DESIGN AND DEVELOPMENT OF FINGER -VEIN CAPTURE DEVICE USING ARDUINO MICROCONTROLLER

MUHAMMAD FAIZ BIN KALAM

This Report is submitted in Partial Fulfilment of Requirements for the Bachelor Degree of Electronic Engineering (Industrial Electronics) With Honors

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

JUNE 2016

C Universiti Teknikal Malaysia Melaka

	UNIVERSTI TEKNIKAL MALAYSIA MELAKA
	JLTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	BORANG PENGESAHAN STATUS LAPORAN
	PROJEK SARJANA MUDA II
Tajuk Projek : DESIGN AN	D DEVELOPMENT OF FINGER-VEIN CAPTURE
DEVICE USI	NG ARDUINO MICROCONTROLLER
Sesi Pengajian : 1 5	/ 16
Saya MUHAMMAD FAIZ BIN KA	
and the second second second	(HURUF BESAR)
mengaku membenarkan Laporan Proje kegunaan seperti berikut:	k Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
1. Laporan adalah hakmilik Uni	versiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan me	embuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan me	embuat salinan laporan ini sebagai bahan pertukaran antara
institusi pengajian tinggi.	
4. Sila tandakan (🗸):	
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
1	Az
4	DESCAPERA SIMILA ANALAD RADE
(TANDATANGAN PENULIS)	UCOP DAN TANDARANGAN PENA)
	76309 Burlan Tunggel, Melaka
Tarikh: 15/06/2016	Tarikh: 15/06/2016

C Universiti Teknikal Malaysia Melaka

"I he	reby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."	
~		
Signature	:	
Author	: MUHAMMAD FAIZ BIN KALAM	
Date	. 15 JUNE 2016	

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics/ Computer Engineering/ Electronic Telecommunication/ Wireless Communication)* with Honours."

Signature

: Ap

Supervisor's Name : DR. SYAFEEZA BINTI AHMAD RADZI

Date

15 JUNE 2016

iv

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is likewise dedicated to my mother, who taught me that even the largest task can be achieved if it is executed one step at a time.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

This is *Projek Sarjana Muda* (PSM) report which is complete with the support from Dr. Syafeeza Binti Ahmad Radzi who is my supervisor and always give support and encouraged me to finish My PSM. Furthermore, the project is completely finish when I obtain the supply of electronic components, etching machine, tools and applications as well as labs from my faculty, *Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer* (FKEKK). Next, the greatest support is come from my family, especially my beloved parent who gave a moral, spiritual and economic support until the project finish. Last but not least, my colleagues is always give a favour in idea, discuss about the project and all the effort to finish my PSM.

ABSTRACT

The project is focusing on design and developing a finger-vein capturing device by using Arduino Microcontroller. It is a device that will capture the human finger vein image and will be controller by Arduino Microcontroller. This is for Biometric purpose is such as authentication, verification and identification. The concept of this project is a near-infrared light (NIR) will be emitted by a bank of NIR Light Emitting Diodes (LEDs) which will penetrate the finger and are absorbed by the haemoglobin in the blood. The areas in which the NIR rays are absorbed (i.e. Veins) thus appear as dark regions in an image conveyed by a CCD camera located on the opposite side of the finger. The brightness of the NIR will be control automatically by using Arduino Microcontroller to get the clear image and suitable image. The image captured is analysed by using Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR).

ABSTRAK

Projek ini adalah untuk membina satu model "Reka Bentuk dan Membangunkan Peranti Penangkap Corak Saluran Darah Jari dengan menggunakan Arduino Microcontroller". Peranti ini adalah alat yang digunakan dalam menangkap imej saluran darah jari manusia dengan menggunakan kawalan Arduino Microcontroller. Ini adalah bagi tujuan keselamatan biometric khususnya dalam pengesahan, pengiktirafaan, dan juga pengambilalihan. Konsep yang membolehkan cahaya berhampiran inframerah, *Near Infrared* (NIR) menembusi jari dan akan diserap oleh hemogoblin dalam darah tubuh badan kita. Kawasan yang sinar NIR diserap adalah saluran darah jari akan muncul sebagai kawasan gelap dalam imej ditangkap oleh camera CCD yang terletak bertentangan dengan kedudukan jari. Keterangan cahaya NIR akan dikawal secara automatik dari Arduino Microcontroller bagi mendapatkan imej yang lebih jelas dan mendapatkan imej yang sesuai. Imej yang ditangkap dianalisis dengan menggunakan Error Mean Square (MSE) dan Peak Signal-to-Noise

viii

TABLE OF CONTENTS

CHAPTER CONTENTS

PAGES

PROJECT TITLE	i
CONFIRMATION REPORT STATUS	ii
RECOGNITION	iii
SUPERVISOR AFFIRMATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix – xvi
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF ABBRIVATION	xxiii

I INTRODUCTION 1 - 4 1.1 Project Introduction 1 - 2 1.2 Project Objectives 2 1.3 Problem Statements 3 1.4 Scopes of Works 4

CHAPTER

CONTENTS

IILITERATURE REVIEWS5 - 21

2.2 Theory of Finger-vein Biometrics	6
2.3 Features and Comparisons between Finger-vein	7
2.4 Features of finger vein	8
2.5 Disadvantages of other Biometrics Traits	8
2.5.1 Comparison among six major biometric	9
methods	9
2.5.2 Comparisons of Five Major Biometrics	
Methods	10
2.6 Types of Sensors being used in Camera	10
2.6.1 Charge-coupled Device (CCD) Image	-
Sensor	
2.6.2 Complementary Metal-oxide	12
Semiconductor (CMOS) Image Sensor	12
2.7 Finger-vein Pattern Imaging Methods	13
2.7.1 Light Reflection Method	14
C Universiti Teknikal Malaysia Melaka	15
2.7.3 Side lighting method	16

PAGES

	2.8 Mean Square Error (MSE) and Peak Signal-to-	
	Noise Ratio (PSNR)	17
	2.9 Summary of Previous Studies	18
	2.10 Summary	21
III	METHODOLOGY	22 - 44
	3.1 Introduction	22
	3.2 Methodology	23
	3.2.1 Finger Vein Pattern Imaging Methods	23
	3.2.2 Building the Finger Vein Capturing	25
	Device's Prototype	
	3.2.3 NIR Illuminating Circuit Design and Simulation	26
	3.2.4 Using Arduino Microcontroller	26
	3.2.5 Programming in the Arduino Uno	27
	3.2.6 The design of the circuit	29
	3.2.7 NIR Illuminating Circuit Construction and	
	Testing on Arduino	
	3.2.7.1 NIR Illuminating Circuit	
	Etching and Soldering	31
	3.2.8 Modification of Suitable CCD Webcams	33
	3.2.9 Evaluating and Initial Capture of a Finger-vein	37
	Image	
	3.2.10 Developing the Finger-vein Image Analysis	37
	Methods	
	3.2.11 Determine the Standard Finger-vein Image	38
	3.2.12 Determine the Best Finger-vein Image	39
	3.2.13 Developing the Finger-vein Capturing Device's	
	GUI	39
	3.2.14 Correct Methods in Using Finger-vein	
	Capturing Device	42

3.2.6 Analysing and Collecting Results	44
3.2.7 Testing and Troubleshooting	44
RESULTS, ANALYSIS AND DISCUSSIONS	45 – 94
4.1 Simulation of NIR Illuminating Circuit	45
4.2 The Body of the Prototype was built	51
4.2.1 The final product of Finger-Vein	
Image Capturing Device Prototype	52
4.2.2 The GUI Layout for the Finger- vein	
Capturing Device Designed	53
4.2.2.1 The Finger-vein Capturing Device	
Prototype's Webcam was Configured	54
4.2.2.2 The Configure Webcam was	
Previewed in the GUI	55
4.2.2.3 The Finger-vein Images was	
Captured	55
4.2.2.4 The Finger-vein Images were	
Saved to the Particular Directories	56
4.2.2.5 The Standard Finger-vein Image from	
"Capture" Directory was Determined	57
4.2.2.6 The Best Finger-Vein Images from	
the "Database" Directory was determined	58
4.2.3 Step in Using Finger-vein	
Capturing Device and Its GUI	60
4.2.3.1 The Finger-vein Capturing Device's	
Prototype was Connected to the Computer	
via USB Port	59

IV

4.2.3.2 The GUI Named	
"FingerVeinCapture_GUI" was Run from MATLAB	60
4.2.3.3 The correct Video Input Device was selected	61
4.2.3.4 The Finger-vein Capturing Device IDwas Selected4.2.3.5 The suitable Video Format and Resolutionwere selected	62 62
4.2.3.6 The Finger-Vein Image was Previewed from the GUI	63
4.2.3.7 The Finger-vein Image was Captured	64
4.2.3.8 The Captured Finger-vein Image was Saved	65
4.2.3.9 The Total of First 9 Finger-Vein	
Images of Different Brightness were	
Captured and saved	
4.2.3.10 The Standard Finger-vein	
Image is Determined	69
4.2.3.11 The Total of Second 9 Finger-Vein	
Images of Different Brightness	
were Captured and Saved	70
4.2.3.12 The Best Finger-vein Image is	
Determined	72
4.2.3.13 The Finger-vein Images	
Analysis	74
4.2.3.14 User was Required to Enter	
the User Number	74
4.2.3.15 The First Nine Captured	
Finger-vein Images from "Capture"	
folder was Read into MATLAB	75

4.2.3.16 The Finger-Vein Images	75
were Cropped	
4.2.3.17 The Finger-Vein Images	
were Converted to Type Double	76
4.2.3.18 The Finger-Vein Images	
Channel were Reduced from RGB to Grayscale	77
4.2.3.19 The Mean Value among the	
First Nine Finger-vein Images was Determined	77
4.2.3.20 The MSE of the Nine	
Captured Finger-vein Images to the	
Mean Value were Determined	78
4.2.3.21 The PSNR of the First Nine	
Captured Finger Vein Images was	
determined	79
4.2.3.22 The Minimum MSE and	
Maximum PSNR were Determined	80
4.2.3.23 The User Number, Minimum	
MSE and Maximum PSNR were	
Displayed	81
4.2.3.24 The Standard Finger-vein	
Image was Determined based on the	
Mean Value	81
	00
4.2.4 Find the Best Finger-Vein Images	82
4.2.4.1 The Command Window was	
Cleared and Global Variables were	
Declared	83
4.2.4.2 The Other Nine Captured	
Finger-vein Images from "Database"	
folder was Read into MATLAB	83

4.2.4.3 The Finger-vein Images were Cropped	84
4.2.4.4 The Finger-vein Images were	
Converted to Type Double	84
4.2.4.5 The Finger-vein Images channel were Reduced	85
from RGB to Grayscale	
4.2.4.6 The MSE of the Secondly	
Captured Nine Finger-vein Images to	
the Standard Image were Determined	86
4.2.4.7 The PNSR of the Secondly Captured Nine	
Finger Vein Images was determined	87
4.2.4.8 The minimum MSE and	
Maximum PSNR were Determined	88
4.2.4.9 The User Number, Minimum	88
MSE and Maximum PSNR were Displayed	
4.2.4.10 The Best Finger-vein Image was Determined	89
4.2.4.11 Normalized Histograms were	90
Calculated for Both Standard Image and Best Image	
4.2.4.12 The standard Finger-vein Image and	
the Best Finger-vein Image Together with	
Their Histograms were Displayed	90

V CONCLUSIONS

5.1 Conclusions	92
5.2 Novelty and Inventiveness	93
5.3 Future Recommendation	93
5.4 Potential of Commercialization	94

CHAPTER CONTENTS PAGES

REFERENCES

95

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

No.	Title	Pages
2.3	Importance features of Finger-vein	8
2.5.1	Comparisons among six major biometric methods	9
2.5.2	Comparison of Five Major Biometrics Methods	9
2.9	Comparison of Previous Studies in terms of	18
	Methods Used, Strength, Weakness and Result	
3.22	The six button the GUI and the function	40
4.1	First 9 captured Finger-vein Images with 9	67
	Different PWM Levels of User 1	
4.2	Database Finger-vein Images PWM Levels of User	71
	1	
4.3	MSE Values for each Firstly 9 " Capture" Finger-	81
	vein Images of User 1	
4.4	The PSNR for each Firstly Captured Nine Finger-	82
	vein Images were determined	
4.5	The MSE Values for Each Nine "Database" Finger-	90
	vein Images of User 1	
4.6	The PSNR Values for Each Nine "Database"	91
	Finger-vein Images of User 1	

LIST OF FIGURE

No.	Title	Pages
2.6	CCD and CMOS image sensors Convert Light into	10
	Electron	
2.6.2	Part of a CMOS sensor	12
2.7.1	Light Reflection Method	14
2.7.2	Light Transmission Method	15
2.7.3	Side lighting method	16
2.9	Flow Chart in Building the Finger-vein Capturing	25
	Device Prototype	
3.3	NIR Illuminating ISIS Circuit Design and	26
	Simulation for Arduino Microcontroller	
3.4	The technical specification in the Arduino Uno	27
3.5	The example interface and coding of the Arduino	28
	Microcontroller	
3.6	The supply of the 5V	29
3.8	The design of the Arduino Uno as the PWM	30
	controller	
3.9	NIR LED testing	30
3.10	The layout of the PCB of the Circuit	31
3.11	Combination circuit with Arduino	32
3.12	The position of NIR LEDs, position of finger and	33
	Camera C170	
3.13	Logitech HD Webcam C170	34
3.14	Sensor holder removed	34
3.15	The IR filter removed	35

3.16	Black photo-film	35
3.17	Stick the black photo-film at the front lens casing	36
3.18	Stream show the camera after modified	36
3.19	The first image of Finger-vein image before build	37
	the prototype	
3.20	The flowchart of the Developing Finger-vein image	38
	method	
3.21	The flowchart in Developing Finger-vein	39
	Capturing Device's GUI	
3.22	The six button of the Finger-vein capturing Device	40
	design in "guide" MATLAB	
3.23	Correct Methods in Using Finger-vein Capturing	42
	Device	
3.24	The data base of the Finger-vein "standard image"	43
	and "best image"	
3.25	The Database and Capture folder	44
4.1	Step 1 for the value of 30(PWM)	46
4.2	Step 2 for the value of 60(PWM)	46
4.3	Step 3 for the value of 90(PWM)	47
4.4	Step 4 for the value of 120(PWM)	47
4.5	Step 5 for the value of 150(PWM)	48
4.6	Step 6 for the value of 180(PWM)	48
4.7	Step 7 for the value of 210(PWM)	49
4.8	Step 8 for the value of 240(PWM)	49
4.9	Step 9 for the value of 255(PWM)	50
4.10	The step of the brightness can be obtain in	50
	downward and upward	
4.11	Push button 1 and 2	51
4.12	The arrangement of the component in the body of	52
	Finger-vein Capture Device	
4.13	Finger-vein Capture Device Prototype	52
4.14	Layout of Finger-veinCapture_GUI.fig	53
4.15	Codes for button "Configure Cam"	54

4.16	Codes for button "Preview"	55
4.17	Codes for button "Capture Image"	56
4.18	Codes for button "Save As"	57
4.19	Codes for button "Analyze Images"	58
4.20	Codes for button "Find Best Image"	59
4.21	USB Connection Using Finger-vein Capturing	60
	Device Prototype and Computer	
4.22	FingerVeinCaptured_GUI	61
4.23	Video Input Device Selection	62
4.24	Device ID Selection	62
4.25	Video Format & Resolution selection	63
4.26	Finger-vein Images was Previewed Live from the	64
	Prototype in the GUI	
4.27	Finger-vein Images Captured and Previewed in the	65
	GUI	
4.28	The Captured Finger-vein Images of User 1 are	66
	saved	
4.38	The standard Finger-vein Images of User 1 is	70
	determined	
4.48	The Best Finger-vein Image is determined for User	74
	1	
4.49	Cropped Finger-vein Image and Histograms of the	74
	Standard Images and Best Image of User 1	
4.50	Dialogue Box is popped out Asking User to Enter	75
	the User Number	
4.51	The First 9 Captured Finger-vein Images from User	76
	were read from "Capture" Folder	
4.52	The First 9 Captured Finger-vein Images are	77
	cropped after being read	
4.53	The First 9 Cropped Finger-vein Images were	78
	converted to Type Double	

4.54	The First 9 Captured Finger-vein Images were reduced Channel from RGB to Grayscale after	79
	being converted to Type Double	
4.55	The Mean Value is determined among the First 9	80
	Finger-vein Images	
4.56	The MSE for each of the Firstly Captured Nine	80
	Finger-vein Images to the Mean Value were	
	determined	
4.57	The PSNR for each Firstly Captured Nine Finger-	82
	vein Images were determined	
4.58	The Minimum MSE and Maximum PSNR were	83
	Displayed	
4.59	Displaying the User Number, Min MSE and Max	83
	PSNR	
4.60	Standard Image of User 1 is determined	84
4.61	Results in GUI Showing which User, Min MSE,	84
	MAX PSNR and finally Standard Finger-vein	
	Image	
4.62	Command Window is cleared & Global Variables	85
	were declared	
4.63	Secondly Nine Captured Finger-vein Images from	86
	User in "Database" Folder is read into MATLAB	
4.64	The secondly Captured Nine Finger-vein Images	87
	were cropped	
4.65	The secondly Captured Nine Finger-vein Images	88
	were converted to Type Double	
4.66	The secondly Captured Nine Finger-vein Images	89
	were reduced Channel from RGB to Grayscale	
4.67	The MSE for each Secondly Captured Nine Finger-	90
	vein Images to the Standard Finger-vein Image	

4.68	The PSNR for each Secondly Captured Nine	91
	Finger-vein Images to the Standard Finger-vein	
	Images were determined	
4.69	The Min MSE and Max PSNR for "Database"	92
	Finger-vein Images of User 1	
4.70	Results showing User Number, Min MSE and Max	92
	PSNR of "Database" finger-vein Images of User 1	
4.71	Best Finger-vein Image of User 1 is determined	93
4.72	Result in GUI showing which User, Min MSE,	93
	Max PSNR and finally Best Finger-vein Image	
4.73	Normalized Histogram of Standard Image and Best	94
	Image	
4.74	Function in MATLAB to calculate and Display the	95
	Normalized Histogram of the Standard Finger-vein	
	Image and the Best Finger-vein Image	
4.75	The Standard Finger-vein Image and the Best	95
	Finger-vein Image Together with Their Histograms	
	are displayed	

LIST OF ABBRIVIATIONS

- AC Alternate Current
- CCD Charge-coupled Device
- CMOS Complementary Metal-oxide Semiconductor
- DC-Direct Current
- EPI Echo Planar Imaging
- FRR False Rejection Rate FAR False Acceptance Rate
- FTE Failure to Enrol
- FKEKK Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
- GUI Grafical User Interface
- ICSP In Circuit Serial Programming
- LED Light Emitting Diode
- MSE Mean Square Error
- NIR Near Infrared
- PWM Pulse Width Modulation
- PSNR Peak Signal-to-Noise Ratio
- USB Universal Serial Bus
- UTeM Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 Project introduction

This project is focusing on designing and developing a low-cost and solely standalone finger-vein capturing device controlled by the Arduino Microcontroller. This device is used for biometric security purposes such as authentication, recognition and acquisition. This device can capture image of finger-vein and the concept of capturing image produce when a near-infrared light (NIR) will be emitted from a bank of NIR Light Emitting Diodes (LEDs) which then penetrate through the finger and then absorbed by the haemoglobins in the blood. The areas in which the rays are absorbed (i.e. Veins) thus appeared as dark areas in the image. Then, the image is taken by a Charged-Couple Device (CCD) camera located on the opposite side of the finger. But the problem or the issue had been arise was that the body temperature of each person varies one another. Hence, the shadows may be created when the NIR pass through the finger. Arduino Uno microcontroller was used to control the output of the Pulse Width Modulation (PWM) from the light intensity of the NIR to suit different person's body

C Universiti Teknikal Malaysia Melaka