GAS LEAKAGE MONITORING OVER THE NET WITH RASPBERRY PI

MOHD FAEZ BIN AHMAD RAZLI

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Industrial Electronic)

> Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

> > JUNE 2016

C Universiti Teknikal Malaysia Melaka

TINVERSITI TEKNIKAL MALAYSIA MELAKA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA lti kejuruteraan elektronik dan kejuruteraan komputer BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II		
Tajuk Projek: Gas Leaka	ge Monitoring Over the Net with Raspberry Pi		
Sesi Pengajian: 1 5 /	1 6		
Saya MOHD FAEZ BIN AH	IMAD RAZLI		
	rojek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat		
 Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (√): 			
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)		
TERHAD*	 * (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) 		
TIDAK T	ERHAD		
	Disahkan oleh:		
(TANDATANGAN PE	NULIS) (COP DAN TANDATANGAN PENYELIA)		
Tarikh:	Tarikh:		

"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature	:
Author	[:] MOHD FAEZ BIN AHMAD RAZLI
Date	: 15 th JUNE 2016

iii

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) with Honors."

Signature	:
Supervisor's Name	EN. ZULHAIRI BIN OTHMAN
Date	:

To my beloved parents, Ahmad Razli bin Ismail and Anida binti Mohamad, siblings, friends and all lecturers. Dedicated in thankful appreciation for your supporting, encouragement and best wishes.

ACKNOWLEDGEMENT

First and foremost, all praises is to Allah, the Almighty, the benevolent for His blessing and guidance for giving me an opportunity and inspiration to embark this project. For completing this project and thesis, I dealt with many people and they have great contribution towards my understanding and thought.

A special thanks I dedicated to my kind-hearted supervisor, Mr. Zulhairi bin Othman for the encouragement, guidance and enthusiasm given throughout the completion of this project. In particular, I also wish to express my sincere appreciation to him as he is willing to spend his precious time to give some ideas and suggestion towards this project and thesis. My appreciation also goes to my family who has been so tolerant and supports me all these years. Thanks for their encouragement, love and emotional supports that they had given to me.

Last but not least, my great appreciation dedicated to my FKEKK members and those who involve directly and indirectly with this project. Their views, tips, support, and assistance in various conditions are useful indeed.

ABSTRACT

The purpose of this project is to develop an online data monitoring system for the gas detector over the NET. This system will detect the gas leakage especially in oil and gas industry. The gas sensor used for development of this system is the combustible gas sensor MQ-5 that used in order to detect the present of liquefied petroleum gas (LPG) and butane gas. This sensor can detect gas concentrations anywhere from 200 to 10000ppm according to the voltage output of the sensor. The output of the sensor is connected to Arduino Uno. A 20x4 size LCD, buzzer and three different colours of LEDs is used to indicate the levels of the gas for local monitoring which are safe, warning and danger level. The system is programmed with Visual Studio 2015 software whereas the Raspberry pi will send the data reading from the gas sensor to monitoring system through Azure IOT Hub cloud that will display the reading on user interface application graphically on Power BI. Thus, user can take immediate action upon the leakage occurs to prevent the condition becoming worst.

ABSTRAK

Tujuan projek ini adalah untuk membangunkan sistem pemantauan data penggera untuk mengesan gas melalui internet. Sistem ini akan mengesan kebocoran gas terutama dalam industri minyak dan gas. Sensor gas yang digunakan dalam membangunkan projek ini adalah sensor gas MQ 5 yang akan mengesan kehadiran Gas Petroleum Cecair (LPG) serta gas butana. Sensor ini dapat mengesan mana-mana kepekatan gas daripada 200ppm hingga 10000ppm mengikut keluaran voltan sensor yang ditunjukkan. Keluaran daripada sensor ini akan disambungkan pada Arduino Uno. Satu LCD bersaiz 20x4, satu alat pembunyi isyarat dan tiga biji LED digunakan untuk menyatakan aras bagi gas iaitu aras selamat, amaran dan bahaya. Manakala Raspberry Pi akan menghantar data maklumat daripada sensor gas kepada sistem pemantauan melalui penyimpan data Azure IOT Hub yang akan memaparkan bacaan melalui aplikasi antara muka pengguna secara grafik pada Power BI. Oleh itu, pengguna boleh mengambil tindakan segera ke atas kebocoran berlaku untuk mengelakkan keadaan menjadi teruk.

CONTENTS

I

Π

PROJECT TITLE	i
DECLARATION	ii
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF AMBREATIONS	xviii
LIST OF APPENDICES	xix
INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Statement	3
1.3 Objectives of Study	3
1.4 Scope of Work	4
LITERATURE REVIEW	6
2.1 Previous Projects Related to Wireless Sensor Nodes	5
2.1.1 ZigBee Wireless Sensor Nodes	5
2.1.2 Full-Function Device (FFD) and Reduced Function Devices (RRD) Sensor Network	5

2.2 Previous Projects Related to Gas Sensor	9
2.2.1 Pyroelectric Infrared (PIR) gas sensor	9
2.2.2 Integrated Tin Oxide Sensor	10
2.3 Previous Project Related to Microcontroller	11
2.3.1 PIC18F2550 Microcontroller	11
2.4 Previous Project Related to Raspberry Pi	12
2.5 Previous Project Related to Development of User Interface	13
2.6 Summary	13
METHODOLOGY	15
	10
3.1 Introduction	15
3.2 System Specification and Requirement	18
3.2.1 Hardware Specification	19
3.3 Hardware Development	20
3.3.1 Gas sensor	21
3.3.2 Buzzer	27
3.3.3 Light Emitting Diode (LED)	28
3.3.4 Raspberry Pi	29
3.3.4 Arduino	32
3.3 Software Development	33
3.4.1 Arduino Software	33
3.4.2 Microsoft Azure	39
3.4.3 Visual Studio 2015	44
3.5 Project management	56
3.6 Financial management	57
3.7 Summary	57

III

Х

IV	RESULTS	58
	4.1 Introduction	58
	4.2 Project Description	58
	4.3 Project Experiment	
	4.3.1 Local Monitoring Experiment	59
	4.3.1.1 Safe Level Condition	60
	4.3.1.2 Warning Level Condition	61
	4.3.1.3 Danger Level Condition	62
	4.3.2 Online Monitoring Experiment	63
	4.3.3 Final Test Experiment	65
	4.4 Summary	65
V	CONCLUSION AND RECOMMENDATION	66
	5.1 Conclusion	66
	5.1 Recommendation	68
	REFERENCES	69
	APPENDICES	72
	APPENDIX A	72
	APPENDIX B	74
	APPENDIX C	76

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Hardware specification for the Gas Detector	18
	Monitoring system	
3.2	Technical Specifications of the MQ-5 Gas leakage sensor	23
3.3	Gas Sensor input and output voltage range.	26
3.3	Direct Cost of Project	57

xii

LIST OF FIGURES

TITLE

FIGURE NO.

The flow of overall system of Carbon Monoxide Detection and Autonomous Countermeasure System for a mill use Wireless sensor and Actuator Network	8
Design of the sensor location in different room	9
The result of the gas concentration based on the sensor replacement in each room	10
Array of planar tin oxide odour sensors made by UV lithography	11
Large scale display for the user interface	13
Project flow of system design	15
Flow chart for full project progress	16
System Architecture of Online Monitoring Gas Leakage Detector System	19
Full circuit architecture design	20
	Detection and Autonomous Countermeasure System for a mill use Wireless sensor and Actuator Network Design of the sensor location in different room The result of the gas concentration based on the sensor replacement in each room Array of planar tin oxide odour sensors made by UV lithography Large scale display for the user interface Project flow of system design Flow chart for full project progress System Architecture of Online Monitoring Gas Leakage Detector System

C Universiti Teknikal Malaysia Melaka

PAGE

3.5	MQ-5 gas sensors	21
3.6	The complete circuitry design of the gas sensor and it function	21
3.7	Gas sensor pin wiring to Arduino Uno	22
3.8	Schematics connection in gas sensor	22
3.9	Pins configuration of MQ-series gas sensor	23
3.10	Heating system for MQ-series gas sensor	24
3.11	Gas sensor working principle	25
3.12	Working mechanism of MQ-5 gas sensor	26
3.13	Buzzer	27
3.14	Light Emitting Diode	27
3.15	Single set computer Raspberry Pi	28
3.16	Structure of the hardware platform	29
3.17	The schematic diagram of Raspberry Pi	30
3.18	Arduino board	31
3.19	Arduino software	32
3.20	Declaration of function for gas sensor and all indicators	33

3.21	Declaration of input and output for gas leakage detector	33
3.22	Voltage Output versus analog output in Arduino	35
3.23	Sensitivity characteristic of the MQ-5	36
3.24	Sensing system programming	37
3.25	Coding for safe level condition	37
3.26	Coding for warning level condition	38
3.27	Coding for danger level condition	38
3.28	Azure services platform	39
3.29	Creating IoT Hub in Microsoft Azure	40
3.30	User access to connection string	40
3.31	Defining the data input for stream analytics job	41
3.32	Output of the Stream Analytics	41
3.33	Coding for query part	42
3.34	Start streaming data to Power BI	42
3.35	Application icon for Visual Studio 2015 software and Node.Js programme.	43

C Universiti Teknikal Malaysia Melaka

3.36	Creating apps in Visual Studio 2015	44
3.37	Checking the message in the npm output window	45
3.38	Solution Explorer interface	45
3.39	Installation of Nuget Package Manager	46
3.40	Declaration of every involved platform that had been used.	46
3.41	Set up the connection string and device Id	47
3.42	Create device identity on Azure IoT Hub	47
3.43	Create a get calls after an attempt to connect to IoT Hub.	48
3.44	Create a helper function to print the results	48
3.45	Send the value of the gas sensor to IoT Hub	49
3.46	Initializes the Arduino board with Johnny-Five	49
3.47	Set up IP address of remote machine	50
3.48	IoT dashboard application	50
3.49	ARM is selected in the dropdown menu	51
3.50	Installation of IoT Hub Explorer through CMD	51
3.51	Run IoT Hub Explorer through CMD	52

3.52	Data received by IoT Hub Explorer through CMD from sensor	52
3.53	The work flow process of visualising data in Power BI used for this project	53
3.54	The architecture for Power BI process	54
3.55	The three elements of Power BI development	55
3.56	Gantt chart for full project progress	56
4.1	Result of safe level condition, PPM value = 133ppm	60
4.2	Result of warning level condition	61
4.3	Result of danger level condition	62
4.4	Graph reading when the air concentration is at safe level during the first 2 minutes testing	63
4.5	Graph reading after the air concentration is tested at high level once for a few seconds at danger level after 6 minutes testing	64
4.6	Graph reading after the air concentration is tested at high level twice for a few minutes at danger level	65

LIST OF AMBREATIONS

A/D	-	Analog to Digital
UV	-	Ultra Violet
SnO2	-	Tin Dioxide
СО	-	Carbon Monoxide
H2	-	Hydrogen
H2S	-	Hydrogen Sulphide
С7Н8	-	Toluene
C8H10	-	Ethylbenzene
Ppm	-	Part per million
PCA	-	Principal Component Analysis
PC	-	Principal Component
SV	-	Single Varieties
ANN	-	Artificial Neural Network
DC	-	direct current
I/O	-	Input and Output
USB	-	Universal Serial
PWM	-	Pulse Width Modulation
SRAM	-	Static Random Access Memory
EEPROM	-	Electrically Erasable Programmable Read Only Memory
KB	-	Kilobytes
GND	-	Ground
GPIO	-	General Purpose Input Output

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Visual Studio Coding	71
В	Arduino Coding	73
С	Technical Data of MQ-5 Gas Sensor	75

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

This chapter will be explain on the project background, objective of the project, problem statement of the project, scope of project, methodology and also the report structure.

1.1 Background

Security is a level of protection in a scope of area against dangers and losses. In industry area, the environment and its condition is very important to ensure the safety and security of the workers. When discussing on security issues, people cannot take it for granted. Consequently, the issues from environment and the air quality in industrial area are discussed to increase the alertness and responsibility regarding the environment towards public and workers' safety. The dangerous gases such as CH₃, and CO may bring harmful effect towards human as they may cause explosions and CO poisoning accident in most industrial areas. Then, it is certainly possible that the gases may leak and the system needs to be real time monitored.

Thus, a gas detector is invented to ease human on detecting the presence of those dangerous gases within an area to prevent any disaster happen. The gas detector is a gas detecting device that used to be applied in dangerous place. Nowadays, the world become full of new technology. The gas detector has been innovated into various ways of detection, for example infrared thermal imaging gas leak detection [1], gas leakage detection with monitoring system [2], and wireless gas sensor network [3]. This thesis presents the design and development of a wireless gas leakage monitoring system by using Raspberry Pi.

Besides, traditionally the gas leakage monitoring system is implemented by communication cable system, therefore the cost of installation and maintenance are very expensive and difficult as mentioned by J.Ding [4]. Thus, in order to overcome these restrictions, wireless sensor network is chosen as the best choice in the situation above. Some related papers proposed different types of wireless sensor network such as radio frequency (RF) transceiver [3], router and coordinator [5], general packet radio service (GPRS) network [6] and Zigbee [2][4][7][8]. This project will use Raspberry Pi in the gas leakage monitoring application field for the real-time monitoring of the potential risk areas.

In this project, the monitoring system is developed and implemented by using Visual Studio 2015 software for Windows programming. It is used to send the data from the sensor to Azure Microsoft cloud platform. Then it will display the level of gas concentration in a workplace through online Power BI application that can be monitored through another remote PC and via internet server. This wireless communication will reduces the hassle of making a new connection and will increase the network range. Hence, it provides benefit to monitor the condition of a room in a safe distance.

The user can easily monitor the gas leak information by connecting to the internet using computer or Smartphone directly. User can monitor their gas leak information by login into the Power BI online web page. The data can be analyzed by see the graph at web page that automatically update for every 10 seconds. The web page will refresh automatically after 10 seconds. It will make the system convenience to the user to monitor their gas leak information at anywhere as long as they have internet connection.

In actual, the hardware included in this system is MQ-5 Gas Sensor, Raspberry PI 2, 2 Arduino Uno and PC to monitor the signal of the gas leak. The sensor has excellent sensitivity combined with a quick response time at low cost and ease installation. Under gas leaked condition, the alert warning notification will automatically show on user interface. Through this real-time notification, the system will decrease the response time of the responsible person that handle the system to take any action. Thus it will provide the immediate aid to the situation occur.

1.2 Problem Statement

In oil and gas industry, a gas leak is hazardous to personnel and industrial operation. A quick detection and alert would minimize the dangers of gas leak. Besides, in certain time, the proper person that responsible of monitoring the gas leakage in the workplace may have meeting or other outside works that could make him or her cannot access the alert on the information of gas leakage. Traditionally, the gas pipeline leakage monitoring system is realized by communication cable system, therefore the limitation range of coverage could occur. In order to overcome these restrictions, wireless sensor network is chosen as the best choice in the situation above.

1.3 Objectives

The objectives of this project are:

- 1. To make user able to take immediate action against the gas leak.
- 2. To make the gas leak information can be accessible and monitored from anywhere.
- To develop an automatic system that can detect and alert gas leak using Internet of Things (IoT) technology and Raspberry Pi.

3

1.4 Scope of Project

In the effort of achieving the project objectives, several scopes have been outlined. The development of this project is estimated to involve 40% of hardware and 60% of software. The scopes of the project involve:

- Developing gas detecting system that will detect the flammable gas leakage and monitored it over the NET. The system will be modelled based on PETRONAS Kertih working environment.
- ii. The gas sensor MQ 5 is used by this system to detect the leakage gas.
- iii. Raspberry Pi device is used by this system to transmit the data from the sensor to user interface over the NET.
- iv. Developing a communication between wireless sensor network and the web server.
- v. Developing a synchronization database between web servers and cloud storage that enable the user to access the data on long distance or remote communication.

CHAPTER II

LITERATURE REVIEW

This chapter will discuss in more details on the components and instruments that used for this designed project in general. Besides, there are some of past related project or paper work that is related to this project.

2.1 Previous Projects Related to Wireless Sensor Nodes

2.1.1 ZigBee Wireless Sensor Nodes

A project that related to Wireless Sensor Node is project paper with title "Carbon Monoxide Detection and Autonomous Countermeasure System for a mill use Wireless sensor and Actuator Network" by University of Engineering and Technology from Peshawar, Pakistan [3]. It designed with high a high end central controller. The PC is then connected to the TelosB wireless sensor module via USB and connected to the actuator circuit via RS232. The TelosB node is connected with CO sensor module and interface with ZigBee wireless connectivity