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ABSTRACT 

 

 

Rotary inverted pendulum (RIP) system is a well-known control system with its non-

linearity and underactuated system. There are many applications of RIP system in industry 

especially the application of balancing of a robot. The RIP system in this project is driven 

by DC Servo motor. The DC Servo motor is used because it is easy to setup and control, has 

precise rotation and most importantly is low cost. As for RIP system itself, has smooth 

motion, not easy to wear out and high mechanical efficiency. However problems will occur 

when inverted pendulum of the RIP system is required to stable at an upright position. The 

non-linearity and underactuated characteristics cause the system to be highly unstable when 

maintaining at upright position. Therefore, the objective of this project is to propose double 

Proportional-Integral-Derivative (PID) and Linear Quadratic Regulator (LQR) controller to 

stable the inverted pendulum at an upright position by a rotary arm which is actuated by a 

DC Servo motor. The performance between the double-PID and LQR controller is compared 

in order to validate the performance of each controller. Mathematical modelling of the RIP 

system is carried out to obtain a state space model of the RIP system for ease of designing 

controller. Designing of double-PID and LQR controller is carried out in two phases. In 

Phase 1, LQR controller is designed for a basic stabilization control. In phase 2, double-PID 

controller is designed based on the RIP system with LQR controller for improving the 

stabilization performance. Throughout all the designing procedure, the stabilization 

performance of inverted pendulum and settling time are examined and compared. At the end 

of this project, double-PID with LQR controller was designed successfully to stable the RIP 

system. 
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ABSTRAK 

 

 

Sistem bandul balik yang berputar adalah satu sistem kawalan yang terkenal dengan 

ketidaklinearan dan sebagai sistem underactuated. Applikasi sistem bandul balik yang 

berputar dalam industry termasuk menstabilkan robot. Sistem bandul balik yang berputar 

dalam projek ini adalah digerakkan dengan DC servo motor. DC servo motor digunakan 

adalah disebabkan penggunaan yang mudah, tepat penggerakan dan kos yang rendah. 

Masalah dalam sistem kawalan ini berlaku semasa mendirikan bandul balik pada kedudukan 

yang tegak. Sistem tersebut akan mengalami masalah ketidakstabilan. Justeru, objektif 

projek ini adalah mencadangkan pengawal Double-PID dan LQR untuk menstabilkan bandul 

balik tersebut. Sistem bandul balik berputar ini dimodelkan dalam matematika model dengan 

menggunakan state space model. Terdapat 2 fasa untuk mereka bentuk pengawal Double-

PID dan LQR untuk sistem tersebut. Fasa 1 adalah fasa untuk mereka bentul pengawal LQR. 

Fasa 2 adalah fasa untuk mereka bentuk pengawal Double-PID pada sistem bandul balik 

berputar yang berdasarkan pengawal LQR yang sedia ada. Melalui prosedur-prosedur rekaan 

bentuk pengawal, kestabilan sistem bandul balik berputar telah dianalisis untuk mengkaji 

pengawal Double-PID dan LQR. Dengan itu, pengawal Double-PID dan LQR telah berjaya 

menstabilkan sistem bandul balik berputar. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Research background 

 

The problem of balancing a broomstick in a vertical upright position on a person’s 

hand is well known to the control engineering community. For any person, a physical 

demonstration of the broomstick-balancing act constitutes a challenging task requiring 

intelligent, coordinated hand movement based on visual feedback. The instability 

corresponding to the broomstick vertical upright position leads to the challenge inherent in 

the problem [1]. Since Furuta’s Pendulum established in year 1992, RIP is one of the 

imperative systems for testing various control technique. It is highly nonlinear, severely 

unstable, multivariable and an under-actuated system in the field of control theory. It is most 

helpful for testing self-tuning regulator kind of control technique. Craig et. al. designed and 

built a course “Mechatronic System Design” at Rensselaer. They summarized a mechatronic 

system design case study for the RIP system [1]. Inverted pendulum system is a typical 

experimental platform for the research of control theory. The process of inverted pendulum 

can reflect many key programs, such as stabilization problem, nonlinear problem, robustness, 

follow-up and tracking program etc [2]. The RIP system consists of an actuator and two 

degrees of freedom, which makes it under-actuated, only robot arm is being actuated while 

pendulum is indirectly controlled, so as to result in the balance problem. Segway is one of 

the most significant succeed research based on control theory of inverted pendulum system. 

Its ability to self-balance brings development of modern vehicle to a new milestone. The 

inverted pendulum concept can be applied in control of a space booster rocket and a satellite, 

an automatic aircraft landing system, aircraft stabilization in the turbulent air flow, 

stabilization of a cabin in a ship and others [3-4].  
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1.2  Motivation and significance of research 

 

In this project, the stabilization controllers were proposed and compared by using the 

RIP system driven by servo motor module as a medium of experiment. The stabilization 

controllers that proposed in this project are double PID controller and LQR controller. Both 

designs of controller are compared with some specifications of performances. 

 

 

1.3  Problem Statement 

 

 In order to control the stabilization of the RIP system at upright position driven by 

DC motor, many different controller approaches have been introduced in global academic 

researches. All of the approaches aim to achieve a better transient performance, low steady 

state error and low overshoot condition. The problem arises when there are two outputs 

giving feedback to control system, tuned signal is giving one input only back to the plant. 

This Single Input Multiple Output (SIMO) system cannot be controlled by a single 

conventional PID controller. Furthermore, certain parameter of RIP system is changed when 

disturbance is given to high non-linear characteristic of the RIP system. The single 

conventional PID controller cannot adapt to the changes of system parameter that occur on 

the system. Therefore, tuning multiple outputs of the RIP system at the same time become a 

challenge throughout the whole project. Double PID with LQR controllers are proposed to 

solve this SIMO RIP system.  

 

 

1.4  Objectives 

 

The basic objectives of this project are as follows: 

a) To propose a double-PID with LQR controller for stabilization control of a rotary 

inverted pendulum system. 

b) To evaluate the stabilization performance of the rotary inverted pendulum system   

experimentally. 
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1.5  Scope 

 

The scope of this project are: 

a) The design of the stabilization controller for the RIP system is required to maintain 

the pendulum at upright position, within ±20º from vertical upright position. 

b) After the pendulum is within ±5°, rotary arm of the RIP system is required to 

maintain moving range within ±22.5°. 

c) The RIP system is modelled mathematically using Lagrange’s equation. 

d) This system with two Degree of Freedom (DOF) is actuated by a DC motor, which 

categorize this system as underactuated system. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

2.1  Theory and Basic Principle of RIP System 

 

Figure 2.1 shows the RIP system manufactured by TERASOFT. The RIP system is 

an under-actuated system which consists of one actuator and two Degree Of Freedom (DOF). 

The only actuator in the system is the DC motor. The rotary arm is driven by the DC motor 

where electrical energy is converted into mechanical energy, the torque to move it. The 

angular motion of the rotary arm gives energy to the pendulum to swing up and maintain 

stable at vertical upright position. The pendulum is set to be always perpendicular to the 

rotary arm. When the pendulum is at vertical upright position, the system is highly unstable, 

where a controller is needed to achieve stabilization and swing up mechanism of the RIP 

system. The amplitude of the supply voltage to the DC motor is proportional to the 

magnitude of the angular displacement of the rotary arm. Thus, the greater the supply voltage 

to the actuator, the greater the angular displacement of the rotary arm.  

The angular displacement of RIP is indirectly moved by the DC motor torque. There 

are two types of movement mechanism in RIP system, which are swing-up mechanism and 

stabilize mechanism. In this project, swing-up mechanism is not discussed, position of RIP 

is assumed to be at upright position as initial condition. Second type of movement 

mechanism is stabilization mechanism of rotary inverted system which is the motion 

maintaining the RIP at vertical upright position and avoiding the pendulum falling down in 

its free fall of nature way.  
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Figure 2.1: TERASOFT Rotary Inverted Pendulum   

 

 

2.2  Review of Previous Related Works 

 

There were many researchers studied RIP system from different aspects especially 

in modeling and designing different controller of the system. For stabilization and swing-up 

of RIP system, numerous designs of controller approach have been suggested to achieve 

better stabilization performance. Therefore, the study of research that had been done by other 

researchers is important to get a rough idea of designing controller in this RIP system. 

There are basically divided to classical controller and advanced controller in 

proposed controllers to stabilize the RIP system. Proportional-Integral-Derivative (PID) 

controller is one of the most widely used controller in field of control engineering. As the 

RIP system is an underactuated and non-linear system, PID controller is common to be 

designed in the RIP system, as it improves overshoot percentage and steady state error of the 

system with an easy approach. PID controller can be used although mathematical model of 

the system is not known. When the mathematical model is not known, Ziegler-Nichols rules 

can be applied. Ziegler Nichols tuning rules give an educated guess for the parameter values 

and provide a starting point for fine tuning.  Thus, from year 2009 to 2012, 2DOF PID or 

Double-PID was designed as a controller in the RIP system [6,8,11,13,15]. As a stabilization 

controller in the RIP system, the controller stabilized the inverted pendulum and as well as 

the rotary arm. 

For advance controller, hybrid strategy was applied on the controllers. Combining 

two types of controller into the RIP system was considered in designing controller procedure. 

The advanced controllers that were used in hybrid strategy in previous works are including 

Full State Feedback controller, fuzzy logic controller and Double-PID with LQR controller. 
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Full State Feedback (FSF) Controller 

 

 
Figure 2.2: Full State Feedback/LQR Controller Block Diagram 

 

Figure 2.2 shows a block diagram of a Full State Feedback (FSF) controller in the 

RIP system. The RIP system is was designed in state space model. Poles of the closed loop 

system may be placed at any desired locations by means of state feedback through an 

appropriate state feedback gain matrix K. There are a few approach to tune FSF controller, 

one of them is by pole placement method. According to M. Akhtaruzzaman [5], he designed 

FSF controller by placing stable poles of the RIP system, then used Ackermann’s formula 

and Integral of Time-weighted Absolute Error (ITAE) table, state feedback control gain 

matrix, K which is a 4 × 1 matrix was obtained. FSF controller was considered relatively 

ease of design and effective procedure to obtain the gain matrix K. There are some 

drawbacks of designing FSF controller. It requires successful measurement of all state 

variables or a state observer in the system, where it needs control system design in state 

space model. It also requires experienced researcher to determine the desired closed loop 

poles of the system, especially when the system has a higher order system than second or 

third order. 

 

Proportional-Integral-Derivative (PID) Controller 

 

Figure 2.3 shows a double-PID controller instead of single conventional PID 

controller, it was because single PID controller can control only one variable of the system. 

In fact, rotary inverted pendulum system has one input and two outputs which single PID is 

incapable to control the system.  
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Figure 2.4: 2DOF PID Controller [5] 

 

According to Figure 2.3, 2DOF PID was arranged cascaded. PID Arm was to 

maintain the rotary arm as zero, while PID pendulum maintained the speed and position of 

pendulum to remains stable [5].  PID Arm was tuned first then following by the PID 

Pendulum. Root locus analysis was used to tune the both PID.  

 

 
Figure 2.4: Model of cart inverted pendulum system with PID controller 

 

The performance of double-PID in stabilization of RIP system was not satisfactory as its 

dynamic responses is not robust. Thus, researchers suggested to implement hybrid strategy, 

combining LQR controller with double-PID controller as stabilization controller. 

Before suggesting double-PID controller in year 2011, another controller was also 

proposed for the RIP which is adaptive PID with sliding mode control [6]. In this paper, the 

researchers use sliding mode control to handle the nonlinear time varying part, and designed 

an adaptive law to tune up the system parameters online. The parameters of the PID 

controller were adjusted online by adaptive law. Unfortunately, the RIP control system 
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possessed control difficulty with its non-linear and instable system. The design of the sliding 

mode controller took two steps, firstly, the sliding function was determined and then the 

control law was derived. The results showed that the proposed adaptive PID sliding mode 

controller has succeeded to make the system stable and robust effectively. The main 

advantage of the proposed control method is that the PID controller gains can be obtained 

online and converge efficiently.  

In year 2011, from the paper [7-8], the double-PID was suggested as a stabilization 

controller in RIP system. The fundamental of the design of double-PID controller is taking 

position of the cart and angle of the pendulum rod as signals for feeding back to the system 

as shown in  

In paper [9], Gan designed a composite controller according to the characteristics of 

LQR and PID controller to get a faster control speed and better effect of dynamic balance. 

The results show that the control algorithm combined by LQR and PID can obtain a good 

balance effect and has a good anti-disturbance effects, which can restore dynamic fast. For 

the PID controller, it can control robot balance but the robot vibrate larger in the vicinity of 

balance point, the static performance is poor [9]. For the LQR controller, it has a good control 

effect in small-angle scope, but, for larger disturbance, then the angle beyond the 

linearization constraint conditions, the LQR controller do not have good control effect, even 

cannot keep robot balance [9]. 

 

 
Figure 2.5: Double PID & LQR Control of Nonlinear Inverted Pendulum System [7] 

 

Figure 2.5 shows the control structure of a double PID and LQR controller in [7]. 

LQR used state variables as the feedback variables in order to increase the stability of the 

system and obtain the desired system response. The optimal control value of LQR was added 

negatively with PID control value to have a resultant optimal control. 
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Linear Quadratic Regulator (LQR) Controller 

 

By using modern control theory, the design of LQR controller is started by 

considering the first-order mathematical model of inverted pendulum system. By using 

linear quadratic control theory to design the control current signal, the pendulum rod can 

achieve a stable equilibrium point at upright position. According to the LQR optimal control 

law, its optimality is totally depended on the selection of Q and r, whereby Q and r are 

weighting matrixes that penalize certain states and control inputs of the system. The 

widespread method used to choose Q and r is by means of simulation and trial [10].  

In paper [9], LQR controller is designed into a two-wheeled self-balancing robot. 

The results showed that an inverted pendulum system is unable to achieve the dynamic 

balance of the robot under the control of LQR. The limitations of LQR in a system are system 

modelling must be accurate and physical system parameters must be strict. In order to get 

faster control speed and better effect of dynamic balance, a composite controller is design 

according to characteristics of LQR and PID controller. Experiment summary in [9], the 

control algorithm combined by LQR and PID can obtain a good balance effect and has a 

good anti-disturbance effects and can restore dynamic fast.  

In paper [11], the value of gain K is obtained by using the function lqr in MatLab. 

Furthermore, Taguchi Methods can be used to tune the gain K. The Taguchi methods are 

popular design of experiment (DOE) methods used in industry [11]. Due to the four gains in 

K, an orthogonal array that can include at least four factors needed to be used and L9 

orthogonal is chosen for tuning the gain K because this array allows four three-level factors 

at most [11]. In the conclusion [11], the L9 orthogonal array in Taguchi methods can tune 

the feedback gain of the controller efficiently, which means that the RIP system able to stable 

at upright position. Yet, from A. Khashayar [12], the LQR controller could not set the 

pendulum position to zero degree, the reference angle at upright position, when it is at non 

zero initial condition. Thus, there were researchers suggesting to implement a double-PID 

controller into the system. 

 

Fuzzy Logic Controller 

 

Fuzzy logic control theory is very useful for systems with complicated structures 

such as non-linear and unstable of RIP system. The elements of fuzzy logic controller 

includes fuzzification, rule-based, inference mechanism and defuzzification. In paper [12], 
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the fuzzy controller should use the real state variables, which are angular displacement of 

rotary arm, angular velocity of rotary arm, angular displacement of pendulum and angular 

velocity of pendulum, that are read by two encoders in the system. The fuzzy logic controller 

requires experts’ previous experience about the operation of the real RIP system to create 

suitable experimental rules. The deviation on the angular displacement of pendulum from 

the reference angle is one of the input to the fuzzy logic controller, while the second input 

to the controller is angular velocity of the pendulum. These two inputs help the controller to 

diagnose how the motor decrease the angular position error to zero with rotating the rotary 

arm clockwise and anticlockwise repeatedly [13].   

In paper [14],  stabilization of RIP system is achieved by mapping linear optimal 

control law to the fuzzy inference system (FIS). A Mamdani FIS is designed which stabilizes 

the pendulum in the linear zone, emulating LQR control around the equilibrium point. The 

linear state feedback law is mapped to the rules of the fuzzy inference engine. The system 

consists of two fuzzy inference subsystems, one taking as inputs the angular position and 

speed of the pendulum arm, and other one taking as inputs the angular position and speed of 

the pendulum. The two output signals from both subsystems are then added to give a single 

control signal [14]. In the experiment, the observed performance of the system is smooth, 

and it is experimentally shown that the closed loop balancing system based on the fuzzy 

controller exhibits greater robustness to unmodeled dynamics and uncertain parameters than 

the LQR controller that it emulates [14]. Fuzzy logic controller requires complex linguistic 

expression. The linguistic expression which are the basic of the rule-base of the fuzzy logic 

controller must generated based on experts’ whom have done many relevant experiments. 

 

 

2.3 Summary and Discussion of the Review 

 

In summary, the double-PID and LQR controller for stabilization control of RIP 

system are chosen in this project. The reason of proposing this design of controller is because, 

firstly, the PID controller is a common controller that used as in many applications, it has 

the effect of reducing overshoot and improving of transient response of a system. Secondly, 

the LQR controller has a good control effect with an easy and effective way of obtaining 

optimal feedback gain for RIP system stabilization.   
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CHAPTER 3  

 

 

MODELLING AND CONTROLLER DESIGN 

 

 

3.1 Experimental Setup 

 

The RIP system setup requires two categories, which are host computer and Terasoft 

Electro-Mechanical Engineering Control System (EMECS). The EMECS is including three 

main components which are MicroBox 2000/2000C, servo-motor module, driver circuit and 

power supply. MicroBox 2000/2000C is a data acquisition unit to receive and send the signal 

via Ethernet cable connection with host computer. At the other end, the data acquisition unit 

interfaces with signal of rotary encoder of the system which has amplified by the driver 

circuit. According to Figure 3.1, the host computer is connected with each components in 

the system. 

 

 
Figure 3.1: Connections between EMECS and host PC 

 

The pendulum movement is actuated by the motor rotor indirectly where rotary arm 

is the connection link in between. The rotation of motor rotor result in angular displacement 

and its derivative, angular velocity of rotary arm. Then the change of the angular 

displacement and velocity each time the rotary arm moves, the kinetic energy and potential 

energy of the pendulum change instantly.  The angular displacements of both rotary arm and 
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pendulum are read by optical encoders which converts the analog displacement into digitized 

pulse signal. The digitize pulse signal is a voltage signal feeding into the MicroBox and the 

host PC.  

The Electro-Mechanical Engineering Control System (EMECS) plant shown in 

Figure 3.2 was set up.  

 

 
Figure 3.2: EMECS Plant 

   

As to control the pendulum movement, polarity of the connection of servo motor module is 

considered. The different polarity of the connection of DC motor will result in different 

direction of rotation, either clockwise or anticlockwise. By interfacing between Simulink 

and the MicroBox, host PC can monitor all the signals sending from the MicroBox. All the 

signals are in form of digitized pulses which generated by the two rotary incremental 

encoders. Pin connections at MicroBox enable reading and sending digital or analog signals 

with the system. All the connections pin are shown in Appendix.  
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3.2 Modeling of RIP system 

 

The study of system dynamics resides in modelling its behaviour. Systems models 

are simplified, abstracted structures used to predict the behaviour of the studied systems. Our 

interest is pointing towards the mathematical model used to predict certain aspects of the 

system response to the inputs. In mathematical notations a system model is described by a 

set of ordinary differential equations in terms of state variables and a set of algebraic 

equations that relate the state variable to other system variables [15].  

 

Parameter of RIP System 

 

The RIP system is an electro-mechanical engineering control system. The involved 

parameters consists of electrical and mechanical parameters. Table 3.1 shows the parameters 

of the whole system. 

 

Table 3.1: System parameters for RIP system 

Parameter SI unit Symbol Numerical Value 

Mass of arm kg 𝑚1 0.056 
Mass of pendulum kg 𝑚2 0.022 
Length of arm m 𝑙1 0.16 
Length of pendulum m 𝑙2 0.16 
Distance to centre of arm mass m 𝑐1 0.08 
Distance to centre of pendulum mass m 𝑐2 0.08 
Inertia of arm kgm2

 𝐽1 0.00215058 
Inertia of pendulum kgm2

 𝐽2 0.00018773 
Gravitational acceleration m/s2 𝑔 9.81 
Angular position of arm ° 𝛼 - 
Angular velocity of arm rad/s �̇� - 
Angular position of pendulum ° 𝛽 - 
Angular velocity of pendulum rad/s �̇� - 
Viscous friction co-efficient of arm kgm2/s 𝐶1 0 
Viscous friction co-efficient of pendulum kgm2/s 𝐶2 0 
Motor torque constant Nm/A 𝐾𝑡 0.01826 
Motor back-emf constant Vs/rad 𝐾𝑏 0.01826 
Motor driver amplifier gain V/count 𝐾𝑢 850 
Armature resistance Ω 𝑅𝑚 2.56204 
Armature inductance L 𝐿𝑚  0.0046909 
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DC Motor Characteristics 

 

According to Figure 3.3, a voltage signal is generated and it is supplied to a PWM 

amplifier which drives servo-motor to control the rotary arm and indirectly to pendulum. 

After Kirchhoff’s voltage law is applied, the equation are as follows:  

 

𝑉𝑚 = 𝐼𝑎𝑅𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐸𝑏  (3.1) 

 

The motor back EMF, 𝐸𝑏, is proportional to the rate of change of magnetic flux and 

hence proportional to the angular velocity of the motor. 

𝐸𝑏 = 𝐾𝑏
𝑑𝛼

𝑑𝑡
   

𝐸𝑏 = 𝐾𝑏�̇�  (3.2) 
 

For a constant field current, the torque exerted by the motor, 𝜏𝑚, is proportional to 

the armature current. Assuming that the effects of the coil inductance, 𝐿𝑎, are negligible.  

The torque can be written as: 

𝜏𝑚 = 𝐾𝑡𝐼𝑎   
𝜏𝑚 =

𝐾𝑡(𝑉𝑚−𝐸𝑏)

𝑅𝑎
   

𝜏𝑚 =
𝐾𝑡𝐾𝑏

𝑅𝑎
𝑢 −

𝐾𝑡𝐾𝑏

𝑅𝑎
�̇�  (3.3) 

 

 

 
Figure 3.3: Schematic diagram of DC motor of RIP system 
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Coordinate System 

 

 
Figure 3.4: Mechanical Model of RIP 

 

Figure 3.4 shows the coordinate system used for the derivation of the dynamic model. 

The RIP system consists of two parts, namely rotary arm and pendulum rod. The pendulum 

is rotating freely in a vertical plane with the objectives of swinging up and balancing the 

pendulum in the inverted position and it is attached to the rotary arm that is mounted on the 

shaft of the servo-motor. Thus, the rotary arm can be rotated horizontally in its plane by the 

servo motor. Optical encoders are installed on the rotary arm and pendulum to detect the 

angular displacement. The standard right-handed Cartesian co-ordinate system is used. The 

angular position of the arm 𝛼 is assigned to be increasing when the rotary arm is rotating 

about the z-axis in the right handed sense (Right-Hand-Grip Rule). The angular position of 

the pendulum, β and α, are assigned to be increasing when the pendulum is rotating about an 

axis passing through the arm section from the origin to the pivot point of the pendulum, in 

the right handed case. The reference of β is taken from the upward vertical. 

 

Lagrange’s Equation of Motion (Rotary Systems) 

 

The following is Lagrange’s equation of motion. It will be used in the derivation of 

the dynamic model [16]. 

General Lagrange equation: 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝛩𝑖
= 𝑄𝑖  (3.4) 
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𝐿 = 𝐿0 + 𝐿1  
 (3.5) 

𝐿0 = 𝑇0 − 𝑉0  
 (3.6) 

𝐿1 = 𝑇1 − 𝑉1  
 (3.7) 

where, 

T = the total kinetic energy of 
 rotating body 
 

𝛩𝑖 = angular position of body 
 about axis i. 

V = the total potential energy  
of rotating body 

Q = the total torque applied at  
axis i 

 

 

Non-linear Dynamic Model 

 

The non-linear dynamic model describes the system by giving the exact relationships 

among all the variables involved. As shown in Appendix A, the parameters of corresponding 

symbols represent, the dynamic model with the pendulum, with motor torque characteristic, 

in the upright position is:  

[𝐴] [
�̈�
�̈�
] = [𝐷]𝑢 − [𝐵] [

�̇�
�̇�
] − [𝐶] (3.8) 

 

Matrix A is inertia matrix of the system, matrix B represents Coriolis and gyroscopic of the 

system. While Matrix C represents gravity terms in Cartesian space of the system, and 

Matrix D is the torque on the end-effector of the pendulum. Thus, from Equation 3.9, the 

RIP system nonlinear state space model is:  

[
𝑎 𝑏
𝑐 𝑑

] [
�̈�
�̈�
] = [

𝑗
0
] 𝑢 − [

𝑒 𝑓
𝑔 ℎ

] [
�̇�
�̇�
] − [

0
𝑖
]           (3.9) 

 

where, 

𝑎 = 𝐽0 + 𝑚1𝐿0
2 + 𝑚1𝑙1

2 𝑠𝑖𝑛2𝛽  
 
𝑏 = −𝑚1𝐿𝑜𝑙1𝑐𝑜𝑠𝛽  
 
𝑐 = −𝑚1𝐿𝑜𝑙1𝑐𝑜𝑠𝛽  
 
𝑑 = 𝐽1 + 𝑚1𝑙1

2  
 
𝑒 = 𝐶0 +

𝐾𝑡𝐾𝑏

𝑅𝑎
+

1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽  

𝑓 = −𝑚1𝐿𝑜𝑙1�̇�𝑠𝑖𝑛𝛽 +
1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽 

𝑔 = −
1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽 
 

    ℎ = 𝐶1 
 

    𝑖 = 𝑚1𝑔𝑙1𝑠𝑖𝑛𝛽  
    
    𝑗 =

𝐾𝑡𝐾𝑢

𝑅𝑎
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Linearized RIP Model 

 

The model is then linearized by expanding the nonlinear model into a Taylor Series 

about the operating point and the retention of only the linear terms. The model is linearized 

about the upright position of the pendulum, whereby, the pendulum is at static, angle and 

velocity of pendulum, 𝛽 and �̇� are zero, and the rotary arm is not moving as well, velocity 

of arm, �̇� is zero. Equation 3.10 can be linearized and summarized in a dynamic equations 

below, 

 

[

�̇�
�̈�
�̇�

�̈�

] =
1

𝑎𝑓 − 𝑐2

[
 
 
 
0 𝑎𝑓 − 𝑐2 0 0
0 −𝑑𝑓 𝑐ℎ −𝑐𝐶1

0
0

0
−𝑐𝑑

0 𝑎𝑓 − 𝑐2

𝑎ℎ −𝑎𝐶1 ]
 
 
 

[

𝛼
�̇�
𝛽

�̇�

] +
1

𝑎𝑓 − 𝑐2
[

0
𝑒𝑓
0
𝑐𝑒

] 𝑢 (3.10) 

 

where, 

𝑎 = 𝐽0 + 𝑚1𝐿0
2  𝑑 = 𝐶0 +

𝐾𝑡𝐾𝑏

𝑅𝑎
 ℎ = 𝑚1𝑔𝑙1 

𝑏 = 𝑚1𝑙1
2 𝑒 =

𝐾𝑡𝐾𝑢

𝑅𝑎
  

𝑐 = 𝑚1𝐿𝑜𝑙1 𝑓 = 𝐽1 + 𝑚1𝑙1
2  

 

By having values of all the parameters, the equation is rearranged:  

[

�̇�
�̇�
�̈�
�̈�

] = [

0 0           1       0
0 0           0       1
0
0

5.98
57.68

−0.05267 0
−0.04514 0

] [

𝛼
𝛽
�̇�
�̇�

] + [

0
0

28.84
24.72

] 𝑢 

𝑦 = [0 1 0 0] [
𝛼
𝛽] + [0]𝑢 

(3.11) 

 

Equation 3.11 is the mathematical state space model of the RIP system. Design of LQR 

controller requires state space model of the system for states vector feedback to LQR 

controller itself.  
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3.3 Controller Design Procedure 

 

As mentioned in the literature review, Double-PID with LQR controller is chosen to 

achieve stabilization of the system. With the state space model of the system, LQR controller 

is designed then followed by Double-PID controller. 

 

Phase 1: LQR Controller Design  

 

This phase of the project aims to design a LQR controller to achieve stabilization of 

the RIP system.  

 
Figure 3.5: Block diagram of LQR controller in RIP system. 

 

Figure 3.5 shows block diagram of the system with LQR controller. To design LQR 

controller, vector of optimal state-feedback control gains K is required to be determined. 

Weighting matrices of Q and R are assumed as the error matrix (deviation from reference 

angle) and control efforts of the system respectively. 

 

𝐴∗𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵∗𝑃 + 𝑄 = 0  (3.12) 
 

Equation (3.12) is the reduced-matrix Riccati equation. Matrices A and B are the 

matrix constant of the state vector and the matrix constant of the control signal respectively. 

The equation is solved to obtain a positive definite matrix P. Matrix P is used to solve the 

following equation: 

 

𝐾𝑟𝑒𝑓 = 𝑅−1𝐵∗𝑃  (3.13) 
 



19 
 

 The optimal gain, Kref is obtained in Equation (3.13). The optimal gain, Kref is a [4×1] 

matrix which takes output states of the RIP system as input, including the angle and velocity 

of the pendulum (𝛽, �̇�), and angle and velocity of the rotary arm (𝛼, �̇�). Then, voltage control 

signal will minimize the error and increase the control effort of the system.  

 

In this phase, the desired specification for the LQR controller to achieve is: 

1. The inverted pendulum stabilizes within ±3°. 

2. Settling time of the RIP system is within 15 seconds. The settling time, is the time 

taken for the inverted pendulum to stabilizes within ±3°.  

 

A ground-tuned optimal gain value of Kref is obtained by solving Equation (3.13). To achieve 

stabilization performance, Kref is tuned by using Taguchi Method of Design of Experiments.  

 

Tuning via Taguchi Method of Design of Experiments 

 

Design of Experiments (DOE) is a statistical technique used to study the effects of 

multiple variables simultaneously. Taguchi Method is a quality engineering method. 

Taguchi Method is an experimental strategy in a form of DOE with special application 

principles. L9 orthogonal array of Taguchi Method is used to tune Kref. L9 orthogonal array 

is used to replace a full factorial experiment with four-three level factors which requires 81 

different combinations of the gains. Optimal gain, K is determined based on the stabilization 

performance.  

 

Table 3.2: L9 Orthogonal Array of Taguchi Method 

            Data Set 
Trial K1 K2 K3 K4 

Data set 1: 110% of optimal gain, 𝐾𝑜 
Data set 2: Original values of optimal gain, 𝐾𝑜 
Data set 3: 90% of optimal gain, 𝐾𝑜 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 
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The LQR controller is designed when the optimal gain, K is determined. However, 

LQR controller alone is not sufficient to stabilize the RIP system. LQR controller cannot 

solves overshoot and settling time problem. With this remark, a Double-PID controller is 

designed in the LQR-RIP system.  

 

Phase 2 Double-PID with LQR Controller Design  

 

Double-PID with LQR controller aims to improve the stabilization performance of 

the settling time of the angle of pendulum (beta) and the moving range of rotary arm (𝛼). 

Double-PID controller is start with designing PID_alpha. Figure 3.6 shows the block 

diagram of the RIP system with stabilization controller.  

 

 
Figure 3.6: Block diagram of Double PID and LQR controller 

 

PID_alpha Controller Design 

 

Based on Figure 3.6, the PID_alpha takes the error signal of arm angle (𝛼) as input 

and gives the voltage control signal together with voltage control signal from LQR controller. 

PID_alpha aims to stabilize the rotary arm in a narrower range of movement of arm and 

control the rotary arm back to the initial position.  

The Ziegler-Nichols Second Method is chosen to tune PID controllers. The LQR-RIP 

system is driven with a proportional gain to obtain an ultimate gain, 𝐾𝑢, where sustained 

oscillations occur. The period of the sustain oscillations, 𝑇𝑢, is measured. With the ultimate 

gain, 𝐾𝑢 and period of the sustained oscillations, 𝑇𝑢, the values of the PID_alpha controller, 

𝐾𝑝𝛼, 𝐾𝐼𝛼, and 𝐾𝐷𝛼 are calculated.  
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Table 3.3: Ziegler-Nichols Tuning Rule of PID Controller (Second Method) 

Type of 
Controller 𝐾𝑝 𝐾𝐼 𝐾𝐷 

P 0.5𝐾𝑢 ∞ 0 

PI 0.45𝐾𝑢 
1

1.2
𝑇𝑢 0 

PID 0.6𝐾𝑢 0.5𝑇𝑢 0.125𝑇𝑢 
 

The calculated PID gains (𝐾𝑝𝛼 , 𝐾𝐼𝛼 , and 𝐾𝐷𝛼 ) are fined tuned to achieve stabilization 

performance of rotary arm (𝛼). Next, the second PID of Double-PID controller is designed. 

 

PID_beta Controller Design 

 

The second PID controller, PID_beta, aims to stabilize the inverted pendulum (𝛽) 

within ±3° in shorter time. PID_beta is fined-tuned as referred to the gains of PID_alpha 

controller.  

With both PID_alpha and PID_beta, the angle movement of 𝛼  and 𝛽  of the RIP 

system are examined to evaluate the stabilization performance. The stabilization 

performance is observed and analyzed. 
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CHAPTER 4  

 

 

RESULT OF STABILIZATION PERFORMANCE 

 

 

4.1 Stabilization Performance of RIP System with LQR Controller 

 

Matrix Q is obtained by using trial and error method. Limitation of the RIP system 

setup is maximum voltage is ±10𝑣. The sum of parameters of optimal gain Kref is obtained 

around 10, in order to reduce wastage of energy. Thus, the parameter values of optimal gain 

Kref is tuned by varying elements inside matrix Q. Matrix R is obtained by assuming it as [1].  

 

𝑄 = [

50 0
0 26.9

0 0
0 0

0 0
0 0

55 0
0 1

]   

 𝑅 = [1] 
 

(4.1) 

With matrix Q and R, an optimal gain values, 𝐾𝑟𝑒𝑓 is obtained.  

𝐾𝑟𝑒𝑓 = [𝐾1  𝐾2  𝐾3  𝐾4] = [−0.48295 9.7741 −0.6405 1.3495] (4.2) 
 

To further improve the quality of the stabilization performance of final selected 

optimal gain, nominal values for the design parameter variables, which are α, �̇�, 𝛽, and �̇�, 

that yield the lowest impact on the RIP system’s stabilization performance characteristic is 

determined.  

A±10% is added to the 4 arrays of optimal gain, 𝐾𝑟𝑒𝑓. L9 orthogonal array is chosen 

to select the combinational number of the 4 arrays. Table 4.1 shows the arrangement of 

selected data set in L9 orthogonal array.  
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Table 4.1: Trials of values K using Taguchi Method 

           Data 

Trial 
K1 K2 K3 K4 

1 -0.5312 10.7515 -0.7046 1.4844 

2 -0.5312 9.7741 -0.6405 1.3495 

3 -0.5312 8.7967 -0.5765 1.2145 

4 -0.4830 10.7515 -0.6405 1.2145 

5 -0.4830 9.7741 -0.5765 1.4844 

6 -0.4830 8.7967 -0.7046 1.3495 

7 -0.4347 10.7515 -0.5765 1.3495 

8 -0.4347 9.7741 -0.7046 1.2145 

9 -0.4347 8.7967 -0.6405 1.4844 

 

Table 4.1 shows the values of gain matrix K of each trial. There are total 9 trials were carried 

on to test the stabilization performance. 

 

 
Figure 4.1: Response of 𝛽 of all 9 trials of Taguchi Method 

 

Figure 4.1 shows the quality of all the 9 trials of Taguchi Method. Out of 9 trials, Trial 6 and 

Trial 9 were not performing stabilization performance in the RIP system. Trial 7 has the best 

stabilization performance. The responses of each trial are shown in Appendix A. Thus, L9 

orthogonal array is said to be satisfactory to inspect the quality of the gain matrix, K.  
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After testing all the trials, the stabilization performance of the inverted pendulum (𝛽) 

and rotary arm (𝛼) are observed. From all the 9 trials of Taguchi Method, the 7th trial shows 

a better result in stabilization performance of the RIP system. The optimal gain, K of 7th trial 

is: 

 

𝐾 = [−0.4347 10.7515 −0.5765 1.3495] (4.3) 
 

Figure 4.2 shows that the inverted pendulum (𝛽) stabilizes within ±3° in 8 seconds. 

The inverted pendulum oscillates in high overshoot percentage before it becomes stable. The 

rotary arm (𝛼), it is not stable within ±22.5°. In short, the LQR controller alone is not 

sufficient to stable the inverted pendulum (𝛽) and the rotary arm (𝛼).  It can be concluded 

that the Double-PID controller is needed to work together with the LQR controller in order 

to achieve a faster and more stable of stabilization performance. 

 

 
Figure 4.2: Response of beta and alpha of the RIP system with LQR controller 
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4.2 Stabilization Performance of RIP System with Double-PID with LQR Controller  

 

As the unstable problem of rotary arm cannot be solved by LQR controller alone, 

Double-PID is designed in the LQR-RIP system. Double-PID is designed started with 

PID_alpha.  

 

Design of PID_alpha Controller 

 

The LQR-RIP system is driven with a proportional gain. After a few times of trial and error, 

the ultimate gain, 𝐾𝑢 and the period of the sustained oscillations, 𝑇𝑢 are obtained.  

Figure 4.3 shows the sustained oscillations when 𝐾𝑢 = 0.00007 and 𝑇𝑢 = 1.25𝑠. 

 

 
Figure 4.3: Response of rotary arm (𝛼) when sustained oscillations occur with 𝐾𝑢=0.00007 

 

Table 4.2 shows the value of 𝐾𝑝𝛼 , 𝐾𝐼𝛼 , and 𝐾𝐷𝛼  which are calculated by using Ziegler-

Nichols Second Method.  

 

Table 4.2: Ground tuned of PID_alpha Controller 

Ziegler-Nichols Tuning Rule of PID_alpha Controller (Second Method) 

𝐾𝑝𝛼 0.6𝐾𝑢 = 0.000042 

𝐾𝐼𝛼 0.5𝑇𝑢 = 0.625 

𝐾𝐷𝛼 0.125𝑇𝑢 = 0.15625 
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PID_alpha is fined-tuned to obtain stabilization of rotary arm (𝛼). 𝐾𝑝𝛼, 𝐾𝐼𝛼, and 𝐾𝐷𝛼 are 

obtained as shown in Table 4.3. 

 

Table 4.3: Fine Tuned of PID_alpha Controller 

Final selection values of PID_alpha Controller 

𝐾𝑝𝛼 0.000042 

𝐾𝐼𝛼 0.0000015 

𝐾𝐷𝛼 0.00001 

 

As compared with the stabilization performance of LQR controller in Figure 4.2, the 

rotary arm (𝛼) successfully stabilizes within±22.5°. Figure 4.4 shows the stabilization 

performance of rotary arm (𝛼). However, the inverted pendulum (𝛽) is still not stable and it 

causes the rotary arm (𝛼) becoming unstable also. Thus, PID_beta controller is designed. 

 

 
Figure 4.4: Response of rotary arm (𝛼) and pendulum (𝛽) after implementing PID_alpha 

into the RIP system 

 

Design of PID_beta Controller 

 

PID_beta controller is designed by referring to the value of PID_alpha. Initial values 

of 𝐾𝑝𝛽, 𝐾𝐼𝛽, and 𝐾𝐷𝛽 are shown in Table 4.4. 
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Table 4.4: PID_beta Controller 

Initial values of PID_beta Controller 

𝐾𝑝𝛽 0.000042 

𝐾𝐼𝛽 0.625 

𝐾𝐷𝛽 0.15625 

 

PID_beta is fined-tuned to achieve stabilization performance. After a few times of trial and 

error, 𝐾𝑝𝛽, 𝐾𝐼𝛽, and 𝐾𝐷𝛽 are obtained. 

 

Table 4.5: Fined Tuned PID_beta Controller 

Fined-Tuned PID_beta Controller 

𝐾𝑝𝛽 10 

𝐾𝐼𝛽 0.004 

𝐾𝐷𝛽 0.007 

 

With the 𝐾𝑝𝛽, 𝐾𝐼𝛽, and 𝐾𝐷𝛽 of PID_beta, a Double PID with LQR controller is considered 

designed successfully. The stabilization performance of the RIP system is evaluated and 

analyzed.  

 
Figure 4.5: Response of rotary arm (𝛼) and pendulum (𝛽) of the RIP system 

Figure 4.5 shows the desired stabilization performance has been achieved. The inverted 

pendulum (𝛽) is stable within ±3° in 3 seconds. The rotary arm (𝛼) is stable within a range 

of ±22.5°. 
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Comparison of Stabilization Performance before and after implementing Double-PID 

Controller 

 

A comparison on the stabilization performance before and after implementing 

Double-PID controller is made.  

 

 
Figure 4.6: Comparison of Response of rotary arm (𝛼) of Double-PID-LQR and LQR 

controller 

 

Figure 4.6 shows the RIP system with Double-PID and LQR controller, the rotary arm (𝛼) 

is oscillated less. It achieves the desired specification which is stable within±22.5°. In the 

RIP system with Double-PID and LQR controller, the rotary arm (𝛼) tends to move back to 

initial position and stable within the control time. Compared to the LQR-RIP system, 

Double-PID with LQR controller has solved the stabilization problem of rotary arm (𝛼).  
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Figure 4.7: Comparison of response of pendulum (𝛽) of Double-PID-LQR and LQR 

controller 

 

Figure 4.7 shows the desired stabilization performance which is achieved in the RIP system 

with Double-PID and LQR controller. The overshoot and oscillations are reduced 

significantly. The inverted pendulum (𝛽 , red line) is stable within ±3° in 3 seconds. Double-

PID with LQR controller has solved the stabilization problem of the inverted pendulum (𝛽) 

in the LQR-RIP system. The desired stabilization performance is achieved.  

 

Table 4.6: Summary of results of LQR and Double-PID with LQR controller 

Controller Stabilization angle range (°) Settling time (s) 

LQR  ±3° 8 

Double-PID with LQR ±0.5° (↑ 83.33%) 3 (↑ 62.5%) 

 

Table 4.7 shows that the significant stabilization results of Double-PID with LQR controller. 

The inverted pendulum (𝛽 ) is stable within 3 seconds, in the range of ±0.5° . After 

implementing Double-PID controller in the LQR-RIP system, the stabilization performance 

of pendulum ( 𝛽 ) improves 83.33% while the settling time improves 62.5%. Then, 

adaptability of the controller is considered to be highlighted after achieving the desired 

stabilization performance. One controller must be adaptable in order to maintain desired 

performance when the system parameters change continuously. The adaptability of Double-

PID with LQR controller in the RIP system is examined through repeatability test. 
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Repeatability Test 

 

The adaptability of Double-PID with LQR controller is examined in repeatability test 

of 10 times. The average settling time is the time for rotary arm (𝛼) and pendulum (𝛽) to 

stable within ±22.5° and ±3° respectively. 

 

Table 4.7: Repeatability test results of 𝛼  

Data Set Time to reach ±𝟐𝟐. 𝟓° (s) 

1 2.786 
2 3.005 
3 2.684 
4 2.594 
5 2.801 
6 2.030 
7 2.5730 
8 2.744 
9 3.156 
10 2.733 

Average 2.7106 

 

Table 4.8 shows the total 10 times of repeatability test, the average of the time for 𝛼 to stable 

within ±22.5° is 2.7106 seconds. 

 

Table 4.8: Repeatability test results of 𝛽 

Data Set Time to reach ±𝟑° (s) 

1 3.146 
2 2.803 
3 2.754 
4 3.141 
5 2.801 
6 3.162 
7 3.245 
8 3.174 
9 3.047 
10 3.454 

Average 3.0727 

 

Table 4.9 shows the same total 10 times of the repeatability test, the time for 𝛽 to stable 

within ±3° is 3.0727 seconds. 
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CHAPTER 5  

 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1  Conclusion 

 

The application of concept of RIP system has become wider in the industry, robotics 

and field of research due to its simplicity of system setup with highly unstable and 

underactuated characteristics. To achieve the first objective previous researches are studied, 

the stabilization controller of LQR and Double-PID is proposed to be the stabilization 

controller to maintain upright position of RIP. There were many studies and researches have 

been conducted to model a rotary inverted pendulum system. Lagrange’s equation is one of 

the suggested approaches to model the RIP system.  With the consideration of kinetic energy 

and potential energy of the RIP system, a mathematical model of the RIP system is obtained 

successfully by using Lagrange’s Equation. The system mathematical model is then 

linearized by Taylor Series. It is linearized when it is static at an upright position. Without a 

controller, a RIP cannot be stable at upright position. Thus, second objective of my project 

is to design a Double-PID with LQR stabilization controller in the RIP system. Designing of 

LQR controller and Double-PID controller is carried out respectively. LQR controller is 

designed. L9 orthogonal array in Taguchi methods of design of experiments (DOE) is used 

to tune the LQR controller. The trial 7 of optimal gain value of K with the best quality in 

stabilization performance is obtained. In designing double-PID controller, Ziegler-Nichols 

Second method is chosen to tune PID_alpha. Fined tuned Double-PID controller is obtained 

to achieve stabilization performance of the RIP system. The stabilization performance is 

evaluated and analyzed. This project has given a brief explanation of the RIP system from 

modeling to designing stabilization controller. 
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5.2  Future Work 

 

Tuning of LQR Controller  

 

LQR controller is an easy and effective way to obtain an optimal feedback gain for a 

RIP system. A ground tuned value of the optimal feedback gain is not suitable to be selected 

as final decision. L9 orthogonal array of Taguchi Methods offers an inspection on the quality 

of the values of optimal feedback gain on stabilization performance of the RIP system. In 

future, instead of adding a ±10% to the optimal gain values, a smaller variation of 

percentage from the original optimal feedback gain value Kref should be considered. It may 

achieved a more detailed inspection on the quality of the stabilization performance of the 

system.   

 

Adaptability of Controller in RIP System 

 

 From the repeatability test on the stabilization performance of the RIP system, it 

showed that long control time affected the result of stabilization performance. Shorter 

control time and longer time interval between each attempt in repeatability test can result a 

better stabilization performance. In LQR, it seeks to minimize energy of the controlled 

output and energy of the control signal. LQR controller consumes energy of the signal 

continuously. In future, a predictor or corrector type observer for example, Kalman’s Filter 

should implemented into the RIP system to reduce the consumption of energies by the state 

feedback controller. 
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APPENDIX A 

 

Trials of L9 Orthogonal Array of Taguchi Methods 

 

There are 9 trials obtained from L9 orthogonal array. Each trial has shown its own 

stabilization performance in beta and alpha of the RIP system. 

 

 
Figure A1: Graph of beta and alpha of Trial 1 of Taguchi Method 
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Figure A2: Graph of beta and alpha of Trial 2 of Taguchi Method 

 

 
Figure A3: Graph of beta and alpha of Trial 3 of Taguchi Method 
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Figure A4: Graph of beta and alpha of Trial 4 of Taguchi Method 

 

 
Figure A5: Graph of beta and alpha of Trial 5 of Taguchi Method 
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Figure A6: Graph of beta and alpha of Trial 6 of Taguchi Method 

 

 
Figure A7: Graph of beta and alpha of Trial 7 of Taguchi Method 
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Figure A8: Graph of beta and alpha of Trial 8 of Taguchi Method 

 

 

 
Figure A9: Graph of beta and alpha of Trial 9 of Taguchi Method 
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APPENDIX B 

 

Repeatability Test on Stabilization Performance of Double-PID and LQR Controller 

 

 
Figure B1: Graph of beta and alpha of repeatability test of 1 of 10 
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Figure B2: Graph of beta and alpha of repeatability test of 2 of 10 

 

 
Figure B3: Graph of beta and alpha of repeatability test of 3 of 10 
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Figure B4: Graph of beta and alpha of repeatability test of 4 of 10 

 

 
Figure B5: Graph of beta and alpha of repeatability test of 5 of 10 
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Figure B6: Graph of beta and alpha of repeatability test of 6 of 10 

 

 
Figure B7: Graph of beta and alpha of repeatability test of 7 of 10 
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Figure B8: Graph of beta and alpha of repeatability test of 8 of 10 

 

 
Figure B9: Graph of beta and alpha of repeatability test of 9 of 10 
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Figure B10: Graph of beta and alpha of repeatability test of 10 of 10 

 




