SIX LEGGED ROBOT WALKING GAITS

BACHELOR OF MECHATRONICS ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I hereby declare that I have read through this report entitle "Six Legged Robot Walking Gaits" and found that it has comply the partial fulfillment for awarding the degree of
Bachelor of Mechatronics Engineering" Signature :
Supervisor's Name : Dr. Ahmad Zaki bin Haji Shukor
Date Date

SIX LEGGED ROBOT WALKING GAITS

LOOI SIEW CHIN

Faculty of Electrical Engineering
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I declare that this report entitle "Six Legged Robot Walking Gaits" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

ACKNOWLEDGEMENT

This final year report is made possible through the help and big support from everyone including my supervisor, family and friends.

First and foremost, I would like to thank my supervisor, Dr. Ahmad Zaki bin Haji Shukor for supervised me throughout the whole project. His guidance and advices helped me all the time in doing the project. I also would like to thank to the panels. Finally, I sincerely thank my parents, family, and friends, who provide me advices and supports. The product of this report would not be possible without all of them.

ABSTRACT

Legged robots are used in many applications as they suitable to travel on both even and uneven surface. Six legged robot or hexapod managed to perform well in uneven surface such as space or area after earthquake had happen as it is statically stable in term of its body structure. Six legged robot can walking with different types of gaits and results the different performances of the robot. It is found that six legged robot can perform different task with different algorithms. In order to analyse the effect of different gaits to performance of six legged robot, a single task which is line following is assigned to the robot. In this project, the objectives are to implement line following behaviour to a six legged robot with tripod and wave gaits, analyse the speed of the robot and measure the error from deviation of robot from the line when the robot is moving followed the line. To achieve the objectives in this project, a six legged robot with total of 18 degree of freedom is used. In order to conduct the analysis, the line following algorithm is applied to the robot. Experiments such as the time taken to complete the path to measure speed and the measurement of error deviation between centre of robot and line are carried out to validate the performance of the proposed line following algorithm applied to the robot. By implementing the walking gaits to the robot, the movement of robot's legs in performing tripod gait and wave gait are observed. Based on the structure of robot, it is found out that joint angles for a single leg should be about 50° to allow the robot stand in stable position. The line following behaviour is implemented successfully to the robot by insert the line following circuit. All experimental results are justified with the proposed methodology.

ABSTRAK

Robot berkaki digunakan dalam banyak aplikasi kerana ia sesuai untuk perjalanan di permukaan yang rata atau tidak rata. Robot berkaki enam atau hexapod berjaya menunjukkan prestasi yang baik pada permukaan yang tidak rata dari segi ruang atau kawasan selepas berlaku gempa bumi kerana ia adalah stabil dari segi struktur badannya. Robot berkaki enam boleh berjalan dengan pelbagai gaya berjalan dan menghasilkan prestasi robot yang berbeza. Robot berkaki enam didapati boleh melakukan pelbagai tugas berdasarkan algoritma yang berbeza. Untuk menganalisis kesan gaya berjalan yang berbeza terhadap robot berkaki enam, sebuah tugasan iaitu robot bergerak mengikut garisan telah diberikan kepada robot. Dalam projek ini, objektif adalah untuk melaksanakan kaedah mengikut garisan terhadap robot berkaki enam dengan gaya berjalan tripod dan gaya berjalan gelombang, menganalisis kelajuan robot dan mengukur ralat sisihan antara pusat robot dan garisan apabila robot bergerak mengikut garisan. Demi mencapai objektif dalam projek ini, robot berkaki enam yang mempunyi sebanyak 18 darjah kebebasan telah digunakan. Untuk menjalankan analisis, algoritma bergerak mengikut garisan telah dilaksanakan pada robot tersebut. Eksperimen seperti pengukuran kelajuan robot daripada kiraan masa untuk robot dalam menyelesaikan perjalanan dan pengukuran ralat sisihan antara pusat robot dan garisan telah dijalankan untuk mengesahkan prestasi robot terhadap algoritma bergerak mengikut garisan yang dicadangkan. Dengan melaksanakan gaya berjalan yang berbeza terhadap robot, pergerakan kaki robot dalam gaya berjalan tripod dan gaya berjalan gelombang dapat diperhatikan. Dengan melaksanakan gaya berjalan ke atas robot, pergerakan kaki robot dalam melaksanakan gaya berjalan tripod dan gaya berjalan gelombang dapat dipatuhi. Berdasarkan struktur robot, sudut robot berdiri dalam kedudukan stabil didapati pada sudut 50°. Robot dapat berjalan mengikut garisan selepas memasukkan litar berkaitan dengan algoritma bergerak mengikut garis. Semua keputusan eksperimen adalah diwajarkan dengan kaedah kajian yang dicadangkan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xvi
	LIST OF APPENDICES	xvii
1 TEKWIR	INTRODUCTION 1.1 Motivation	1
	1.2 Problem statement	2
1	1.3 Objectives	3
رك	اوبيوسيتي بيڪنيڪل 1.4 Scope مالا	3
₂ UNI	LITERATURE REVIEW	
	2.1 Theory and basic principle of six legged robot	4
	2.1.1 Study of six legged robot	4
	2.1.2 Types of walking gaits for six legged robot	5
	2.1.3 Theory involved in analysis of six legged	7
	robot	
	2.2 Previous related work	8
	2.2.1 Previous works of six legged robot	8
	2.2.2 Previous works of line following robot	14
	2.3 Summary	17
	2.4 Conclusion	21

3	METHODOLOGY	
	3.1 Project methodology to achieve first objective	23
	3.1.1 Hardware selection	24
	3.1.2 Early calibration of servo motors	27
	3.1.3 System integration	27
	3.1.4 Preliminary analysis on hardware	30
	3.1.5 Programming for six legged robot	33
	3.2 Project methodology to achieve second objective	35
	3.2.1 Construction of walking path for line	35
	following task	
	3.2.2 Analysis on speed of robot to complete line	37
	following task with tripod and wave gaits	
	3.2.3 Analysis on measurement of errors from	38
	deviation of centre of robot from the	
	line in performing line following task with	
	tripod and wave gaits	
	3.3 Conclusion	41
4	RESULTS AND DISCUSSION	
•	4.1 Preliminary analysis on hardware	42
	4.1.1 Inverse kinematics	42
	4.1.2 Size of moveable area of leg	44
	4.2 Implementation of tripod and wave gaits to six	45
	legged robot	
	4.2.1 Tripod gait	45
	4.2.2 Wave gait	46
	4.3 Analysis on speed of robot to complete line	47
	following task with tripod and wave gaits	
	4.3.1 Move straight	47
	4.3.2 Turning at different angles	48
	4.3.3 Summary of result obtained in analysis of	49
	speed	

	4.4 Analysis on measurement of errors from deviation	51
	of centre of robot from the line in performing line	
	following task with tripod and wave gaits	
	4.4.1 Move straight	51
	4.4.2 Turning at different angles	55
	4.4.3 Summary of result obtained in analysis of	61
	measurement of errors from deviation of	
	centre of robot from the line	
	4.5 Summary	61
5	CONCLUSION AND RECOMMENDATION	
	5.1 Conclusion	63
	5.2 Limitation of the project	64
- L	MALATSIA MA	
REFERENCES	E CONTRACTOR OF THE CONTRACTOR	65
APPENDICES		69
E		
200		
15.1	and it	
الاك	اوبيؤسسيتي نيكنيكل مليسيا م	
UNIV	'ERSITI TEKNIKAL MALAYSIA MELAKA	L.

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of the types of design of hexapod and the	17
	performance test	
2.2	Comparison of line following robot and the performance	20
	test	
3.1	Comparison different design of hexapod hardware	24
3.2	Specifications of servo motor used	26
3.3	Calculation of rotation angle of servo motor from the	33
	position to turn	
3.4	Line following algorithm	34
3.5	Results for time taken to complete 1 cycle (move	37
	straight)	
3.6	Results for time taken to complete 1 cycle (turning at	37
	different angles)	
3.7	Algorithm of LDR circuit in differentiate the error	39
	(centre of robot fall on line)	
3.8	Algorithm of LDR circuit in differentiate the error	40
	(centre of robot out from line)	
3.9	Number of occurrence of centre of robot at different	40
	location on or out from line	
4.1	Results for time taken to complete 1 cycle (move	47
	straight)	
4.2	Results for time taken to complete 1 cycle (turning at	48
	different angles)	
4.3	Number of occurrence of centre of robot at different	52
	location on or out from line (tripod gait)	
4.4	Number of occurrence of centre of robot at different	53
	location on or from line (wave gait)	

Number of occurrence of centre of robot at different	55
location on or from line (turning angle of 30°)	
Number of occurrence of centre of robot at different	56
location on or from line (turning angle of 45°)	
Number of occurrence of centre of robot at different	57
location on or from line (turning angle of 60°)	
Number of occurrence of centre of robot at different	58
location on or from line (turning angle of 30°)	
Number of occurrence of centre of robot at different	59
location on or from line (turning angle of 45°)	
Number of occurrence of centre of robot at different	60
location on or from line (turning angle of 60°)	
Summary for analysis of speed and analysis of error	61
measurement by the state of the	
	location on or from line (turning angle of 30°) Number of occurrence of centre of robot at different location on or from line (turning angle of 45°) Number of occurrence of centre of robot at different location on or from line (turning angle of 60°) Number of occurrence of centre of robot at different location on or from line (turning angle of 30°) Number of occurrence of centre of robot at different location on or from line (turning angle of 45°) Number of occurrence of centre of robot at different location on or from line (turning angle of 60°) Summary for analysis of speed and analysis of error

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	DASH with wings	1
2.1	The placement of legs for rectangular hexapod	5
2.2	The placement of legs for hexagonal hexapod	5
2.3	Structure of leg for ant	5
2.4	The leg arrangement for a hexagonal hexapod	6
2.5	The moving sequence of legs in wave gait	6
2.6	Design of hexapod with wall following behaviour	9
2.7	Construction of line following hexapod robot	9
2.8	18 DOF hexapod used in [13]	10
2.9	Fuzzy sets for each of three inputs	10
2.10	Schematic of reinforcement learning algorithm for	11
	hexapod	
2.11	Configuration of single leg	12
2.12	Coordinate frame of kinematics for a single leg	12
2.13	Virtual model of hexapod in Matlab	13
2.14	Torque reading of each motor on different legs when	14
	perform tripod gait	
2.15	Arrangement of sensor	15
2.16	Position of sensors	15
2.17	Arrangement of sensors	15
2.18	Different curve and cycle	16
3.1	Flow chart for methodology (overall)	22
3.2	Project methodology flowchart to achieve objective 1	23
3.3	Six legged robot used in project	25
3.4	Servotor32 controller	25
3.5	Connection of servo motor	26
3.6	Calibration done on 18 servo motors	27

3.7	Structure of hexapod	27
3.8	Leg of robot	28
3.9	Block diagram of line following task	28
3.10	Six legged robot after implemented line following	29
	circuit	
3.11	Position of IR sensors	29
3.12	Leg structure of robot	30
3.13	The maximum and minimum radius for reachable area	32
	of robot's leg	
3.14	Project methodology flowchart to achieve second	35
	objective	
3.15	Straight line path for robot	35
3.16	Path with turning angle of 30°, (b) Path with turning	36
	angle of 45°, (c) Path with turning angle of 60°	
3.17	LDR circuit	38
3.18	Centre on line	39
3.19	Centre on line	39
3.20	Centre on line	39
3.21	Centre on line	39
3.22	Centre out from line	40
3.23	Centre out from line	40
3.24	Centre out from line	40
4.1	Joint variable on a single leg	43
4.2	Size of moveable area of leg	44
4.3	Movement of legs in tripod gait	45
4.4	Movement of legs in wave gait	46
4.5	Graph of speed of robot in completing the path versus	49
	turning angle for tripod and wave gaits	
4.6	The position of centre of robot with respect to line	51
	(tripod gait)	
4.7	Number of occurrence of centre of robot on the region	52
	of line (tripod)	

4.8	The position of centre of robot with respect to line	53
	(wave gait)	
4.9	Number of occurrence of centre of robot on the region	54
	of line (wave)	
4.10	The position of centre of robot with respect to line	55
	(turning angle = 30°)	
4.11	The position of centre of robot with respect to line	56
	(turning angle = 45°)	
4.12	The position of centre of robot with respect to line	57
	(turning angle = 60°)	
4.13	The position of centre of robot with respect to line	58
	(turning angle = 30°)	
4.14	The position of centre of robot with respect to line	59
	(turning angle = 45°)	
4.15	The position of centre of robot with respect to line	60
	(turning angle = 60°)	
	distance and the second	
	5h1 [] []	
	اوبيوسيني بيكسيكل مبيسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

PWM - Pulse width modulation

DOF - Degree of freedom

m - meter

mm - millimetre

Nm - Newton per meter

L - Length
W - Width
H - Height

V - Volt

g - grams

kg/cm - kilograms per centimetre

ms - milliseconds

cm - centimetre

IR - infrared

LED - light-emitting diode

LDR - light-dependent resistor

ADC - analog to digital conversion

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Gantt chart for Final Year Project	69
В	Program for early calibration of servo motors	71
С	Schematic diagram for Servotor32	72

CHAPTER 1

INTRODUCTION

In this chapter, motivation, problem statement, objective and the scope of the project will be presented.

1.1 Motivation

Legged robots have more advantages compared to wheeled robots. Legged robots are suitable for both even and uneven surfaces, while wheeled robots are designed to operate in even surface. Legged robots also help human in exploring the animal locomotion such as study of inserts" locomotion from the construction of hexapod robot. Legged robots also manage to avoid obstacles by step over them while wheeled robots only manage to take another path to avoid the obstacles [1]. For legged robot, the stability is increased as the number of legs of robot is increased. Six legged robot also known as hexapod is a robot that is statically stable and can walk in unstructured terrain. According to [1], the hexapod robot concept is used in rescue job where it used to find the earthquake survivors. The hexapod robot designed or also known as Dynamic Autonomous Sprawled Hexapod (DASH) is inspired by structure of cockroach was designed to survive in unstable condition. DASH able to climb between the fallen buildings after earthquake to find survivors as a camera is mounted on the body of robot [1].

Figure 1.1: DASH with wings [1]

Figure 1.1 shows the latest design of DASH which wings are applied on the hexapod robot. The hexapod structure enables DASH to move in uneven terrain and launches the feet on a stable position when descending from a high position [1].

It has different walking gaits that gave it an advantage in performing different kind of applications. However, different walking gaits can formed different locomotions of hexapod although it is performing a same task. Hence, the walking gaits analysis of a hexapod in completing a task is crucial to maintain the well performance of hexapod although different gaits are applied.

1.2 Problem statement

Hexapod has six legs where each leg is actuated by 3 position-controlled servomotors and the control of six legs become complex. Gait planning must be considered well as gait is important to robot locomotion. Based on the previous study, most of the previous researches are done analysis on a single type of walking gait. The analysis are normally done by apply the same type of walking gait in performing different tasks. However, different tasks required different experimental setup and workplace. This is hard to analyse the effect of walking gait to the performance of robot as each of the tasks assigned to the hexapod is carried out in different environment and the variables compared are different. Hence, this project proposed a single task which is the line following task is assigned to hexapod robot. Two types of walking gaits which are tripod gait and wave gait will be implemented to the robot. Since the experimental setup for both walking gaits are same, hence the effect of different walking gaits to the performance of robot can be analyse and compare. Different walking gaits results the change in performance of a hexapod in term of speed of robot to complete the task and accuracy of the body of robot relative to the line while moving.

1.3 Objectives

The objectives for conducting this project are:

- 1) To implement line following behaviour to the hexapod with tripod gait and wave gait.
- 2) To analyse the speed and measure the errors from deviation of centre of robot from the line in performing line following task with tripod gait and wave gait.

1.4 Scope

In this project, the six legged robot used in this project has 18 degree of freedom. Each degree of freedom represented by a servo motor with torque value of 2.2kg/cm. The hexapod is designed to perform line following task with two types walking gaits. Two types of walking gaits of hexapod involved in this project are wave gait and tripod gait. The walking surface is on flat surface due to the limitation of degree of freedom on legs and assumption of no leg slipping is made while the robot is moving. In line following task, the robot is set to follow black line with the width of 2.5cm and 8.5cm in a white area. All analysis done on the hexapod is based on one cycle to complete the whole walking line path start from the "START" point and end when the robot reaches "END" point.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

This chapter presents about some basic principles and theories involved in the project and review of previous works about the design of six legged robot and the method to analyse its performance as well as some designs of line following robot and method to analyse its performance.

2.1 Theory and basic principle of six legged robot

MALAYSIA

In this section, the basic principles such as the shape of body and leg structure of six legged robot and types of walking gaits that involved in six legged robot are discussed. The theory involved in analysis of six legged robot will presented in this section as well.

(NIKAL MALAYSIA MELAKA

2.1.1 Study of six legged robot

Six legged robot or hexapod robot can be divided into two categories which are rectangular hexapod and hexapod. Rectangular hexapod has a rectangular body with two groups of three legs that arranged symmetrically along the two sides of body. Hexagonal hexapod has a hexagonal or circular body with the six legs are placed evenly along the body. The rectangular hexapod is less stable as compared with the hexagonal type [3].

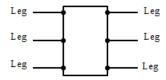


Figure 2.1: The placement of legs for rectangular hexapod [3]

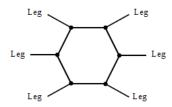


Figure 2.2: The placement of legs for hexagonal hexagod [3]

The construction of the hexapod is inspired by the body structure of insect. There are four main segments for general insect's leg which is coxa, femur, tibia and tarsus. From the leg structure of insect, hexapod is created with each leg has 3 degree of freedom.

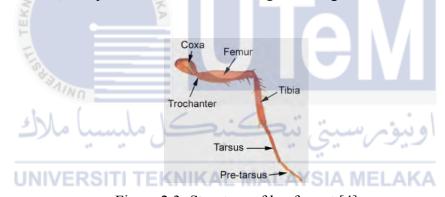


Figure 2.3: Structure of leg for ant [4]

2.1.2 Type of walking gaits for six legged robot

Six legged robot has different types of walking patterns which known as gaits. The types of gaits are classified according to the movement and the number of legs supported the body. The hexapod is considered as statically stable as long as at least three legs are in contact with ground.

2.1.2.1 Tripod gait

Tripod gait is considered as the most well-known gait for a hexapod. In this type of gait, three legs remained on the ground to support while another three legs are lift up and swing to move forward [5].

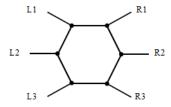


Figure 2.4: The leg arrangement for a hexagonal hexapod

Based on Figure 2.4, when the hexapod is moving forward, L1, L3 and R2 will lift up and swing towards forward, while L2, R1 and R3 will remain on ground and push the body to forward. Another leg configuration can be L2, R1 and R3 raised and swing forward, L1, L3 and R2 remained on ground and push forward.

2.1.2.2 Wave gait

Wave gait is considered as the most stable type of walking gait in hexapod. All legs on one side will move forward, followed by the opposite side. For the walking mechanism, one leg will only lift up on each time, while the other five remained on the ground. Based on Figure 2.5, the robot moves forward by raises up L3, swing forward L3 and put down L3, followed by L2, L1, R3, R2, R1. This type of walking mechanism is based on the movement of an insect to move forward [6].

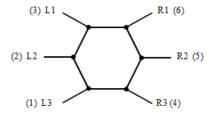


Figure 2.5: The moving sequence of legs in wave gait

2.1.3 Theory involved in analysis of six legged robot

This part describes about the term that used in analysis part of robot.

2.1.3.1 Degree of Freedom

Degree of freedom (DOF) is important in the study of robotics. Degree of freedom can be referred as the ability of an object to move in a single direction independently. The number of degree of freedom is normally known as the number of component required to create motion. The motion generated can be divided into two types which are translational and rotational degree of freedom [7].

2.1.3.2 Stability

Stability is crucial in movement of robot. It can be divided into two types which are static (stand without falling) and dynamic (moving without falling) [8]. Static stability defined as the robot is stable when no motion of robot is required. A robot needs to have a minimum of four legs to achieve static stability. The static stability can be achieved by the mechanical design of the robot which is the structure of the robot itself. Dynamic stability is achieved by control of robot such as the movement of legs of robot [9].

2.1.3.3 Duty factor

Gait can be classified according to its duty factor, β . The duty factor is in range of 0 to 1 and it can be defined as the ratio between leg stand duration and the cycle time [10].

$$\beta = \frac{T_{st}}{T_{st} + T_{sw}} \tag{2.1}$$

where, T_{st} = Duration of foot is standing on ground

 T_{sw} = Duration of foot is swinging on air ($T_{sw} + T_{st}$ = total cycle time)

2.1.3.4 Kinematics

Kinematics is the study of motion of object without consider the forces acting on it. There are two types of kinematics which are forward kinematics and inverse kinematics. Forward kinematics is used to determine the position and orientation of the end-effector from all known joint variable. Inverse kinematics is used to calculate the joint angles from the given desired position and orientation. In this project, inverse kinematics is used in order to locate the legs of robot on the desired position.

The formula for link transformation:

2.2 Previous related work

This section consists of two parts: review of previous works about six legged robot and review of previous works about line following robot. In the first part, review of previous work is analysed based on the design of hexapod robot, control algorithm, method of modeling for hexapod and the types of analysis involved. In the second part, review of previous work on line following robot is analysed based on the sensor used, line following algorithm as well as the method of analysis involved.

2.2.1 Previous works of six legged robot

2.2.1.1 Design of hexapod robot

According to [11], the hexapod is designed to perform wall following task by using fuzzy controller. Infrared distance sensor is used to measure the distance between wall and robot. The type of gait used in this project is tripod gait.

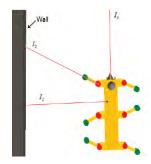


Figure 2.6: Design of hexapod with wall following behaviour [11]

Figure 2.6 shows the placement of three infrared distance sensors on the hexapod robot.

In [12] and [13], line following behaviour is assigned to the hexapod. In [12], based on the design of robot, the line sensor is mounted to the bottom part of robot. The sensors sent digital output to the fuzzy controller to start the line following mode. When the sensors sensed the presence of line, the line following mode is start and generate the servo angles for left and right legs.

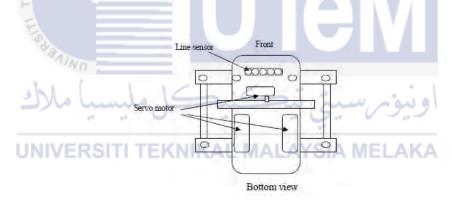


Figure 2.7: Construction of line following hexapod robot [12]

Hexapod robot in [13] used position based controller and image based controller in performing the line following task and tripod gait is applied to the robot.

In [14], [15] and [16], the hexapod used in analysis has a total of 18 DOF. According to [14], a 18 DOF hexapod is designed by using DC motor that supports multiple gaits. Each leg consists of three DC motors and the six legs arranged in circular shape in order the robot can move in omnidirectional.

Figure 2.8: 18 DOF hexapod used in [14]

In [15] and [16], each leg of hexapod consists of 3 servo motors and a single type of gait which is tripod gait is implemented to the hexapod robot.

2.2.1.2 Controller algorithm of hexapod robot

MALAYSIA

In [11], fuzzy controller is used to receive the data from infrared distance sensor and control the swing angle of left and right middle legs to make turn based on the inputs.

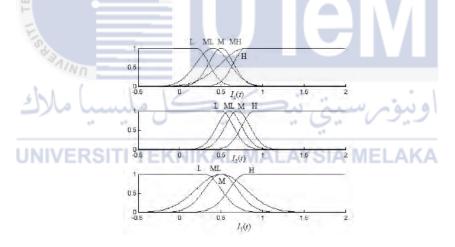


Figure 2.9: Fuzzy sets for each of three inputs [11]

The forward moving of hexapod is controlled by a finite state machine. In this finite state machine, six states are set to ensure the hexapod robot balance on ground and make sure at least three out of six legs of hexapod are on ground when moving.

According to [17], the gait analysis of the hexapod is by using fuzzy reward reinforcement learning. In reinforcement learning algorithm, Q-learning is used to enable the robot learns to walk forward. In reinforcement learning, rules fixed that walking in straight line get better reward. Q-learning does not require model environment and all the

values are stored in Q-matrix. The learning starts when all the legs are lifted and the values of joint will sent to the hexapod simulator. Fuzzy reward system is implemented to update the status of Q and the process is repeated until the learning process is completed. The algorithm is applied in the simulator environment and the dynamic model of hexapod is moving to the desired position. In [20], the hexapod is using reinforcement learning to learn the walking gait on unstructured terrain.

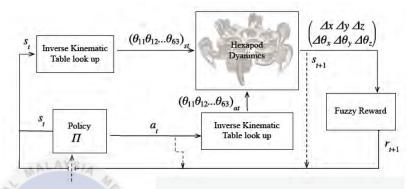


Figure 2.10: Schematic of reinforcement learning algorithm for hexapod [17]

In [15], the hexapod is controlled by using microcontroller called DSP TMS320. The controller design is based on the differential kinematic algorithm where the endeffector for a single leg can track the path that designed.

In [16], the hexapod uses FPGA in control the servomotors by assign PWM to each servomotor. Based on the PWM, each servo motor can be programmed to reach desired position and create the walking gait.

2.2.1.3 Method of modeling for hexapod

In [15] and [19], forward kinematic is used to design the mathematic modeling for a single leg of hexapod. In this case, the Denavit Hartenberg notation (DH parameter) is used to determine the coordinates of leg. By using DH parameter, the homogeneous transformation matrix is obtained as shown in equation (2.3) and (2.4).

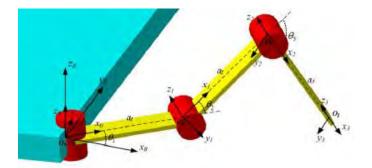


Figure 2.11: Configuration of single leg [14]

$${}_{3}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T \tag{2.3}$$

$${}_{3}^{0}T = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(a_{1} + a_{2}c_{2} + a_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(a_{1} + a_{2}c_{2} + a_{3}c_{23}) \\ s_{23} & c_{23} & 0 & a_{3}s_{23} + a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(2.4)$$

In [20], Denavit-Hartenberg algorithm is used to create the model of robot in Matlab environment. In this research, the position of centre of mass of leg is found by using DH transformation. The position of centre of mass for the leg can be calculated by using equation (2.5).

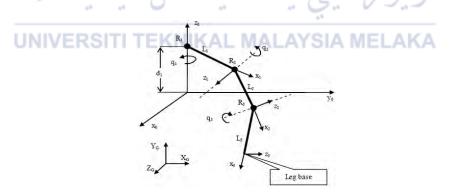


Figure 2.12: Coordinate frame of kinematics for a single leg [20]

$$x_{g} = \frac{\sum_{i=1}^{3} x_{i} m_{li}}{\sum_{i=1}^{3} m_{li}}, y_{g} = \frac{\sum_{i=1}^{3} y_{i} m_{li}}{\sum_{i=1}^{3} m_{li}}, z_{g} = \frac{\sum_{i=1}^{3} z_{i} m_{li}}{\sum_{i=1}^{3} m_{li}}$$
(2.5)

where $m_{li} = \text{mass of link } i$

2.2.1.4 Analysis on performance of hexapod

In [14], [18], [19], [20] and [21], analysis done on the performance of hexapod is in term of stability. In [14], Inertial Measurement Unit (IMU) is attached to robot to measure its stability when performing different types of gaits. In [18], the stability of the hexapod is analysed by remove single leg of hexapod. In this research, the ability of the hexapod in walking without 1 leg is analysed and the observations are categorised into stable condition, marginally stable condition and unstable condition. [19] and [20] proposed the turning angle of servo motors or maximum reachable area for each legs of hexapod in determine the stability. Based on the results obtained, it is proved that tripod gait is statically stable as the centre of robot body is inside the stability polygon. In [21], a virtual hexapod robot is controlled by using Matlab to measure the stability of robot for a certain leg configuration. Two types of analysis are carried out to measure the stability of hexapod. The first one is free fall analysis where the robot left to fall from a height that beyond the extension of leg, while transitory analysis is the analysis when the robot went through two static routines.

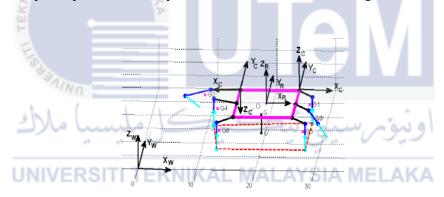


Figure 2.13: Virtual model of hexapod in Matlab [21]

[14], [15] and [16] analyse the performance of hexapod robot by analyse the output of actuator used with the applied gaits. In [14], the torque readings of each leg are recorded and shown in its Graphical User Interface (GUI). From the torque reading, the movement of leg in perform the tripod gait can be observed as shown in Figure 2.14.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

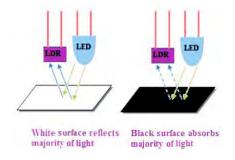
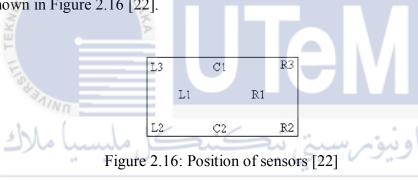



Figure 2.15: Arrangement of sensor [24]

2.2.2.2 Line following algorithm

In [22] and [24], the line path is black in colour and the ground colour is white. In [23], the line path is white colour and the ground colour is black. The robot used eight infrared sensors and placed it on bottom of robot to detect the line and the position of each sensor is shown in Figure 2.16 [22].

Sensors L1, L2 and L3 indicate left position, C1 and C2 sensors indicate central position while sensors R1, R2 and R3 indicate right position and sensors L1, L2 and L3 indicate left position.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

In [23], five IR sensors are used to detect the light. All the sensors are arranged in series as shown in Figure 2.17.

Sensor1	Sensor2	Sensor3	Sensor4	Sensor5
LeftMost	Left	middle	right	rightMost

Figure 2.17: Arrangement of sensors [23]

According to Figure 2.17, if Sensor 1 or combination of Sensor 2 and Sensor 3 detect the line, the robot will rotate left. If Sensor 2 or Sensor 3 or Sensor 4 detect the line, the robot will move straight. If combination of Sensor 3 and Sensor 4 or Sensor 5 detect the line, the robot will rotate right.

In [24], the value of sensor is produced by using resistance of sensors and voltage divider. Two pairs of sensors are used in the control algorithm. The line following algorithm can divided into 4 parts:

a) When $V_1 \le V_{Ref}$ and $V_2 \le V_{Ref}$, the robot will stop.

MALAYSIA

- b) When $V_1 < V_{Ref}$ and $V_2 > V_{Ref}$, the robot will rotate right.
- c) When $V_1 > V_{Ref}$ and $V_2 < V_{Ref}$, the robot will rotate left.
- d) When $V_1 > V_{Ref}$ and $V_2 > V_{Ref}$, the robot will move forward.

2.2.2.3 Method to analyse performance of line following robot

In [22], the robot is tested with different curve and cycle with different angles as shown in Figure 2.18. In [24], the robot is tested with different turning angle and discovered that robot able to perform well with minimum turning angle of 110°.

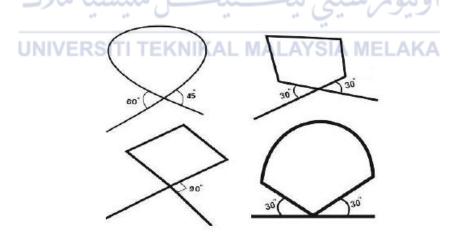


Figure 2.19: Different curve and cycle [22]

According to [23], ADC value of all sensors against cycle number are measured and shown in graph form. Besides that, the PWM of both left and right motors against cycle are observed as well.

2.3 Summary

Table 2.1 shows the comparison on the design of hexapod robot, control algorithm, method of modeling and the respective way of analysis from the previous related works.

Table 2.1: Comparison of the types of design of hexapod and the performance test

Title	Design	of hexapod			Controller	Method of	Analysis on
	DOF	Actuator	Sensor	Type	algorithm	modeling	performance of
五	of		D	of gait			hexapod
	robot						
Hexapod robot wall-following	12	Servo	Infrared	Tripod	Fuzzy		Output of actuator to
control using a fuzzy		motors	distance	gait	controller		verify the
controller [11]	'/Nn		sensor				implementation of gait
143			1/_		40		to robot (position of leg
	یا م	ے میس	,		سیی سه	ويتوس	for robot when perform
	477		**		. U.		wall following task)
Line and wall follower	6	Servo	Line sensor	Free	Fuzzy logic	/IELAK	Movement of hexapod
hexapod robot [12]		motors		gait	controller		
Inertial navigation and visual	6	Servo	Visual sensor	Tripod	Inertia-guided	-	Speed of robot in
line following for a dynamical		motors	and on board	gait	controller		perform walking,
hexapod robot [13]			inertia				jogging and running

The development of a remote	18	DC	-	Tripod	FIT-PC2	-	1) Output of actuator to
controlled, omnidirectional		motors		and			verify the
six legged walker with		with		wave			implementation of gait
feedback [14]		encoders		gaits			to robot (torque reading
							of DC motor)
	MALA	YSIA .					2) Stability
Path tracking controller	18	Servo	-	Tripod	Path tracking	Denavit	Output of actuator to
design of hexapod robot for		motors	×	gait	controller	Hartenberg	verify the
omni-directional gaits [15]			D			notation	implementation of gait
-							to robot (joint angle of
E							each leg)
PWM controller design of a	18	Servo		Tripod	FPGA		Output of actuator to
hexapod robot using FPGA	/Nn	motors		gait	controller		verify the
[16]			1/_	. /	40		implementation of gait
	یا م	، منبس			سىي س	ويتوس	to robot (PWM for each
	44		**				servo motor)
Gait analysis of a six-legged	18	Servo	KNIKAL	Free	Fuzzy reward	/ELAK	Movement of robot
walking robot using fuzzy		motors		gait	and		
reward reinforcement learning					reinforcement		
[17]					study		

Analysis and evaluation of the	18	-		-	Wave	Cruse's	-	1) Movement of robot
stability of a biologically					gait	mechanism (all		2) Stability
inspired, leg loss tolerant gait						six legs is		
for six- and eight-legged						inter-related		
walking [18]						and when a leg		
	MALA	YSIA				is lost, another		
E.		A.C.				leg will actuate		
3		/3	5			to cover the		
EK			P			loss of leg)		
Tripod gaits planning and	18	Servo		-	Tripod	Kinematic	Denavit	Turning angle of servo
kinematics analysis of a		motors			gait	control	Hartenberg	motors and maximum
hexapod robot [19]							notation	reachable area for each
	INN							legs of hexapod
Model of the signal	-	Servo	1	-	Acyclic	Fuzzy	_ *	Maximum reachable
processing and decision	یا م	motors			gait	reinforcement	ويتوس	area for each legs of
making process of hexapods	44			*		learning		hexapod
with static-stable walking [20]	ERS	SITI TE	KN	IKA	L MAI	AYSIA N	/IELAK	Д
Hexapod robot. virtual models	18	-		-	Free	In Matlab	Denavit	Stability
for preliminary studies [21]					gait	environment	Hartenberg	
						and Arduino	algorithm	
						Duemilanove		

Table 2.2 shows the comparison on the design of line following robot in term of its type of sensor used and line following algorithm as well as the method to analyse the performance of robot.

Table 2.2: Comparison of line following robot and the performance test

Title	Type of	Line follow	ing algorithm		Analysis on performance of
25	sensor AY a	Colour of line	Amount of sensors used	Control algorithm	robot
A Line Follower Robot from design to Implementation: Technical issues and problems [22]	IR sensors	Black	8 sensors	3 sensors indicated left, 2 sensors indicated central, 3 sensors indicated right	Different curve with different angles
Line Follower Robot: Fabrication and accuracy measurement by data acquisition [23]	IR sensors	ل ملیں	5 sensors	S1 or S2&S3 detect line – left S2 or S3 or S4 detect line – straight S3&S4 or S5 detect line – right	ADC value of sensors and PWM of motors
Implementation Of Autonomous Line Follower Robot [24]	LED and LDR	Black	2 pairs	$V_1 < V_{Ref} \& V_2 < V_{Ref} - stop$ $V_1 < V_{Ref} \& V_2 > V_{Ref} - right$ $V_1 > V_{Ref} \& V_2 < V_{Ref} - left$ $V_1 > V_{Ref} \& V_2 > V_{Ref} - forward$	Different turning angles

Based on Table 2.1, it shows that most of the six legged robot is designed to have total of 18 DOF with 3 DOF on each leg. This is because the construction of six legged robot is based on the insect's locomotion and most of the insects have three DOF for their single leg structure. Servo motors are commonly used in six legged robot to create the movement as its position can be controlled by angles. Based on Table 2.1, two types of walking gaits which are tripod gait and wave gait are commonly used in analysis of gaits. Free gait or acyclic gait is not suitable to use as the movement of legs are not fixed as the legs move randomly. Table 2.1 also shows that fuzzy control is commonly used in control the hexapod as it applied fuzzy rule that can interpreted by human and fuzzy can be designed without knowing the mathematical models of the robot. The modeling of robot is commonly use Denavit Hartenberg notation as it can be used to determine the coordinates of the end effector of robot based on joint angles or determine the joint angles based on the position of end effector of robot. For the analysis of performance of robot, stability and movement of robot are the most common parameters used to analyse.

Based on Table 2.2, it shows that most common sensor used in line detection is IR sensor as LDR sensor requires comparator to compare the analogue signal. Most of the line following path is black in colour and the ground is white colour. Besides that, more than 3 sensors is used in line detection to provide the more accurate detection. For the line following algorithm, if IR sensors are used, the central sensor functions as indicator for robot to move forward, while left sensors and right sensors are indicators for the robot to turn left and right respectively. If LDR sensors are used, the voltage across the LDR sensors will be compared and output made based on the comparison of voltage level. For the analysis of performance of line following algorithm, different turning angles is the most common parameter used to analyse.

2.4 Conclusion

In summary, the basic principles such as the background study of six legged robot and some theory involved in analysis are presented in this chapter. Several previous works are analysed and the comparison of all design of six legged robot is shown in Table 2.1 while Table 2.2 shows the comparison of different line following algorithm. Based on Table 2.1 and Table 2.2, the results from comparison are discussed and evaluated.

CHAPTER 3

METHODOLOGY

In this chapter, the methodology to achieve the objectives of the project is discussed. This chapter covers about implementation of line following behaviour to the six legged robot with two types of gaits and method to perform the analysis on its performance. Figure 3.1 shows the overall methodology to achieve the objectives of project.

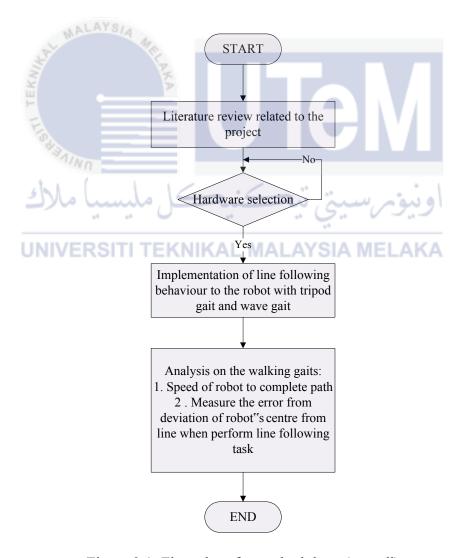


Figure 3.1: Flow chart for methodology (overall)

3.1 Project methodology to achieve first objective

This section discuss about the project methodology to achieve the first objective which is to implement line following behaviour to hexapod with tripod gait and wave gait.

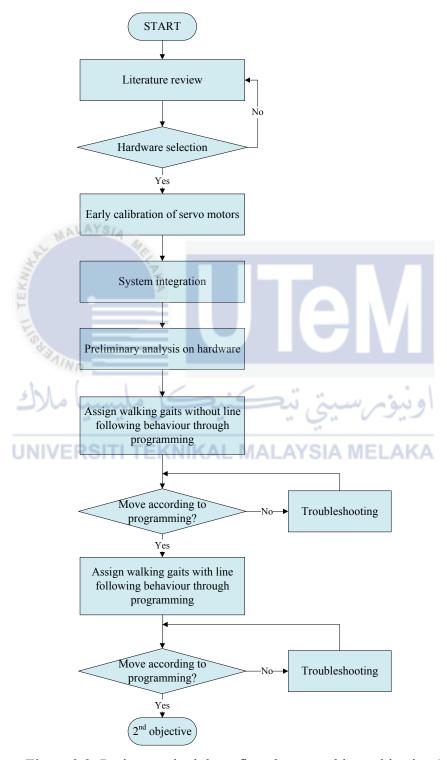


Figure 3.2: Project methodology flowchart to achieve objective 1

3.1.1 Hardware selection

This part discussed about the selection of hardware and the results for the hardware selection.

3.1.1.1 Comparison different design of hexapod hardware

Table 3.1: Comparison different design of hexapod hardware

Design of	Design 1 [25]	Design 2 [26]	Design 3 [27]	Design 4 [28]	
hexapod					
Shape of	Rectangular	Hexagonal	Hexagonal	Rectangular	
hexapod					
Degree of	6 LAYS/A	12	18	18	
freedom	ME				
Actuator	6 DC motors	12 heavy duty	18 9g servos	18 Hitec	
=		servo motors		645MG servos	
Controller	Advanced	EZ-B v4 WiFi	Full arduino	BotBoarduino	
43AIN	Motion	Robot	based	+ SSC-32	
12	Controls	Controller	Servotor32	Servo	
مالاك	DZRALTE-	بحيد	robot	Controller	
UNIVE	020L080	JIKAL MALA	controller	KA	
Advantages	> Small in	> Able to	> No external	> Able to move	
	size	move in	microcontroller	in different	
	> Simple to	different	is needed	direction	
	control as the	direction	> Able to	> Able to	
	trajectories of	> Able to	perform	perform	
	legs are fixed	perform	various type of	various type of	
		various type of	gaits	gaits	
		gaits			

Based on Table 3.1, six legged robot with 18 DOF is selected as it is most similar to insect's leg structure (coxa, femur and tibia). Hexagonal shape type hexapod has structure of all the six legs arranged radially and allowed the robot to move in omnidirection. Based on these two criteria, Design 3 hexapod is chosen as it is hexagonal in shape with 18 DOF. Its controller is a servo controller that consists of Arduino chip, so the programs can write in Arduino format and execute without additional microcontroller, and servo motors are used to allow the generation of different walking gaits. Besides that, small size of servo motors and medium torque value results the weight of robot is lighter and more smooth in walking.

3.1.1.2 Hardware used in project

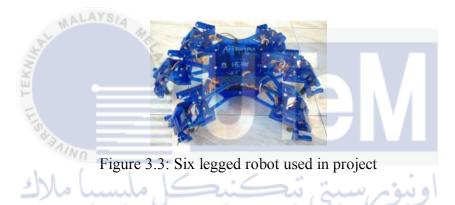


Figure 3.3 shows the robot of Design 3 is selected based on the results of comparison. It has total of 18 DOF with 3 DOF on each leg. The material for body construction is acrylic material. The controller used is a full Arduino based Servotor32 controller which can control up to 32 servo motors [27]. Hence, the program can written in Arduino environment.

Figure 3.4: Servotor32 controller

Specification for Servotor32 controller: [29]

- a) Atmega32u4 Processor @16mhz
- b) 32 servo pins
- c) Ultrasonic distance sensing module plug
- d) Slot for bluetooth-serial converter
- e) 8 extra analog inputs
- f) 14 digital I/O pins

The servo motors used for the selected hardware design is a 9g mini servo motors. The connection of servo motor is shown in Figure 3.5. The red wire is connected to power supply, which is 5V, brown wire is connected to ground, and the orange wire is connected to the signal which is the output of the Servotor32.

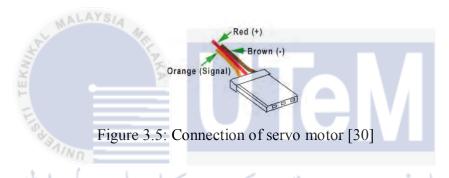


Table 3.2: Specifications of servo motor used [31]

Specifications	Value / unit
Dimension (LxWxH)	22 x 12 x 22 mm
Weight	9 g
Stall torque at 4.8V	2.2 kg/cm
Operating voltage	4 to 6V
Operating speed at 4.8V (no load)	247.65 mm
Material	Carbon fiber gears

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Figure 3.7 shows the structure of hexapod before assembly. The parts are later attached with 3 servo motors to form a leg of the robot as shown in Figure 3.8.

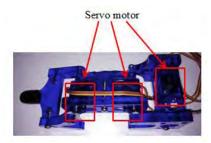


Figure 3.8: Leg of robot

After all the six legs are finish assembled, the legs are attached to the body of robot. When the structure of robot is done, Servotor32 controller is attached to the robot. Before insert the programming to controller, driver for Servotor32 controller is required to install to power the controller.

3.1.3.2 Construction of robot with line following behaviour

The line following circuit is added to the six legged robot to allow it to perform line following task. Figure 3.9 shows the block diagram for the line following circuit that consists of input and output parts.

Figure 3.9: Block diagram of line following task

In the circuit design, the input part consists of five IR sensors that attached on the base of the six legged robot as shown in Figure 3.10. The IR sensors use to detect the presence of line and send its outputs to Servotor32 controller. The output part consists of three different colour of LEDs that indicate the direction of robot moves according to the line following algorithm.

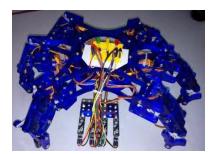
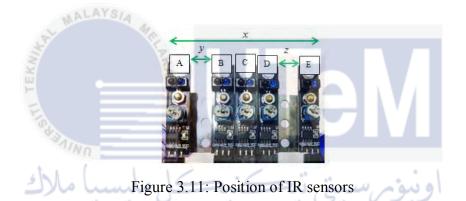



Figure 3.10: Six legged robot after implemented line following circuit

The IR sensors selected to use in this project produces digital signal: HIGH (detect black surface) and LOW (detect white surface). The base to attach the IR sensors has a width, x of 7cm which is the same width with the base of robot. The IR sensors are placed on the front of robot, which is 8cm from the centre of robot. Both distance between sensor A and sensor B, y and distance between sensor D and sensor E, z are same, which is 1cm. A is the left most IR sensor, B is the left IR sensor, C is the centre IR sensor, D is the right sensor and E is the right most sensor.

3.1.4 Preliminary analysis on hardware

The preliminary analysis of hardware is about the inverse kinematics and the size of moveable area of the leg of robot before the line following behaviour is implemented to the robot.

3.1.4.1 Inverse kinematics

Based on the hardware, the calculation of inverse kinematics for a single leg can be obtained.

The rotations of servo motors are crucial to ensure smooth walking gaits for robot. Hence, joint angles are required to determine to rotate the servo motors rotate to the desired position. Inverse kinematics is used in determine the joint angles as the desired position and orientation of the legs are known. Figure 3.12 shows the leg structure of six legged robot when it is in standby position.

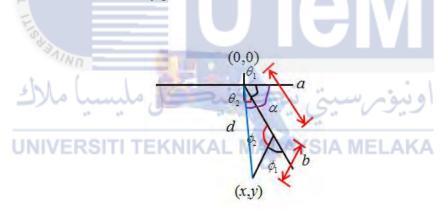


Figure 3.12: Leg structure of robot

Calculation of joint angles for single leg:

 θ_1 : Angle of knee

 ϕ_1 : Angle of ankle

a = distance of joint from knee to ankle = 50 mm,

b = distance of joint from ankle until the point touch ground = 54mm

d = resultant distance of a and b

(x,y) = desired position

To calculate d,

$$d = \sqrt{x^2 + y^2} \tag{3.1}$$

From Figure 3.12,

$$\phi_1 = 180^{\circ} - \phi_2 \tag{3.2}$$

By using cosine rule,

$$\cos \phi_2 = \frac{a^2 + b^2 - d^2}{2ab} \tag{3.3}$$

$$\sin \phi_2 = \sqrt{1 - \cos^2 \phi_2} \tag{3.4}$$

Let $D = \cos \phi_2$

$$\sin\phi_2 = \pm\sqrt{1 - D^2} \tag{3.5}$$

To obtain ϕ_2

(3.5)/(3.3),

$$\tan \phi_2 = \frac{\pm \sqrt{1 - D^2}}{D} \tag{3.6}$$

$$\phi_2 = \tan^{-1} \frac{\pm \sqrt{1 - D^2}}{D} \tag{3.7}$$

To obtain ϕ_1 ,

Sub. (3.7) into (3.2),

$$\phi_1 = 180^\circ - \tan^{-1} \frac{\pm \sqrt{1 - D^2}}{D}$$
 (3.8)

From Figure 3.12,

$$\theta_1 = \alpha - \theta_2 \tag{3.9}$$

To obtain α ,

$$\alpha = \tan^{-1} \frac{y}{x} \tag{3.10}$$

 $\theta_{\scriptscriptstyle 2}$

To calculate

$$\tan \theta_2 = \frac{b \sin \phi_1}{a + b \cos \phi_1} \tag{3.11}$$

$$\theta_2 = \tan^{-1} \frac{54 \sin \phi_1}{50 + 54 \cos \phi_1} \tag{3.12}$$

To obtain θ_1

Sub. (3.9) and (3.12) into (3.9),

$$\theta_1 = \tan^{-1} \frac{y}{x} - \tan^{-1} \frac{54 \sin \phi_1}{50 + 54 \cos \phi_1}$$
(3.13)

3.1.4.2 Size of moveable area of leg

The size or area that the leg able to move is needed to determine before the programming is implemented to the robot to avoid the collision between a leg with another leg of robot when moving. Each leg has a moveable area in loop shape of maximum radius. In this case, a leg is used to analyse as the structure for the remaining five legs are the same.

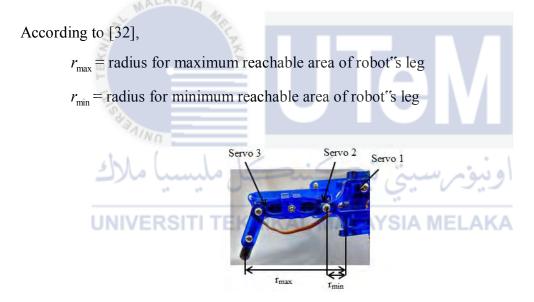


Figure 3.13: The maximum and minimum radius for reachable area of robot's leg

The measurements for the radius for both minimum and maximum reachable area are shown in Figure 3.13. r_{max} is measured from the centre of Servo 1 to the part of the leg that touches the ground, r_{min} is measured from the centre of Servo 1 to centre of Servo 2. The actual moveable area of leg is fall in the region between minimum and maximum reachable area.

3.1.5 Programming for six legged robot

In this part, the programming for the robot can be divided into 2 parts where first part is the implementation of tripod gait and wave gait to the robot to observe the movement of robot correspond to the assigned gaits. The second part of the programming is to implement the line following algorithm together with the assigned gaits to allow the robot has line following behaviour.

3.1.5.1 Gait generator

To generate the position and motion of the six legged robot, "PoMoCo – Position and Motion Controller Software" is used. In this project, PoMoCo software provides a Python environment to program the movement of the robot's legs and produces the position to turn for each servo motor involved after execute the program.

Calculation of rotation angle from position of servos to turn:

$$\theta = 180 \left[\frac{\theta_p - 600}{1800} \right] - 90 \tag{3.14}$$

where, θ = rotation angle of servos in range of -90° to 90°

 θ_p = position of servos to turn

Table 3.3: Calculation of rotation angle of servo motor from the position to turn

Position of servos	600	1500	2400
to turn			
Rotation angle of	-90°	0°	+90°
servo			
Rotation of servo	90° counter clockwise	Centre	90° clockwise (maximum
motor	(maximum displacement to		displacement to clockwise
	counter clockwise direction)		direction)

3.1.5.2 Implementation of walking gaits to robot with line following behaviour

After the line following circuit is applied on the robot, the line following algorithm is designed as shown in Table 3.4.

Table 3.4: Line following algorithm

		IR sensor			Output		
Left most (1)	Left (2)	Centre (3)	Right (4)	Right most (5)			
1	/	/	/	0	Rotate left		
0	1	0	0	0			
0	0	1	0	0			
0	1	1	0	0	Move straight		
0	MALAYSIA	1	1	0			
0	/	1	/	1	Rotate right		
0	0	§ 0	1	0			
1	1	1	1		Stop		
0	0	0	0	0	Reset		

Based on Table 3.4, "1" indicates the IR sensor detect the line (black) and gives output as HIGH, "0" indicates the IR sensor does not detect the line (white surface) and produces LOW output and "/" indicates the condition where the outputs of IR sensors can be either HIGH or LOW.

3.2 Project methodology for Final Year Project to achieve second objective

This section discuss about the project methodology to achieve the second objective which is to analyse the performance of robot in performing line following task with different gaits.

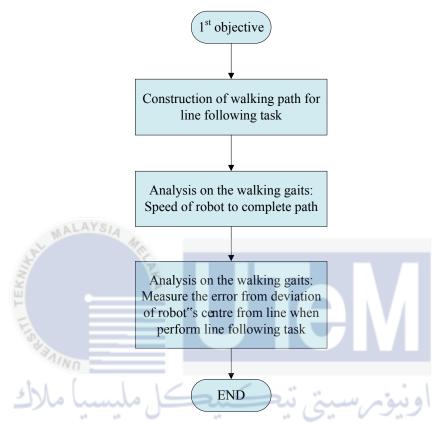


Figure 3.14: Project methodology flowchart to achieve second objective

3.2.1 Construction of walking path for line following task

In order to perform the analysis, different line following paths which are straight line path and three different paths with different turning angles are designed for the robot as shown in Figure 3.15 and Figure 3.16.

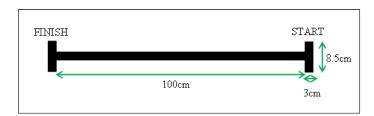


Figure 3.15: Straight line path for robot

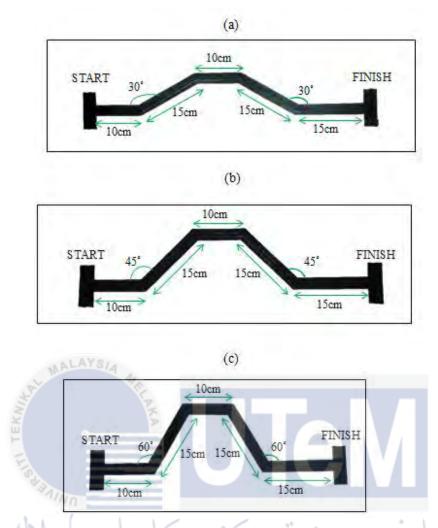


Figure 3.16: (a) Path with turning angle of 30°, (b) Path with turning angle of 45°, (c) Path with turning angle of 60°

3.2.2 Analysis on speed of robot to complete line following task with tripod and wave gaits

This analysis is done to measure the time taken for the hexapod to complete the walking path for one cycle. Since the walking path for both gaits are the same, indirectly the speed of robot can be obtained. The analysis of the speed is conducted to analyse the performance of tripod and wave gait in moving straight and turning in term of the speed.

For the moving straight analysis, the robot is required to complete a 100cm straight line path. For the turning analysis, the length of path is 65cm and 3 turning angles are tested which are 30°, 45° and 60°. The time is started to take when robot is started moving from "START" point and stop when the robot is reached "END" point. To reduce the error, each experiment is carried out for five times and the average value is calculated. The results obtained are recorded in Table 3.5 and Table 3.6.

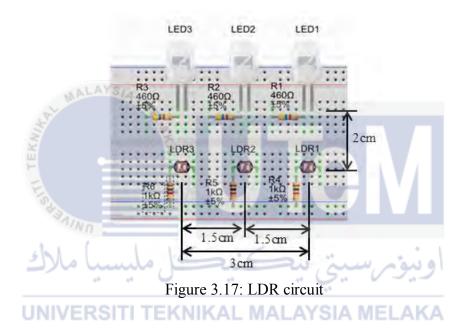
Table 3.5: Results for time taken to complete 1 cycle (move straight)

Types of walking gaits	Time taken to complete one cycle, t (s)								
\$3AINO	t_1	t_2	t_3	t_4	t_5	tave			
Tripod gait				,0					
Wave gait	3 +		300	5	٠٠٠	91			

Table 3.6: Results for time taken to complete 1 cycle (turning at different angles)

Turning angle	Tin	Time taken to complete one cycle, t (s)										
		Tripod gait					Wave gait					
	t_1	t_2	t ₃	t ₄	t ₅	tave	t_1	t_2	t ₃	t ₄	t 5	t _{ave}
30°												
45°												
60°												

By using equation (3.15), the speed of robot, v can be calculated.


$$v = \frac{s}{t_{ave}} \tag{3.15}$$

where, s = total distance of the walking path, $t_{ave} = \text{average}$ time taken to complete path

3.2.3 Analysis on measurement of errors from deviation of centre of robot from the line in performing line following task with tripod and wave gaits

This analysis is carried out to examine the performance of robot in term of measuring error when it is performing the line following task for both straight line path and turning path. The errors are measured from deviation of centre of robot from the line.

To measure the error, an LDR circuit is designed as shown in Figure 3.17 and attached to the base of robot.

The LDR circuit is connected and the LDR values can be read from Arduino serial monitor. Each LDR is illuminated with a super bright LED light to allow LDR to differentiate the white colour ground and black colour path. LDR 1 represented the left most boundary of line, LDR 2 represented as the centre and LDR 3 represented as the right most boundary of line. The algorithm as shown in Table 3.7 and Table 3.8 are used to analyse the result when conducting the analysis. The algorithm is based on the comparison of LDR values between LDR 1, LDR 2 and LDR 3.

Table 3.7: Algorithm of LDR circuit in differentiate the error (centre of robot fall on line)

L	DR valı	ue	Position of	Range of error	Illustration of position of centre of
LDR	LDR	LDR	robot	from deviation	robot to line
1	2	3	on/from line	of centre of	
				robot from line,	
				X	
high	low	high	Centre of	0	2.5cm
			robot on		LDR 2 (centre
			centre of line		of robot) Direction of
					moving
					LDR 3 LDR 1
					0
					Figure 3.18: Centre on line
low	low	high	Centre of	0 < x < 1.25	2.5cm
			robot on		LDR 2 (centre 😝
			right side of		of robot) Direction of
			line line		Direction of moving
		(P)	W.C.		moving in the second
		N	T.	4	LDR 3
		EX		>	↔ LDR 1
					1.25
		150.			Figure 3.19: Centre on line
high	low	low	Centre of	-1.25 < x < 0	2.5cm
			robot on left		LDR 2 (centre
		5 N	side of line	\subseteq	of robot) Direction of
				40	moving
					7
		UNIV	ERSITITE	KNIKAL MAL	LDR 3 LDR 1 ↓
					1.25
					Figure 3.20: Centre on line
low	low	low	Centre of		2.5cm
10 11	10 11	10 ,,	robot on line		← LDR 2 (centre
			(robot in		of robot) Direction of
			static		moving
			position)		*
					LDR 3 8.5cm LDR 1
					LDR 1
					Figure 3.21: Centre on line

	I DD		D	D	III
I DD	LDR	LDD	Presence of	Range of error	Illustration of position of centre of
LDR	LDR	LDR	line from	from deviation of	robot to line
1	2	3	centre of	centre of robot	
			robot	from line, <i>x</i>	
low	high	high	Centre of	1.25< <i>x</i> <2.75	2.5cm
			robot on		LDR 2 (centre 😂
			right side		of robot)
			(out from		Direction of
			line)		moving
			- /		7 1
					LDR 3 LDR 1
					2.75
					Figure 3.22: Centre out from line
high	high	low	Centre of	-2.75< <i>x</i> <-1.25	2.5cm LDR 2 (centre
			robot on left		of robot)
			side (out		/ /
			from line)		Direction of
		1	ALAYS/A		moving
		F	Mr.		: \
		3	7		LDR 3 LDR 1
		Z		C A	2.75
		1	•	_	
4					Figure 3.23: Centre out from line
high	high	high	Centre of		LDR 2 (centre
		037	robot out		of robot)
			from line		
		10/2	(robot in	16.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			static		Direction of
			position)	44	LDR 3 moving
		LIKIDA	EDOITI TE	KNIIKAL MAL	
		OMIA	EKSIII IE	KNIKAL MAL	AYSIA I⇔AKA↓
					Figure 3.24: Centre out from line

Table 3.8: Algorithm of LDR circuit in differentiate the error (centre of robot out from line)

Based on the range of error from deviation of centre of robot from centre of line, a diagram of position of centre of robot with respect to line is plotted and the results obtained recorded in Table 3.9.

Table 3.9: Number of occurrence of centre of robot at different location on or out from line

Position	Inside line			Out fro	Start	
	Left	Centre	Right	Left	Right	/ End
Number of occurrence of centre of robot, <i>n</i>						
Percentage of error occurred, P (out from line)						

By using equation (3.16), the percentage of errors (centre of robot is lies out from the line), P can be calculated

$$P = \frac{n_{out(left)} + n_{out(right)}}{n_{in(left)} + n_{in(centre)} + n_{in(right)}}$$
(3.16)

where $n_{out(left)}$ = Number of occurrence of centre of robot at outside of line (left)

 $n_{out(right)}$ = Number of occurrence of centre of robot at outside of line (right)

 $n_{in(left)}$ = Number of occurrence of centre of robot in line (left)

 $n_{in(centre)}$ = Number of occurrence of centre of robot in line (centre)

 $n_{in(right)}$ = Number of occurrence of centre of robot in line (right)

3.3 Conclusion

In summary, this project is started with the selection of hardware to choose the most suitable hardware design, actuator and controller to use. After the hardware selection, some preliminary analysis such as finding the size of moveable area of robot's leg and inverse kinematics are done on the robot. The project is proceeded with the implementation of line following behaviour to the robot with tripod and wave gaits and analysis on the performance of the robot to achieve the objectives.

CHAPTER 4

RESULTS AND DISCUSSION

This chapter covers about the results of each of the achieved objectives and data obtained from the methodology will be discuss in this chapter as well.

4.1 Preliminary analysis on hardware

This section is about the analysis on the six legged robot which covers about the inverse kinematics that used to find the joint angles and size of moveable area of leg. The preliminary analysis is done to determine the limitation of robot before the implementation of walking gaits.

4.1.1 Inverse kinematics

The inverse kinematics is used to calculate joint angle at knee and ankle on a single leg to allow the robot to stand in stable condition.

TEKNIKAL MALAYSIA MELAKA

The variable used in calculation of angle of knee and angle of ankle:

 θ_1 : Angle of knee

 ϕ_1 : Angle of ankle

a = distance of joint from knee to ankle = 50 mm

b = distance of joint from ankle until the point touch ground = 54mm

d = resultant distance of a and b

(x,y) = desired position

Before find the joint angle, the position of the end-effector of leg is determined.

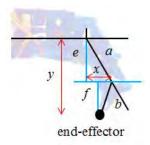


Figure 4.1: Joint variable on a single leg

To obtain the most stable position, the position of end-effector of leg is chosen at the centre of joint length from knee to ankle, x = 25mm.

To calculate y,

$$e = \sqrt{a^2 - x^2} \tag{4.1}$$

$$e = \sqrt{50^2 - 25^2} = 43.3mm$$

$$f = \sqrt{b^2 - x^2}$$
(4.2)

$$f = \sqrt{54^2 - 25^2} = 47.86mm$$

$$y = e + f = 43.3 + 47.86 = 91.16mm (4.3)$$

To enable the robot to stand in stable condition, position of end-effector of leg,

$$x = 25 \text{ mm}, y = 91.16 \text{ mm}$$

Using equation (3.1),

$$d = \sqrt{25^2 + 91.16^2}$$
$$d = 94.5259mm$$

Using equation (3.3),

$$\cos \phi_2 = \frac{50^2 + 54^2 - 94.5259^2}{2(50)(54)}$$
$$\cos \phi_2 = -0.6517$$

To obtain ϕ_1 , equation (3.8) is used,

$$\phi_{1} = 180^{\circ} - \tan^{-1} \frac{\pm \sqrt{1 - (-0.6517)^{2}}}{-0.6517}$$
$$\phi_{1} = 49.33^{\circ}$$
$$\phi_{1} \approx 50^{\circ}$$

To obtain θ_1 ,

Sub. $\phi_1 = 49.33^{\circ}$ into equation (3.13),

MALAYSIA

$$\theta_{1} = \tan^{-1} \frac{91.16}{25} - \tan^{-1} \frac{54 \sin 49.33^{\circ}}{50 + 54 \cos 49.44^{\circ}}$$

$$\theta_{1} = 48.97^{\circ}$$

$$\theta_{1} \approx 50^{\circ}$$

Hence, to achieve the stable standing position, both angle for knee and angle for ankle should be rotate 50°.

4.1.2 Size of moveable area of leg

The measurement of radius for both maximum and minimum reachable area of robot's leg are taken.

Radius for maximum reachable area of robot's leg, $r_{\text{max}} = 9 \text{cm}$ Radius for minimum reachable area of robot's leg, $r_{\text{min}} = 3 \text{cm}$ P and Q = actual moveable area of leg to avoid collision

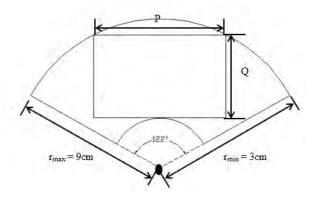


Figure 4.2: Size of moveable area of leg

By measuring the region between radius for maximum reachable area and radius for minimum reachable area, it is found that the actual moveable area of leg to avoid collision is 40cm^2 (mark as rectangular region in Figure 4.2) with P = 8cm and Q = 5cm.

4.2 Implementation of tripod and wave gaits to six legged robot

Two types of walking gaits are implemented to the six legged robot, which are tripod gait and wave gait. The walking patterns of the robot are described and shown in this section.

1 complete cycle Time Leg configuration t1 t2 t3 t5 t7 t8 t9 t10 t4 t6 LF LM LB RF RM RB

4.2.1 Tripod gait

Figure 4.3: Movement of legs in tripod gait

Figure 4.3 shows the movement of legs of six legged robot when perform the tripod gait. The black colour indicated leg lift up from ground and white colour indicated leg in contact with ground. It is shown that the tripod 1 is made up by left front leg (LF), left back leg (LB) and right middle leg (RM). The tripod 2 is made up by right front leg (RF), right back leg (RB) and left middle leg (LM). For the first period, tripod 1 is lifted up, while tripod 2 is stayed on the ground. It is followed by tripod 2 lifted up and tripod 1 stayed on the ground for the second period. This is considered as one complete cycle for tripod gait.

By using equation (2.1),

$$\beta = \frac{6}{12} = 0.5$$

The duty factor of tripod gait is 0.5.

4.2.2 Wave gait

		1	compl	ete cyc	le							
Leg		Time										
configuration	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12
LF												
LM	V MA	LAYS	IA M									
LB	7			AKA		П						
RF		Ш								V		
RM	SAIN	(0							4	И		
RB	ملا	(ملى	1			2	1.2	رس	ر م	9	

Figure 4.4: Movement of legs in wave gait

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Figure 4.4 shows the movement of legs of six legged robot when perform the wave gait. The black colour indicated leg lift up from ground and white colour indicated leg in contact with ground. It is shown that for each period, only a leg is lifted up and the other five legs are in contact with ground. All the legs on left side are lifted up, followed by the legs on right side. The wave gait is started with left front leg (LF) lifted up, followed by left middle leg (LM), left back leg (LB), right front leg (RF), right middle leg (RM) and right back leg (RB). The complete cycle of wave gait is considered after all six legs had lifted up one by one.

By using equation (2.1),

$$\beta = \frac{30}{36} = 0.83$$

The duty factor of tripod gait is 0.83.

4.3 Analysis on speed of robot to complete line following task with tripod and wave gaits

This analysis is done to analyse the performance in term of speed of walking gaits in completing the line following task (moving straight and turning at different angles).

4.3.1 Move straight

Table 4.1 shows the time taken for the six legged robot to complete a 100cm straight line path for 5 times and the average values are calculated.

Table 4.1: Results for time taken to complete 1 cycle (move straight)

Types of walking gaits	Time taken to complete one cycle, t (s)							
AL MARKET	t_1	t_2	t_3	t_4	t_5	t _{ave}		
Tripod gait	30.0	32.0	37.2	36.9	33.2	33.86		
Wave gait	64.5	71.1	68.7	69.5	66.7	68.10		

The speed of robot in performing tripod gait, v1

$$v1 = \frac{100}{33.86} = 2.95 cm / s$$

The speed of robot in performing wave gait, v2

$$v2 = \frac{100}{68 \cdot 10} = 1.47 cm / s$$

From the values obtained from the experiments, the average time taken of robot in finishing the path for tripod and wave gaits are calculated. Robot with tripod gait takes shorter time, 33.86s in completing the path than wave gait, 68.10s. By using equation (3.15), the speed of robot are calculated and it is found that speed of robot in completing the straight line path by using tripod gait (2.95cm/s) is faster than by using wave gait (1.47cm/s)

4.3.2 **Turning at different angles**

Table 4.2 shows the time taken for the six legged robot to complete different turning angle path for 5 times and the average values are calculated.

Turning	Time taken to complete one cycle, t (s)											
angle	Tripod gait					Wave gait						
	t_1	t_2	t_3	t_4	t_5	t _{ave}	t_1	t_2	t_3	t_4	t_5	t _{ave}
30°	41.9	42.8	44.4	42.9	45.6	43.52	54.5	54.3	53.7	49.5	48.1	52.02
45°	49.1	47.6	38.9	47.3	51.5	46.88	58.6	49.2	55.3	49.8	59.2	54.42
60°	59.8	62.8	54.4	60.8	56.3	58.82	62.5	59.5	59.2	58.2	57.2	59.32

Table 4.2: Results for time taken to complete 1 cycle (turning at different angles)

The speed of robot in performing tripod gait, v1

For turning angle = 30° ,

$$v1_{30} = \frac{10+15+10+15+15}{43.52} = \frac{65}{43.52} = 1.49 cm/s$$

For turning angle = 45° ,

$$v1_{45} = \frac{10 + 15 + 10 + 15 + 15}{46.88} = \frac{65}{46.88} = 1.39 cm / s$$

For turning angle =
$$60^{\circ}$$
,
$$v1_{60} = \frac{10 + 15 + 10 + 15 + 15}{58.82} = \frac{65}{58.82} = 1.11 cm / s$$

The speed of robot in performing wave gait, v2

For turning angle = 30° ,

$$v2_{30} = \frac{10+15+10+15+15}{52.02} = \frac{65}{52.02} = 1.25cm/s$$

For turning angle = 45° ,

$$v2_{45} = \frac{10+15+10+15+15}{5442} = \frac{65}{5442} = 1.19cm/s$$

For turning angle = 60° ,

$$v2_{60} = \frac{10+15+10+15+15}{59.32} = \frac{65}{59.32} = 1.10cm/s$$

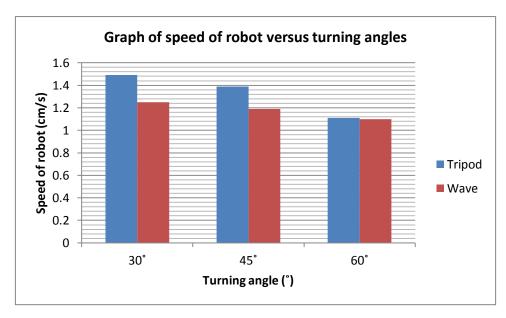


Figure 4.5: Graph of speed of robot in completing the path versus turning angle for tripod and wave gaits

According to Figure 4.5, by compare speed of robot to finish all different turning angles line path, the speed of robot in completing the line path by using tripod gait is faster than by using wave gait. For tripod gait, robot able to finish the turning path with turning angle of 30° faster as compared to turning angles 45° and 60°. For wave gait, robot also able to finish the turning path with angle of 30° faster than another two turning angles.

4.3.3 Summary of result obtained in analysis of speed

MALAYSIA

In summary, for the experiments done on analyse the speed of robot on completing the task with tripod and wave gait, it is found that tripod gait allows the robot to move faster than by using wave gait for both moving straight and turning motion. This can be explain from the duty factor of tripod gait, which is 0.5 is smaller than wave gait, which is 0.83, the movement of tripod gait are walked with two tripods in one time compared to movement in wave gait which move only a single leg in a single time. The complete cycle of tripod gait only required two steps as compared to wave gait that required a total of 6 steps to complete a cycle, results the step size of movement in tripod gait is larger and able to reach the END point in shorter time. Hence, the speed of robot in moving with tripod gait is faster. For the turning motion, robot able to finish the path with smaller turning angle faster compared to higher turning angle for both gaits. As the robot is programmed to

turn 10° for every turning motion, when the robot reaches small turning angle, for example 30°, it manages to pass the desired angle in three rotations compared to other larger turning angles. In the turning path experiment, the speed of robot with tripod gait is faster than wave gait in finish turning path. This is because tripod gait able to perform forward motion as well while turning left or right, unlike wave gait that only rotate without moving forward while turning.

4.4 Analysis on measurement of errors from deviation of centre of robot from the line in performing line following task with tripod and wave gaits

This analysis is done to measure the errors from deviation of centre of robot from the line when it is perform line following task. In measuring the error, LDR circuit is attached on the base of robot instead of attach a camera to the robot. This is because the attachment of LDR is lighter compared by using camera which will add heavy load on the robot and affected the performance of robot. Hence, LDR circuit is used to measure the error by comparing the different LDR values and providing the results in range value of errors, as well as without affecting the movement of robot.

4.4.1 Move straight 4.4.1.1 Tripod gait -2.751.5cm -1.251.25cm 17 19 21 23 25 27 29 31 33 11 13 15 1.25cm ЖЖ Ж ЖЖ Ж 1.25 1.5cm 2.75 direction of robot moving

Figure 4.6: The position of centre of robot with respect to line (tripod gait)

Centre of line

Line boundary (right) ——Line boundary (left)

X Centre of robot

Table 4.3: Number of occurrence of centre of robot at different location on or out from line (tripod gait)

Position	Inside line			Out fro	Start /	
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	8	9	7	4	1	4
of robot, n						
Percentage of error occurred, P	17.24%					
(out from line)						

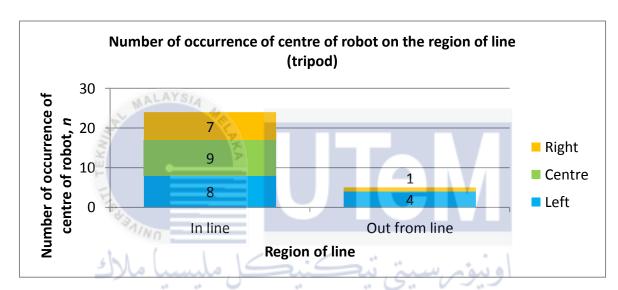


Figure 4.7: Number of occurrence of centre of robot on the region of line (tripod)

Figure 4.6 and Figure 4.7 show the position of centre of robot with respect to the line when it is moving straight with tripod gait. From Figure 4.7, it can be seen that the errors mostly occurred on the left boundary of line as compared to the right boundary region. This errors will occurred as the robot is moving forward by its tripod legs 1 which consists of left front legs, right middle legs and left back legs, hence, the robot will intend to move to left when it started to move. Overall, the percentage of centre of robot lies out from line when complete the path is 17.24%.

4.4.1.2 Wave gait

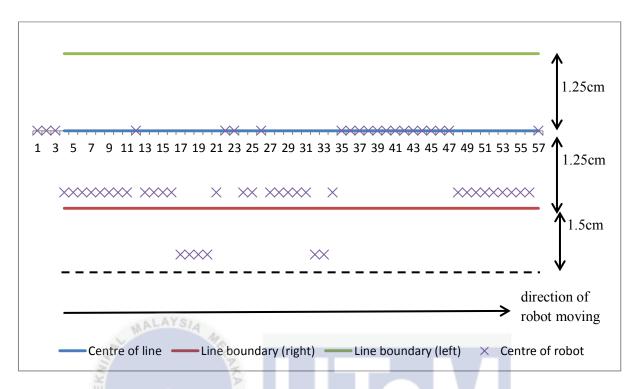


Figure 4.8: The position of centre of robot with respect to line (wave gait)

Table 4.4: Number of occurrence of centre of robot at different location on or from line (wave gait)

Position	Inside line			Out fro	Start /	
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	0	18	30	0	6	3
of robot, n						
Percentage of error occurred, P	11.11%					
(out from line)						

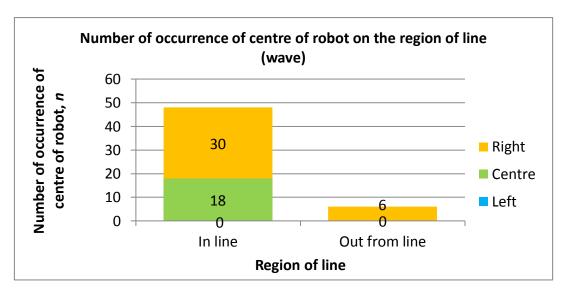


Figure 4.9: Number of occurrence of centre of robot on the region of line (wave)

Figure 4.8 and Figure 4.9 show the position of centre of robot with respect to the line when it is moving straight with wave gait. From Figure 4.8 and Figure 4.9, it can be seen that most of the errors are fall on the right region of the line and none of the centre of robot is fall on the left region. The errors are caused by the movement of wave gait where wave gait provides a stable movement when the robot is moving. It only lifts a single leg in each time, the other five legs that stand on the ground create a stable structure and hard to move the robot to change direction. Besides that, the step size in wave gait is small, hence the robot able to move straight without creating a big movement. Overall, the percentage of centre of robot lies out from line when complete the path is 11.11%.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

4.4.2 Turning at different angles

4.4.2.1 Tripod gait

For turning angle = 30° ,

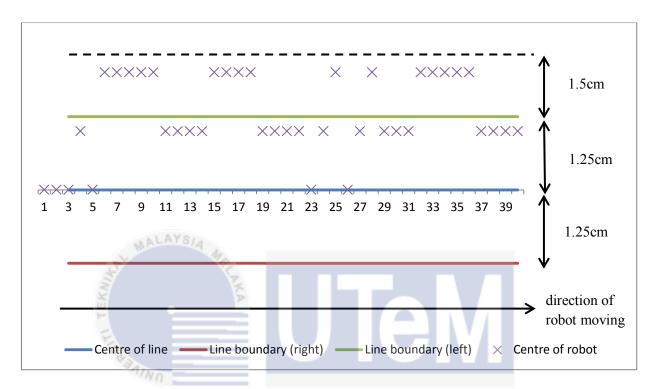


Figure 4.10: The position of centre of robot with respect to line (turning angle = 30°)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 4.5: Number of occurrence of centre of robot at different location on or from line (turning angle of 30°)

Position		Inside line	om line	Start /		
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	18	4	0	16	0	2
of robot, n						
Percentage of error occurred, P			42.	11%		
(out from line)						

According to Table 4.5, most of the centre of robot is lies on the left region and none of the centre of robot is lies on right region. The percentage of centre of robot lies out from line is 42.11%.

For turning angle = 45° ,

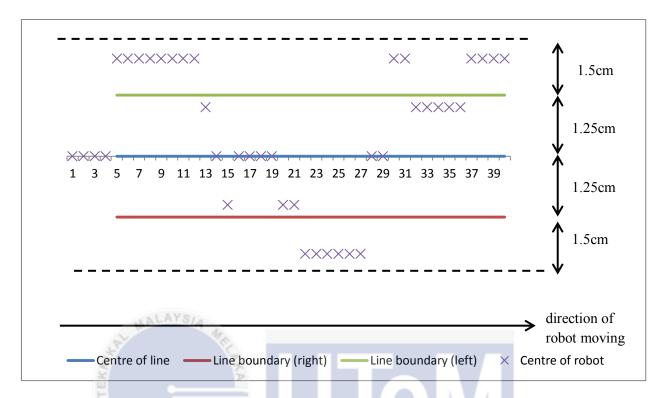


Figure 4.11: The position of centre of robot with respect to line (turning angle = 45°)

Table 4.6: Number of occurrence of centre of robot at different location on or from line (turning angle of 45°)

Position	NIKA	Inside line	ATSIA	Out fro	Start /	
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	6	7	3	14	6	4
of robot, n						
Percentage of error occurred, P			55	56%		
(out from line)						

According to Table 4.6, most of the centre of robot is lies on the left region. The percentage of centre of robot lies out from line is 55.56%.

For turning angle = 60° ,

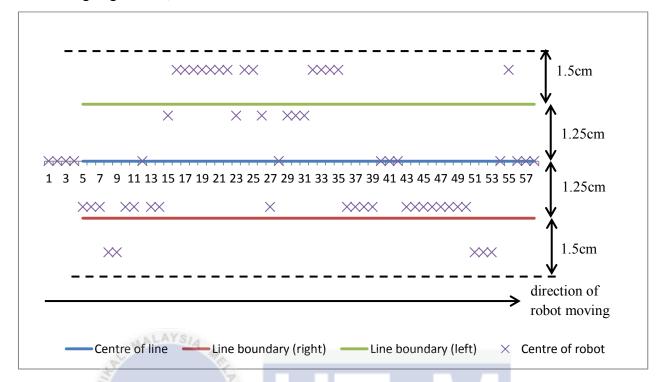


Figure 4.12: The position of centre of robot with respect to line (turning angle = 60°)

Table 4.7: Number of occurrence of centre of robot at different location on or from line (turning angle of 60°)

Position	<u> </u>	Inside line	ىتى د	Out fro	om line	Start /
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	NI ₆ A	9	20	13-A	5	4
of robot, n						
Percentage of error occurred, P			33.	96%		
(out from line)						

According to Table 4.7, most of the centre of robot is lies on the right region and the percentage of centre of robot lies out from line is 33.96%.

As compared with three different angles, it is found out that tripod gait can perform well for larger turning angles which are 60° as the percentage of error occurred is 33.96%. For smaller turning angles of 30° and 45°, most the readings shows centre of robot is fall on the left region of the line as the robot is turning to left.

4.4.2.2 Wave gait

For turning angle = 30° ,

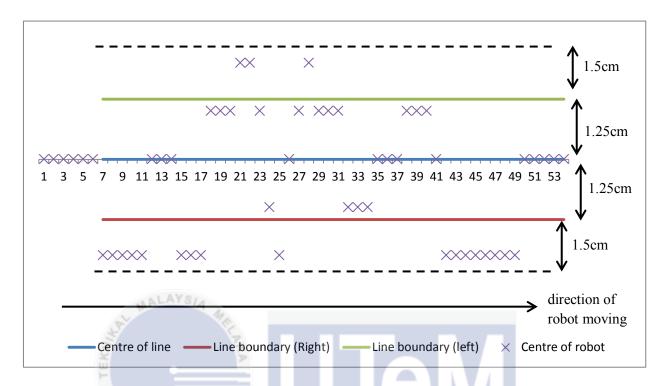


Figure 4.13: The position of centre of robot with respect to line (turning angle = 30°)

Table 4.8: Number of occurrence of centre of robot at different location on or from line (turning angle of 30°)

Position		Inside line		Out fro	om line	Start /
	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	11	13	4	3	17	6
of robot, n						
Percentage of error occurred, P			41.	67%		
(out from line)						

According to Table 4.8, most of the centre of robot is lies on the right region and the percentage of centre of robot lies out from line is 41.67%.

For turning angle = 45° ,

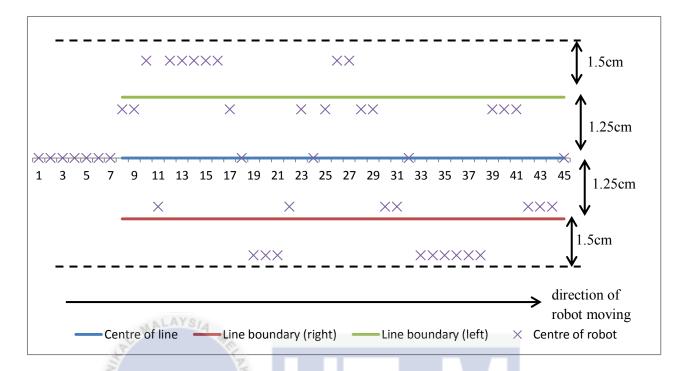


Figure 4.14: The position of centre of robot with respect to line (turning angle = 45°)

Table 4.9: Number of occurrence of centre of robot at different location on or from line (turning angle of 45°)

Position		Inside line	4.0	Out fro	Start /	
UNIVERSITI TEK	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	10	4	7	8	9	7
of robot, n						
Percentage of error occurred, P			44.	73%		
(out from line)						

According to Table 4.9, the percentage of centre of robot lies out from line is 44.73%.

For turning angle = 60° ,

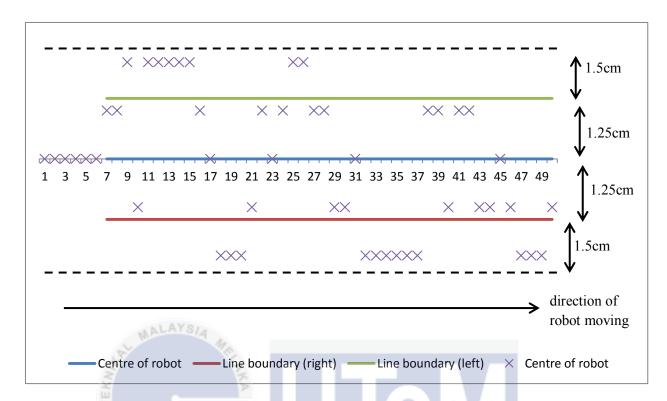


Figure 4.15: The position of centre of robot with respect to line (turning angle = 60°)

Table 4.10: Number of occurrence of centre of robot at different location on or from line (turning angle of 60°)

Position		Inside line		Out fro	Start /	
UNIVERSITI TEK	Left	Centre	Right	Left	Right	End
Number of occurrence of centre	11	4	9	8	12	6
of robot, n						
Percentage of error occurred, P			45.	45%		
(out from line)						

According to Table 4.10, the percentage of centre of robot lies out from line is 45.45%.

As compared with three different angles, it is found out that wave gait is suitable for small angle turning, 30° as the percentage of centre of robot lies out from line is 41.67% and most of the centre of robot for turning angle of 30° is fall on centre of line region as compared to another two bigger turning angles, 45° and 60°.

4.4.3 Summary of result obtained in analysis of measurement of errors from deviation of centre of robot from the line

In summary, as compared wave gait and tripod gait in completing the straight line path, it is found that wave gait able to perform well as it shows less percentage of centre of robot lies out from line which is 11.11% compared to tripod gait, 17.24%. This is because wait gait is stable in moving and slow when moving, results the robot only change slightly the direction when moving.

In perform turning gait, it shows that tripod gait suitable for larger turning angle while wave gait is suitable for smaller turning angle. This is because the robot is programmed to turn 10° for both gaits (turning motion), when the robot reaches small turning angle, for example 30°, wave gait has the smaller step size manages to pass the desired angle in three rotations compared to other larger turning angles. Tripod gait suitable to turn effectively for larger angle, 60° as while the robot perform turning motion, at the same time, it also move forward, results it is hardly to rotate accurately for smaller angles.

Overall, wave gait allows six legged robot to perform less errors when follow the line as compared to tripod gait for both straight line moving and different angles turning.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

4.5 Summary

Table 4.11: Summary for analysis of speed and analysis of error measurement

Experiments	Speed of ro	obot (cm/s)	Measurement of err	rors from deviation								
			of centre of robot to the line (%)									
	Tripod gait	Wave gait	Tripod gait	Wave gait								
Straight Line	2.95	1.47	17.24	11.11								
Turning angle = 30°	1.49	1.25	42.11	41.67								
Turning angle = 45°	1.39	1.19	55.56	44.73								
Turning angle = 60°	1.11	1.10	33.96	45.45								

Table 4.11 shows the summary for analysis of speed and analysis of error measurement from deviation of centre of robot from the line. Overall, in term of speed, tripod gait enables the robot to move faster than wave gait for both moving straight and turning as the duty factor of tripod gait is less than wave gait. When turning angles increase, the speed of robot to turn also decrease. In term of errors from deviation of centre of robot to the line, wave gait shows better performance than tripod gait where the percentage of centre of robot lies out from line occurred is less compared to tripod gait. Tripod gait suitable for larger turning angle while wave gait suitable for smaller turning angle.

In summary, the results obtained from the proposed methodology are shown. Some analysis is done to the hardware which is to find the joint angle for robot to stand in stable condition by using inverse kinematics and find the size of moveable area of robot's legs. By doing the preliminary analysis on the hardware, the limitation of hardware can be discovered. Before the implementation of line following behaviour to the robot, the walking gaits are assigned to robot is to observe the movement of legs in the gaits. After the line following algorithm is applied to the robot, experiments are carried out and from the results obtained, the effect of different walking gaits can be observed.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter will concludes the whole project of six legged robot walking gaits. The limitation of the project is included in this chapter as well.

5.1 Conclusion

MALAYSIA

In summary, there are two main objectives in this project which is the implementation of line following behaviour to the six legged robot with tripod and wave gait and to analyse the effect of different walking gaits in performing the line following task. The developed line following algorithm is implemented to the six legged robot that allow it can move and turn following the line. Experiment setup to measure speed and measurement of error from deviation of centre of robot to line are used to analyse the performance of robot in completing the task. From the results obtained from the experiments, tripod gait takes a shorter time than wave gait in finishing the line path, the speed of robot moves in tripod gait is faster than move in wave gait. Besides that, it also found that tripod gait suitable for larger turning angle and wave gait are suitable for smaller turning angle.

Based on the results obtained, in the future research, the robot can be develop to allow it to move on uneven surface as well to investigate its performance of walking gaits. Besides that, there are also some recommendations for the future research, the servo motors used in this project should change to metal gears type as the current type of servo motors are plastic gears which they cannot support high torque and heavy load. Next, other experiments can be done to analyse the effect of different types of walking gaits such as obstacles avoidance test on both even and uneven surfaces.

5.2 Limitation of the project

The limitation in this project is the six legged robot is designed to perform a single task which is line following task. The weight of this six legged robot cannot exceed 1.6kg as it required higher voltage if the weight of robot is increasing. The maximum voltage input can supported by the servo motor is 6V.

REFERENCES

- [1] N. B. Ignell and J. Matsson, "An overview of legged and wheeled robotic locomotion." in *International Research Conference on the Social Economy*, 2012.
- [2] "Creepy cockroach-like robot could find earthquake survivors CBS News." [Online]. Available: http://www.cbsnews.com/news/creepy-cockroach-like-robot-could-find-earthquake-survivors/. [Accessed: 26-Oct-2014].
- [3] X. Ding, Z. Wang, A. Rovetta, and J. M. Zhu, "Locomotion analysis of hexapod robot," in Behnam Miripour (Ed.), ISBN: 978-953-307-030-8, InTech, Available from: http://www.intechopen.com/books/climbing-and-walking-robots/locomotion-analysis-of-hexapod-robot pp. 291–311, 2001. Available from: http://www.intechopen.com/books/climbing-and-walking-robots/locomotion-analysis-of-hexapod-robot
- [4] "Ant anatomy University of Florida." [Online]. Available: http://flrec.ifas.ufl.edu/entomo/ants/ant_anatomy.htm [Accessed: 30-Sep-2014].

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

- [5] "Hexapod Gaits Amber Hexapod." [Online]. Available: http://www.amberhexapod.org/hexapod-gaits [Accessed: 30-Sep-2014]
- [6] "Analysis of Multi-Legged Animal + Robot Gaits Oricom Technologies." [Online]. Available: http://www.oricomtech.com/projects/leg-time.htm [Accessed: 30-Sep-2014]
- [7] W.Bolton, "Mechanical Actuation Systems," in *Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering*, 5th ed. Harlow, England: Pearson, 2011, ch. 8, sec. 2, pp. 190.

- [8] A. Atrash, "Introduction to Robotics Today"s Lecture Outline." [Online]. Available: http://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/ [Accessed: 30-Sep-2014].
- [9] S. Böttcher, "Principles of robot locomotion," Seminar 'Human robot interaction'.
- [10] R. Campos, V. Matos, and C. Santos, "Hexapod locomotion: A nonlinear dynamical systems approach," in *IECON 2010 36th Annu. Conf. IEEE Ind. Electron. Soc.*, Madrid, Spain, pp. 1546–1551, Nov. 2010.
- [11] Z. Yang, C. Juang, S. Member, and Y. Jhan, "Hexapod Robot Wall-Following Control Using A Fuzzy Controller," in 11th IEEE International Conference on Control & Automation (ICCA), Taichung, Taiwan, pp. 1–5, June 2014.
- [12] M. T. Ibrahim, "LINE AND WALL FOLLOWER HEXAPOD ROBOT," Universiti Tun Hussein Onn Malaysia, 2011.
- [13] S. Skaff, G. Kantor, D. Maiwand and A. A. Rizzi, "Inertial Navigation and Visual Line Following for a Dynamical Hexapod Robot," in 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 1-6, October 2003.
- [14] T. Booysen and S. Marais, "The development of a remote controlled, omnidirectional six legged walker with feedback," in *2013 Africon*, Pointe-Aux-Piments, Mauritius, pp. 1–6, Sep. 2013.
- [15] W. Y Jeong, H. K. Kim and S. B. Kim, "Path Tracking Controller Design of Hexapod Robot for Omni-directional Gaits," in *2013 9th Asian Control Conference (ASCC)*, Istanbul, Turkey, pp. 1-6, 2013.
- [16] N. A. Ali, S. I. M. Salim, R. A. Rahim, S. A. Anas, Z. M. Noh and S. I. Samsudin, "PWM Controller Design of a Hexapod Robot using FPGA," in *2013 IEEE International Conference on Control System, Computing and Engineering*, Penang, Malaysia, pp. 1-5, 29 November 1 December 2013.

- [17] M. Shahriari and A. a. Khayyat, "Gait analysis of a six-legged walking robot using fuzzy reward reinforcement learning," in *2013 13th Iran. Conference Fuzzy System*, Qazvin, Iran, pp. 1–4, Aug. 2013.
- [18] M. Gorner and G. Hirzinger, "Analysis and Evaluation of the Stability of a Biologically Inspired, Leg Loss Tolerant Gait for Six- and Eight-Legged Walking," in 2010 IEEE International Conference on Robotics and Automation Anchorage Convention District, Alaska, USA, pp. 1-8, May 2010.
- [19] X. Duan, W. Chen, S. Yu and J. Liu, "Tripod Gaits Planning and Kinematics Analysis of a Hexapod Robot," in *2009 IEEE International Conference on Control and Automation*, Christchurch, New Zealand, pp. 1-6, Dec. 2009.
- [20] P. Kutilek, S. Viteckova and J. Hejda, "Model of the Signal Processing and Decision Making Process of Hexapods with Static-Stable Walking," in *2012 35th International Conference*, pp. 1-5, July 2012.
- [21] O. Sorin and M. Ni, "Hexapod Robot. Virtual Models for Preliminary Studies," 2013, vol. 436999, no. 107. 2010.
- [22] M. Pakdaman, M. Sanaatiyan, M. R. Ghahroudi, "A Line Follower Robot from design to Implementation: Technical issues and problems," in 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, vol. 1, pp. 5-9, Feb. 2010.
- [23] F. Kaiser, S. Islam, W. Imran, K. H. Khan, and K. M. a Islam, "Line follower robot: Fabrication and accuracy measurement by data acquisition," in *2014 Int. Conf. Electr. Eng. Inf. Commun. Technol.*, Dhaka, Bangladesh, pp. 1–6, Apr. 2014.
- [24] K. M. Hasan and A. Al Mamun, "Implementation of autonomous line follower robot," in *2012 Int. Conf. Informatics, Electron. Vis. (ICIEV)*, Dhaka, Bangladesh, pp. 865–869, May 2012.
- [25] "X-RHex Key Features." [Online]. Available: http://kodlab.seas.upenn.edu/XRHex/Features [Accessed: 29-Nov-2014].

- [26] "EZ-Robot Revolution Six WiFi Hexapod." [Online]. Available: http://www.robotshop.com/en/ez-robot-revolution-six-wifi-hexapod.html#What [Accessed: 29-Nov-2014].
- [27] "Hexapod Robot Hexy Blue." [Online]. Available: http://www.robotshop.com/en/hexapode-robot-hexy-blue.html#What [Accessed: 29-Nov-2014].
- [28] "Lynxmotion Phoenix 3DOF Hexapod Robot Kit (BotBoarduino)." [Online].

 Available: http://www.robotshop.com/en/lynxmotion-phoenix-3dof-hexapod-robot-kit-botboarduino.html [Accessed: 29-Nov-2014].
- [29] "Servotor32 USB 32 Servo Controller." [Online]. Available: http://arcbotics.com/products/servotor32/ [Accessed: 26-Oct-2014]
- [30] "Connector Types." [Online]. Available: http://www.servocity.com/html/connector_types.html. [Accessed: 26-Oct-2014].
- [31] "5x ArcBotics 9g Carbon Servo ArcBotics." [Online]. Available: http://www.arcbotics.mybigcommerce.com/5x-arcbotics-9g-carbon-servo/. [Accessed: 26-Oct-2014].
- [32] M. Ahmed, Md. R. Khan, Md. Masum Billah, S. Farhana, "A Novel Navigation Algorithm for Hexagonal Hexapod Robot," in American J. of Engineering and Applied Sciences, vol. 3, no. 2, pp. 320–327, 2010.
- [33] "Servotor32 / Board / Servotor32.pdf." [Online]. Available: https://github.com/ArcBotics/Servotor32/blob/master/Board/Servotor32.pdf [Accessed: 29-Oct-2014]

APPENDIX A: Gantt chart for Final Year Project

Task	Semester 1 / 2014 Sep Oct Nov Dec 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4																		Se	mes	ster	2 /	/ 20)15																
		S	ер			Oc	t			No	V			De	ec			Ja	ın			Fe	eb			M	ar			A	pr			M	ay			Ju	n	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1) Initial stage		V	A	L	Ϋ́	87,	1																																	
Project title selection	7							¥,																																
Planning of project									Ţ	5																		T												
2) Literature review stage										p											_		٠.																	
Study on the six legged robot																																								
Study on the previous research																					1		_				Ī													
done by others	8															1																								
Study on the specification of the		1	IN	n																																				
hardware				,																																				
Study on Python programming	١,	U	6				1	۵		U				5		4				1		4		4.4			. **													_
language									4	Л				-								5	40		U		7		زر	'										
3) Research introduction stage																					-																			
Identify the problem statement,	П	V	E	R	S				E	K	N		ζ,	4		n,	1/	١Į	7		75	31	А		П		_/	ч	ζ,	4										
objective and scope of project																																								
4) Research methodology stage																																								
Planning for methodology																																								
5) Prototype preparation stage																																								

System integration							1 1											1 1		1	\neg
•																					
Implementation of line following	ng																				
behaviour to robot																					
Insert programming																					
6) Analysis and result stage							П														
Result analysis		-1	A.L.A	Y 8 /	4																
7) Report writing stage		7			4	0.															
Final FYP 1 report writing	K					4															
Final FYP 1 submission	Z/	П				5															
Final FYP 2 report writing	Ш																				
Final FYP 2 report submission																17					
8) Presentation stage	(0)								1			-									
Presentation FYP 1	10	1/1/																			
Presentation FYP 2			W/I																		
		ما	L		ملد	1.	4	2		2	Ů			ر بد		نى	9				
			49		e.			46			. (ح	$q \theta =$	L	-	10	1				
												4/8									

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPENDIX B: Program for early calibration of servo motors

```
// Program for early calibration of servos
#include "Servotor32.h" // call the servotor32 Library
Servotor32 hexapod; // create a servotor32 object
/*Servos of left front leg: 16,17,18 (hip, knee, foot)
 Servos of left middle leg: 20,21,22 (hip, knee, foot)
 Servos of left back leg: 24,25,26 (hip, knee, foot)
 Servos of right front leg: 15,14,13 (hip, knee, foot)
 Servos of right middle leg: 11,10,9 (hip, knee, foot)
 Servos of right back leg: 7,6,5 (hip, knee, foot) */
 void blinkled(){  // blink status led
 digitalWrite(STATUS LED, HIGH); // set LED on
 hexapod.delay ms(500); // wait for 500ms
 digitalWrite(STATUS LED, LOW); // set LED off
 hexapod.delay ms(500); // wait 500ms
void setup(){
 hexapod.begin(); // start communicate with controller
 for(int i=0; i<27; i++){ // from pin 0 to pin 27
  hexapod.changeServo(i,1500); // set the angle for servo equal to 0
 }
         UNIVERSITI TEKNIKAL MALAYSIA MELAKA
void loop(){
 blinkled();
}
```

Figure: Program for early calibration of servo motors

APPENDIX C: Schematic diagram for Servotor32

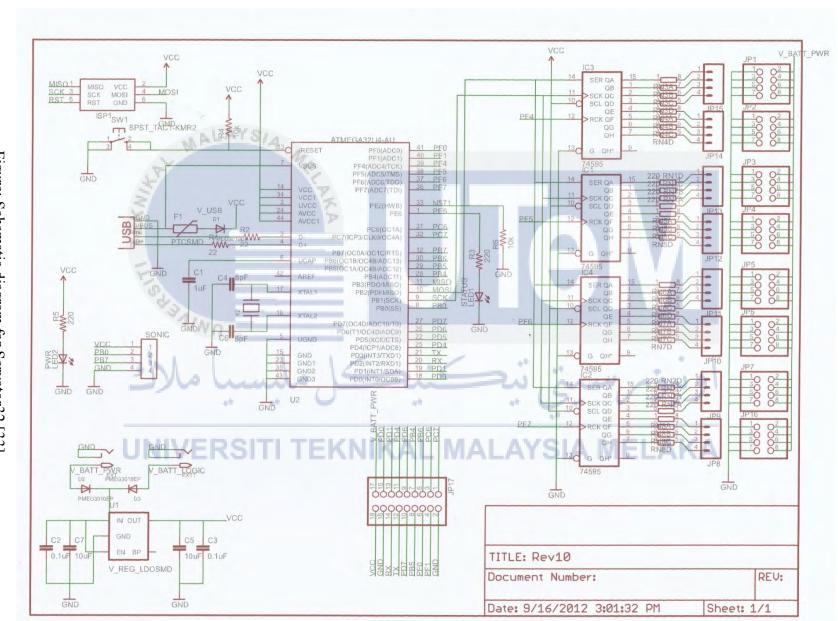


Figure: Schematic diagram for Servotor32 [33]