. Lower frequencies will remain the backbone for mobile-communication networks in the 5G era, providing ubiquitous wide-area connectivity.

1.3 Why do we need 5G?

One of the main benefits of 5G technology over 4G will not be its speed of delivery – which admittedly could be between 10Gbps and 100Gbps – but the latency. At present, 4G is capable of between 40ms and 60ms, which is low-latency but not enough to provide real-time response. Multiplayer gaming, for example, requires a lower latency than that to ensure that when you hit a button, the remote server responds instantly. Another example was given to us by EE's Sutton, who said that 5G's prospective ultra-low-latency could range between 1ms and 10ms. This would allow, he said, a spectator in a football stadium to watch a live stream of an alternative camera

angle of the action that matches what is going on the pitch ahead with no perceivable delay.

The capacity is an important factor too. With the Internet of Things becoming more and more important over time, where gadgets and objects employ smart, connected features that they have never had before, the strain on bandwidth will continue to grow. Initial ideas behind 5G is that an infrastructure will be in place to avoid that. It will be more adaptive to user's needs and demands and therefore able to allocate more or less bandwidth based on the application.

Technology Features	1G	2G	3G	4G	5G
Deployment	1970-1980	1990-2004	2004-2010	2010>>	2020
Data Bandwidth	2Kbps	64Kbps	2Mbps	100Mbps	>1Gbps
Technology	Analog Cellular	Digital Cellular	CDMA 2000 (1xRTT, EVDO)	Wi-Max LTE Wi-Fi	WWWW
Multiplexing	FDMA	TDMA CDMA	CDMA	CDMA	CDMA

Table 1.1 Comparison of all generations of mobile technologies

1.3.1 The Internet of Things.

By the year 2020, it is predicted by analysts that each person in the UK will own and use 27 internet connected devices[2][3]. There will be 50 billion connected devices worldwide. These can range from existing technology, such as smartphones, tablets and smartwatches, to fridges, cars, augmented reality specs and even smart clothes. Some of these will require significant data to be shifted back and forth, while others might just need tiny packets of information sent and received. The 5G system itself will understand and recognise this and allocate bandwidth respectively, thereby not putting unnecessary strain on individual connection points.

The work has already begun for 4G implementation, but will become even more vital to a 5G future. As part of a "heterogeneous network", the points, or cells, will be used for LTE-A and the technology will be increased and refined to adapt to 5G too. Cells will automatically talk to each device to provide the best and most efficient service no matter where the user is. Larger cells will be used in the same way as they are now, with broad coverage, but urban areas, for example, will also be covered by multiple smaller cells, fitted in lampposts, on the roofs of shops and homes, and even inside bricks in new buildings. Each of these will ensure that the connection will be regulated and seemingly standard across the board.

Algorithms will even know how fast a device is travelling, so can adapt to which cell it is connected to. For example, a connected car might require connection to a macro-cell, such as a large network mast, in order to maintain its connection without having to re-establish continuously over distance, while a person's smartphone can connect to smaller cells with less area coverage as the next cell can be picked up easily and automatically in enough time to prevent the user noticing.

Figure 1.4 Every 60 second happens in the Internet

C) Universiti Teknikal Malaysia Melaka