
i

“ I hereby declare that I have read through this report entitled “DESIGN AND

DEVELOPMENT OF LEAD-THROUGH PROGRAMMING METHOD USING LOW

COST INCREMENTAL ENCODER FEEDBACK” and found that it has complied the

partial fulfillment for awarding the degree of Bachelor of Electrical Engineering

(Mechatronics)

Signature: ...

Supervisor’s Name: DR. MUHAMMAD FAHMI BIN MISKON

Date: 24th/6/2015

ii

DESIGN AND DEVELOPMENT OF LEAD-THROUGH PROGRAMMING

METHOD USING LOW COST INCREMENTAL ENCODER FEEDBACK

SAMEH MOHSEN OMER KANZAL

A report submitted as a partial fulfillment of the requirements for the degree of

Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

June 2015

iii

I declare that this report entitled “DESIGN AND DEVELOPMENT OF LEAD-

THROUGH PROGRAMMING METHOD USING LOW COST INCREMENTAL

ENCODER FEEDBACK” is the result of my own research except as cited in the

references. The report has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature:………………………

Name: Sameh Mohsen Omer Kanzal

Date: 24st/June/2015

iv

DEDICATION

 I would like to express my gratitude to my supervisor: DR. MUHAMMAD FAHMI

BIN MISKON for his sincere guidance along my project. I would also like to thank my

panels and lecturers for their continuous contributions that made this project possible.

 Lastly, I would like to thank the special gifts have been given to me by Allah, my

Father, Mother and Sisters, for their prayers and support along the journey of my study. I

would never be able to compensate them for whatever they have been doing to me along

my bachelor degree journey.

v

ABSTRACT

Recently robots are widely used in various fields particularly in industry. Despite

this fact, robots still require an undeniable amount of knowledge from the operators or

workers who deal with them. As a result, robots cannot be easily programmed if the

operator or the worker is not well-experienced in robotics' field. One of the programming

methods that has been introduced to make programming task user-friendly is lead-through

robot programming. However, the existing lead-through programming methods still

require an amount of knowledge that is not available for most of the operators and workers.

The main objective of this project is to design a lead through programming method for

point-to-point robots' programming using inexpensive incremental encoder feedback,

which can record, save and playback the robots' motion while considering the accuracy and

precision of the motion. To validate this method, an experiment was conducted in this

project, where an operator manually moves a two DOF (degree of freedom) robotic arm on

a white board while the encoder feedback was recorded and later the same motion was

played back by the robot. Then both recorded and playback trajectories were compared and

analyzed. The results show that the played back accuracy is 96.17% for motor 1 and

97.86% for motor 2 with a standard deviation of 0.9593 for motor 1 and 2.33583 for motor

2.

vi

ABSTRAK

Dewasa ini robot digunakan dalam banyak aktiviti manusia terutamanya di industri.

Walaupun robot banyak digunakan, ia masih memerlukan operator dan juruteknik

berkemahiran tinggi untuk digunakan. Kesannya, robot sukar di programkan. Salah satu

usaha yang memudahkan program robot ialah dengan kaedah lead-through.

Bagaimanapun, kaedah ini masih memerlukan tenaga mahir dan kosnya tinggi dengan

sensor dan alatan tambahan yang mahal. Justeru, objektif projek ini adalah untuk mereka

kaedah program lead-through menggunakan incremental encoder, yan gboleh rekod,

simpan, dan main semula pergerakan robot. Untuk tujuan validasi, eksperimen dijalankan

dengan seorang operator menggerakkan 2 DOF robot di atas sekeping papan putih dengan

bacaan enkoder direkod dan dimain semula. Trajektori yang direkod dan yang dimainkan

di bandingkan dan dianalisa. Hasil kajian menunjukan ketepatan motor 1 dan motor 2 ialah

96.17% dan 97.86% dengan standard deviation sebanyak 0.9593 dan 2.33583 untuk motor

1 dan 2.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 SUPERVISOR'S ENDORSEMENT i

 TITLE PAGE ii

 DECLARATION iii

 DEDICATION iv

 ABSTRACT v

 ABSTRAK ix

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF APPENDICES xii

 1 INTRODUCTION 1

 1.0 Overview 1

 1.1 Motivation 1

 1.2 Problem Statement 3

 1.3 Objectives 4

 1.4 Scope 4

 2 LITERATURE REVIEW 5

 2.0 Overview 5

2.1 Theoretical Background 5

 2.2 Methods to Generate a Trajectory 7

viii

 2.3 Lead-Through Programming Method 9

 2.3.1 Lead-Through Problems 9

 2.3.2 Available Solutions 11

 2.4 Summary and Conclusion 18

 3 METHODOLOGY 20

 3.0 Overview 20

 3.1 Lead-Through Programming Method 20

 3.2 Experiments 23

 3.2.1 Experimental Equipment and Parameters 23

 3.2.2 Experimental Set Up 23

 3.2.3 Procedures 25

 3.2.4 Precautions 31

 3.3 Methods of Analysis 31

 4 RESULTS AND DISCUSSION 33

 4.1 Record and Play-Back Stages Comparison 33

 4.2 Errors and Accuracy 39

 4.3 Precision and Repeatability 42

 5 CONCLUSION AND RECOMMENDATION 44

 5.1 Conclusion 44

 5.2 Future Work and Recommendation 45

 REFERENCES 46

 Appendix A 48

 Appendix B 53

ix

LIST OF TABLES

Table Title Page

2.1 Comparison of the Available Solutions in the Lead-Through

Programming Method

18

3.1 Arduino Due Specification 26

3.2 Geared Dc Motor Specification 27

3.3 Mdd10a Motor Driver Specification 28

4.1 Motor One Error And Accuracy 40

4.2 Motor Two Error And Accuracy 41

1 Motor One, Record Stage 48

2 Motor One, Play-Back Stage 49

3 Motor Two, Record Stage 50

4 Motor Two, Play-Back Stage 51

x

LIST OF FIGURES

Figure Title Page

1.1 World Annual Supply of Industrial Training by Region 2009-2013 2

2.1 Robotic Systems Block Diagram 5

2.2 Robots Programming Methods 7

2.3 Flow Chart of the Data Record Process 9

2.4 Four Major Operational Sequences for the Lead-Through Teaching 12

2.5 Graphical User Interface on Teaching Pendant to Assist Jogging 12

2.6 General Process of Teaching Robot with Robot-Puppet 13

2.7 Lead-Through and Path Learning 14

2.8 Results from Path-Learning 15

2.9 Learned Path Record (Right) and Post Processed Path (Left) 16

2.10 A 3-D Display of A Learned Path 16

2.11 Display of The Contacting Force During the Controlled Motion 17

3.1 Lead-Through Schematic System Diagram 21

3.2 Lead-Through System Design 22

3.3 Planned Experimental Setup 24

3.4 Real Experimental Setup 25

3.5 Constructed Circuit 26

3.6 Experimental Procedures 30

4.1 Generated Trajectories Comparison, Motor One 34

4.2 Generated Trajectories Comparison, Motor Two 35

4.3 Recorded Trajectory 36

4.4 Played-Back Trajectory 37

4.5 Record Stage, to the Left, and Play-Back Stage, to the Right, at

Second One

37

4.6 Record Stage, to the Left, and Play-Back Stage, to the Right, at 38

xi

Second Two

4.7 Record Stage, to the Left, and Play-Back Stage, to the Right, at

Second Three

38

4.8 Record Stage, to the Left, and Play-Back Stage, to the Right, at

Second Four

38

4.9 Record Stage, to the Left, and Play-Back Stage, to the Right, at

Second Fife

39

4.10 Normal Bell Curve, Motor One 42

4.11 Normal Bell Curve, Motor Two 43

1 Trajectory Generated during Record Stage, Motor One 49

2 Trajectory Generated during Play-Back Stage, Motor One 50

3 Trajectory Generated during Record Stage, Motor Two 51

4 Trajectory Generated during Play-Back Stage, Motor Two 52

xii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Detailed Tables and Figure of both Stages 36

B The Code 36

1

CHAPTER 1

INTRODUCTION

1.0 Overview

This chapter includes motivation regarding the continuous evolution of robotics

existence in a diverse of fields, occurrence of lead-through programming method, Problem

statement, objectives of this paper and the scope along with the expected limitations of the

project.

1.1 Motivation

In the last two decades, robots have gained enough technological concern and public

acceptance to shift from revolutionary concept to an evolutionary development that

remarkably attracts developers’ and operators’ attention [1], Figure 1.1 shows the world

annual supply of the industrial training and how it has dramatically increased.

2

Figure 1.1: World Annual Supply of Industrial Training by Region 2009-2013 [2]

Motion planning problem is the main concept that hooks robots developers’ concern,

this type of planning is known as a trajectory generation. Recently, a diversity of human-

friendly robots and partner robots have been developed for the aim of interaction between

human and robots in various fields. These robots require intelligent capabilities to support

the human-robot interactions [3].

 On the other hand, many people are afraid that robots are replacing the human

being jobs. But in fact they are relieving humans from various tedious, routine and even

dangerous jobs. One of the widely spreading jobs that are being taken over by robots is

welding process, as robots have recently replaced human in such jobs, as they are

considered extremely hazardous, in terms of noise, intense generated heat and ultraviolet

light form the welding torch [4]. As a consequence of the above mentioned various

applications used, where robots are implemented in, robots and their motion planning,

termed as a trajectory generation, have been given a remarkable attention and undetached

part of human being daily life.

 Robots Programming can be complicated and time consuming in terms of their

motion planning, thus the process of simplifying robots’ motion programming has been a

top-priority for robotics’ industry since the inception of the first industrial robot [13].

Consequently, making robots affordable to everyone, including those who are not well-

3

experienced with robotic systems’ basic knowledge has gained a non-deniable concern.

Based on that need, a new trajectory generation method was proposed on 12th of August

1994 by Timothy L. Graf, lead-through teaching method [14]. It relied on the concept that

the operator moves the robot and meanwhile it records the motion data and then saves it for

a further playback of the same motion applied by the operator. By applying this method to

the field of robotic systems trajectory generation industries, the affordability, feasibility

and even efficiency will be ensured. Moreover, it gave the robots a sense of human as they

detect the motion and then play it back without any effort from the operator during the

playing back mode.

1.2 Problem Statement

 Currently, robots’ trajectory generation is planned and designed by engineers and

designers. In other words, manipulating robots' trajectories using a joystick or keypad on a

teach-pendant is not easy for a limited skills and experiences operator [9]. For example, if

an industrial company needs to change the position and orientation information of the

robots used in its industry it will have to contact the manufacturer of its robots to adjust

this information using software or whatever method that is used to program their robots.

Such procedures make it a bit burdensome for SMEs (Small and Medium Enterprises) to

handle and deal with, especially when changes are needed more frequently. As a result, the

need for an easier trajectory generation concept, which can be handled with a wider range

of workers and operators became vital. Despite the fact that a lead-through programming

method, using a teach-pendant, is able to give an operator or a worker the ability to handle

the generation of a robot’s trajectory, the initial position (𝑄0), final position (𝑄𝑓) and the

time required to achieve the trajectory (t) are still knowledge-demanding variables and

require a certain level of robotics knowledge [10]. Moreover, the accuracy of the lead-

through programming method became very critical when the robotic arm is required to

pick and place an object, as any inaccurate recording information may result in a failure for

the robotic arm to grab the object and place it to its exact final position. Consequently, a

lead-through programming method that requires only a physical effort from the operator,

which eliminates the need for a teach-pendant, can solve the knowledge limitation of

4

SMEs’ operators. i.e. the operator in such a programming method is required to only deal

with simple switches and physical movement of the end effector.

1.3 Objectives

The objectives of this project is to:

i. Design and develop a lead-through programming method for a robotic arm

that can record the initial and final positions, save them and then repeat

them as accurately as possible.

ii. Analyze the performance parameters of the lead-through programming

systems in terms of error, accuracy, encoders' pulses detection-speed and

precision.

1.4 Scope

 This project develops a trajectory generation using a lead-through programming

method for robotic systems used in SMEs (Small and Medium Enterprises). The project

aims to produce a prototype of a robotic arm with two DOF (degree of freedom) that is

able to record the initial and final position of the end effector as moved by the operator and

then play it back when required. The performance of the designed system is discussed in

terms of error, accuracy, encoders' pulses detection-speed and precision. For the

experiment and analysis, an Arduino DUE controller is used to interface the developed

system and control the trajectory of the arm based on the motion of the operator. The

results of this project is a robotic arm moved manually to a desired final position (Qrec) and

then repeat the same motion by itself to the same final position (Qplayed).

5

𝜃 (t)

𝜃̇(t)

𝜃̈(t)

CHAPTER 2

LITERATURE REVIEW

2.0 Overview

This chapter contains theoretical background of the trajectory generation, methods

of trajectory generation, lead-through programming method and its problems along with

the available proposed solutions and the summary of the solution related to the proposed

idea in this project.

2.1 Theoretical Background

 Figure 2.1 shows a schematic of a robotic system in general.

Figure 2.1: Robotic Systems Block Diagram

Trajectory

Generation

Error

Controller

Control Signal

Plant (Robotic
System)

Output

Sensing System
Feedback

6

Robots programming has gained an undeniable concern for the few past years, due

to their daily corporative and interactive applications offered to their users and operators.

According to [5], trajectory refers to a time history of position, velocity and

acceleration for each degree of freedom. The term trajectory generation is not only

generating a path for a tool frame to be located within a tool frame, but also includes the

human interface issue with the robot’ path specification [5]. For example, if an operator

wants to change the location of the robot within a specific space then he may want to be

able to specify nothing more than the location and orientation of the end effector and then

let the system decide the other information required for that motion, such as duration,

velocity and other details.

By assuming the motion of the manipulator is considered as a tool frame, T, and its

space is the station frame, S, then the trajectory generation is, in general, changing the

position and orientation of the tool frame from an initial value, Tinitial, to an end value,

Tfinal, relative to the station frame [5].

In some applications, it is vital to specify the motion of the tool frame in more

details. For example specifying the sequence of the desired via point (intermediate points

between the initial and final position). These via points are considered as a set of

intermediate points carry out the position and orientation information of the tool-frame

relative to the station-frame [5].

For further elaboration, most of robotic systems have a common block diagram,

shown in figure 2.1, which explains and illustrates the system general input and output and

then the sub-blocks which include the processes involved in both input and output.

As mentioned above robots programming has been given much attention. Recently

robots have been involved in most of nowadays activities, such as industrial, human

services, and even rehabilitation systems. For these reasons a pathway for robots is vital to

be studied and determined as well as the human interface issue which indicates how the

robotic system does receive its pathway from human.

Trajectory generation is a very wide term that includes many problems which need

to be studied independently, not to deny that spatial, time and smoothness are the most

relevant problems to trajectory generation.

7

 Spatial: the orientation and location of the end effectors, and how

accurately they reach their destination.

 Time: how long the end effectors take to reach their desired destination.

 Smoothness: identifies whether the robotic system vibrates while moving

from the initial to the final station-frame. And how smooth its motion is.

For the purpose of solving such relevant issues many studies have been introduced

to contribute to this field. Below are some of these studies, introduced in details.

2.2 Methods to Generate a Trajectory

 As shown in Figure 2.2, in [6] robots programming methods are divided into three

main categories, despite the fact that over 90% of the robots are programmed using the first

method, teach method, lead method and off-line programming.

Figure 2.2: Robots Programming Methods [6]

Robots Programming
Methods

Teach Method Lead Method Off-Line Method

8

 Teach Method, On-Line

The program is generated using either a menu-based system or a text editor.

The main characteristic of this method is that the robot is thought how to change its

position and/or orientation in a number of different co-ordinate systems to a desired

location. This method of programming is simple to be implemented when simple

movements are required, but its main disadvantage is that the robot will be out of

service during the programming session. Example of teach method is Tiji trajectory

generation [7].

 Off-Line Programming Method

 This method is similar to the teach method in terms of the program build up,

except that there are additional tools used to process the CAD (Computer Aided

Design) data of the components and generate a sequence of information to be

processed. The advantages of this method over the other methods are as follows:

i. Reduce the programming time.

ii. Makes the programming easier.

iii. Enables concurrent engineering and reduces product lead time.

iv. Allows process optimization.

An example of a trajectory generation using off-line programming is in [8].

 Lead Method

This method is a physical movement of the robot itself by the operator,

during that movement the robot records the movement of its joint and then plays it

back. This method is limited to small and medium size robots only, as it is difficult

to physically move a large-size robot [8].

9

2.3 Lead-Through Programming Method

 Figure 2.3 illustrates the process of recording data where the operator moves the

robot manually by either using one of the interface devices, mentioned below in the

problems section, or moving it physically. During the robotic system movement, the

transducers attached to the system record the movement’s data and store it in either RAM

or external memory card for further processing. As a final stage, the data recorded will be

processed for the trajectory generation.

Figure 2.3: Flow Chart of the Data Record Process

2.3.1 Lead-Through Programming Problems

 There are four known problems with the lead through method which are (1)

affordability, (2) intuitiveness and teaching accuracy of the teach-pendant interface as a

human machine interface (HMI), (3) feasibility of the on-line programming due to the

great number of the teaching points and (4) the confidentiality and intellectuality of the

sensor-less systems especially when path precision is taken into consideration.

Operator manually
moves the robot

Data are recorded with
the aid of transducer

Data are then
stored on either the
RAM or external

memory card

Data is extracted from the
memory and actions are taken

Start

End

10

 The first problem can be described in terms of changing the robotic arms’ location

and orientation. It is desirable to move the robotic arm’s tool frame rather than moving the

space frame itself, for such changes in locations and orientations maneuvering robots using

a keypad of joystick on the pendant is not easy and affordable to all operators, as it requires

a non-deniable amount of skills and experiences [9].

 The second problem is regarding the teach-pendant which is one of the most

common ways for programming a robot as well as a common human machine interface

(HMI) [10]. Yet to program a robot using a teach pendant, the operator should set up the

robot’s jogging conditions, frame and motion mode, only then he can use the joystick of

the teach pendant to move the robot [6]. In comparison with the off-line programming

methods, programming a robot with a teach pendant does not need a PC, which is an

advantage in terms of cost. Yet a teach pendant programming method is not intuitive and

has a low teaching accuracy which requires rounds and rounds of trails and errors, hence it

is a time consuming and requires a certain level of robotics knowledge to deal with a teach

pendant [10].

 On the other hand, the third problem is based on a robotic machining perspective,

where there are two types of machining processes whose motion are governed by complex

work-piece [11]. Cleaning and deburring machines are typically the first type, which have

a very complex 3D curved surface path, crucial cycle time requirements and relatively low

surface accuracy. Most of the deburring operations are done manually in extremely noisy,

dusty and unhealthy environmental conditions, therefore an automation for these

operations is highly desirable [11]. On the other hand, milling machines are the second

type of machining processes in which robots move in a simpler path with a lower feeding

speed (20-30 mm/s) [11]. One of the most difficulties these machines encounter is

generation of the robot motion. Despite the fact that teach pendant is the most carried out

conventional method to fulfill a robot on-line programming, it is not feasible for machining

processes especially for deburring processes as it has a great number of teaching points and

high accuracy is needed for positioning purposes [11]. Moreover, offline programming

method, which extracts the CAD data of the work-piece, is more accurate and flexible but

it is cost-effective for large batch sizes and still requires additional calibration procedures

for higher accuracy demands [11].

11

 Finally yet importantly, the fourth problem is involved in robots that have direct

contact with objects they manipulate are called robot force control. With the force control,

robots gain one more step towards human nature (feeling or touching). Trajectory

generation by the lead-through teaching for force control robots is quite time-consuming

process if path precision is considered [12].

 According to [12], methods of programming robot paths can be categorized as

CAD based and non-CAD based method. CAD-based system is a method where the

operator specifies the geometrical entities such as the surface or the edge of the geometry

from a CAD model, and then the system will automatically simulate and generate the path

in the virtual world. Despite the beneficial features of the CAD drawings, in reality they

are neither confidential nor intellectual especially in the foundry industry [12]. As robots in

certain situations have to be able to effectively capture the geometrical information of the

area or the object they are acting on.

2.3.2 Available Solutions

 Based on the previously listed problems, there are four relevant solutions to these

problems respectively. (i) Is the usage of the ISD (industrial steering device) which is

known as the jogging mouse, (ii) is a 6 DOF (degree of freedom) wire-based programming

device, (iii) is an effective teaching method referred as programming by demonstrating

(PbD) and (iv) is the addition of a sensing system to the robotic hand.

 The first solution was proposed in [9], a commercially available 6 degrees-of-

freedom steering device ISD (Industrial Steering Device) from space control was used on a

welding arm. For the purpose of accessibility the mouse jogging device is attachable to

various locations on the robot. Both the mouse jog and the robot axes were calibrated so

that the operator could not jog the robot if the mouse was re-mounted from one location to

another without a calibration done on the device. After the mouse jogging device was

mounted and calibrated, as shown in Figure 2.4, a graphical user interface (GUI) was used

to aid the process of the lead through teaching method, as shown in Figure 2.5.

12

Figure 2.4: Four Major Operational Sequences for the Lead-Through Teaching [9]

Figure 2.5: Graphical User Interface on Teaching Pendant to Assist Jogging [9]

 The second solution was proposed in [10] for the second problem. Even though a 6-

DOF mouse is an intuitive technology and demands low physical efforts, it was not a

simple solution since the calibration between the 6-DOF mouse and robot coordinate

system was required. Consequently, a new device to program a robot was introduced, a

Step 1: Remove
Nozzle

Step 4: Replace
Nozzle

Step 3: Conduct lead-
through teaching

Step 2: Insert Jogging
Device

13

Robot-Puppet. A Robot-Puppet was a 6 DOF wire-based programming device that can

detect and measure the motion in 3-DOF rotation and 3-DOF translation. Robot-Puppet

programming device thought the robot by the lead-through method, by attaching it to the

end effector of the robot and then it was moved by the operator and generates incremental

movement information as shown in Figure 2.6. This information was then further

processed and a repeatable robot program was generated.

Figure 2.6: General Process of Teaching Robot with Robot-Puppet [10]

14

 The third solution in [11] introduced another effective lead-through teaching

method, Programming by demonstrating (PbD). A programming by demonstrating (PbD),

aims to solve the problems regarding teaching robots in foundry industries. It consists of

three stages:

 Lead-through stage: is the only step that requires the human interaction through the

entire stages. As shown in Figure 2.7 the operator identifies few gross guiding

points, which are used in the second stage.

Figure 2.7: Lead-Through and Path Learning

 Automatic path-learning: a robot program based on the point drawn previously by

the operator in the first stage. Figure 2.8 shows the path learning results [11]

15

Figure 2.8: Results from Path-Learning [11]

 Post processing: it includes the position data filtration and reduction by the

controller.

 The last solution was proposed in [12-13], the existence of external sensors and

devices was introduced for a more confidential and intellectual properties to be applied on

robotic systems. The basic idea is to let the operator teach the robot a few approximated

positions along the desired trajectory using a force control lead through, and then the robot

executes a force feedback. Then post processing algorithms are applied to make further

adjustments to the recorded path. Figure 2.9 shows the reduction of the guiding points

learned for the purpose of avoiding two target points to be closed together. In addition

Figures 2.10 and 2.11 show the learned path and the contacted force during the force

control, respectively.

16

Figure 2.9: Learned Path Recorded (right) and Post Processed Path (left) [13]

Figure 2.10: A 3-D Display of a Learned Path [12]

17

Figure 2.11: Display of the Contacting Force during the Controlled Motion [12]

18

2.4 Summary and Conclusion

 Table 2.1 summarizes the available solution to the above mentioned problems.

Table 2.1: Comparison of the Available Solutions in the Lead-Through Programming

Method

Available Solutions Drawbacks of the design

A) Mouse Jog It raises high demand to robot motion control, as it is

attached to the robot arm rigidly, furthermore it a bit

complicated for unskilled operators to calibrate a 6-DOF

mouse and the robot coordinate system.

B) Robot-Puppet As the robot follows the robot-puppet for the lead-through

programming, its speed is constrained and then it can be

overwritten with higher value. Meaning that it needs

minimum robotics understanding. Additionally, it is

matched to low accuracy application such as painting and

spraying.

C) Programming by

Demonstration

It must satisfy the requirements for potential robot

operators who have knowledge about machining, basic

robotic operations such as jogging and writing a simple

robot program.

D) Path learning through

a GUI and teach

pendant

In order to program a robot with a teach pendant, an

operator should setup the jogging condition, frame, motion

mode, steps. Additionally, it involves experimental results

and simulations on dummy doll before applying it on a

virtual world application. Moreover, it requires the

operator’s knowledge to understand, analyze and interpret

the obtained information on the Graphical user interface.

19

 Most of the solutions proposed and recently applied to the industrial fields require

operators’ robotics knowledge. Additionally, they need to be calibrated by the operator

each time the space-frame is changed. As a result, lead-through teaching method using

external interfacing devices are accurate and more sophisticated in terms of data screening

and analysis but still robotics are desired in SME (small and medium enterprises). Not to

forget that a small or medium enterprise cannot offer operators who are acquainted with

the robotics fields. Despite the fact that such a solution will trade off the accuracy and

sophistication of the robotic field, it will greatly increase the easiness of dealing with

robotics and make them human-friendly more than ever.

For this reason, in this project, low cost incremental encoders’ feedback is proposed

for a lead-through programming method. It is hypothesized that implementing such

encoders for the lead-through programming method will fulfill the desired trajectory

generation with amount of error which makes it applicable for low-accuracy demanding

applications.

20

CHAPTER 3

METHODOLOGY

3.0 Overview

 This chapter includes the experimental objectives of this project, the equipment

used to conduct the experiment along with their respective parameters, the experimental

setup, the procedures followed to fulfill the experiment’ objectives and finally the

precautions.

3.1 Lead-Through Robot Programming Method

 A lead-through programming method is a term used to indicate the ability of the

robot to physically learn its designed trajectory path. The system used in this experiment

uses one controller (Arduino DUE) and two motors to be controlled alternatively, both of

the two motors used were attached with rotary encoders. This system was designed to

detect the number of pulses given by the attached encoders and then compare them to a

saved number of pulses that were saved during the process of recording the trajectory path.

i.e. the controller stops supplying either of the motors as soon as the number of the pulses

is equal to the number of the saved pulses.

21

 In Figure 3.1, the outline of the experiment is shown in details. The controller is

connected to three switches record, home and play-back switches which send the signal to

the controller. A feedback is given from the incremental encoders, attached to the motors,

to the controller. And then the controller sends a signal to the motors driver based on the

feedback received.

Figure 3.1: Lead-Through Schematic System Diagram

 The flow chart in Figure 3.2 summarizes the lead through programming process

proposed in this project.

22

Figure 3.2: Lead-Through System Design

23

3.2 Experiments

 The main objective of this experiment is to examine the performance parameters of

the system, which are the error between the recorded and played-back positions, and the

accuracy of the generated trajectory by comparing the X-Y coordinates of both points.

Moreover is to test the speed of the processor by which it detects the pulses given by the

rotary encoders of both motors and the precision of the trajectory generation as well.

3.2.1 Experimental Equipment and Parameters

 Follows is the list of the experimental equipment used to conduct the experiment:

1) Arduino board, Due

2) Dual Channel 10A DC Motor Driver, Cytron MDD10A

3) 2 Geared DC motors

4) 12V External Power Supply

5) 2 5V Quadrature Hall Effect Encoders

6) 3 Switches

7) 3 LEDs

8) Breadboard

9) Male Wire Jumpers

3.2.2 Experimental Set Up

 In order to test the accuracy, pulses detection speed, error and precision several

types of data needs to be collected from the system and analyzed. X-Y coordinates (cm) of

24

both recorded and played-back trajectories were taken, by taking reached values on the

gridded white-board as shown in Figure 3.3. Additionally, the pulses (pulse/time) given by

both encoders of both motors were taken using the controller interrupts functions as shown

in the schematic diagram in Figure 3.1. The position of both links (in degree) was obtained

from the number of pulses and tabulated as well, by placing a compass at the center of the

joints shown in Figure 3.3.

 As shown in Figure 3.3 a 91cmX62cm white-board was used to fix the arm on and

draw the final position to be reached. Additionally, two links of 30cm length were used to

link the two motors and form the two degree of freedom arm. The points (22cm, 50cm) and

(77cm, 50cm) on the white-board were chosen as the initial and final positions

respectively. Moreover, the links were fixed to the motor’s rear-shaft with two screws, one

for each link, to reduce the amount of the mechanical loose encountered, despite the fact

that there was still a mechanical loose due to the loose in the gearing system of the geared

DC motor itself.

Figure 3.3: Planned Experimental Setup

25

 Figure 3.4 shows the real experimental setup conducted as per the setup planned on

Figure 3.3.

Figure 3.4: Real Experimental Setup

3.2.3 Procedures

 Figure 3.5 illustrates the constructed circuit for the lead-through robots’

programming method indicating the three buttons used for the three different trajectory

generation stages which are record, play-back and home buttons.

End-Effector

Joint 2

Joint 1

26

Figure 3.5: Constructed Circuit

The controller used in this experiment is Arduino DUE board with the specifications

indicated in Table 3.1.

Table 3.1: Arduino DUE Specification

Item/Paramete Specification

Microcontroller AT91SAM3X8E

Operating Voltage 3.3V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-16V

Digital I/O pins 54 (12 provide PWM)

Analog Input Pins 12

Analog Outputs Pins 2 (DAC)

Total DC Output Current 130mA

DC Current for 3.3V Pin 800mA

DC Current for 5V Pin 800mA

27

Flash Memory 512KB

SRAM 9KB

Clock Speed 84MHz

Length 101.52mm

Width 53.3mm

Weight 36g

The two motors were used are of the specifications indicated in Table 3.2.

Table 3.2: Geared DC Motor Specifications

Parameter SPG30-300

Rated Voltage 12VDC

No Load Speed 7000rpm

No Load Current 70mA

Rated Torque 1176

Rated Current 410mA

Rated Speed 12

Stall Torque 23.5mN.m

Stall Current 1.8A

Gear Ration 270:1

Encoder Resolution 3/rear shaft revolution

Encoder Pulses/Main shaft revolution 810

For the two motors a 10 Amperes driver was used with the below specifications indicated

in Table 3.3.

28

Table 3.3: MDD10A Motor Driver Specification

Parameters Min Typical Max Unit

Power Input Voltage 5 - 25 V

IMAX (Maximum Continuous Motor Current) - - 10 A

IPEAK – (Peak Motor Current) * - - 30 A

VIOH (Logic Input – High Level) 3 - 5.5 V

VIOL (Logic Input – Low Level) 0 0 0.5 V

Maximum PWM Frequency - - 20 KHz

The three stages of the experiment are as follows:

1. Record Stage

This stage is initiated by a push button, shown as SW1 in Figure 3.3. The first stage

is where the operator switches on the SW1 and manually moves the end-effector of the

robotic arm. On the Cartesian space drawn on the white-board the final position was

indicated by (22cm, 50cm) and (77cm, 50cm) was indicated as the final position.

Before starting this stage, the experiment was setup as shown in Figures 3.1 and

3.2, including the position of the arm and the power connection to both Arduino board and

the motor driver, additionally the Arduino was connected to a laptop for the pulses of the

encoder to be monitored.

Then the operator moves the end-effector of the robotic arm from the initial to the

final position and the processor automatically records the movement data during the

manual generation of the trajectory. When the final position is reached the operator should

switch off the SW1 and move to stage two.

29

2. Home Stage, Initial Position

In this stage the Home button is switched ON, labeled as SW2 on Figure 3.3, and

the robotic arm automatically goes back to its initial position, the movement was ceased

whenever the limit switches are turned ON by having the arm’s links hitting them. In this

stage the operator’s only required action is to press the home button, and the arm goes back

by itself to the initial position. After the robotic arm reaches its initial position the operator

should depress the home button and starts the next stage

3. Play-Back Stage

In this stage, the operator switches on the play-back button, labeled as SW3 in

Figure 3.3, then the robotic arm repeats the same motion made by the operator. In this

stage the operator should only press on the play-back button and everything recorded is

repeated by the arm automatically, i.e. the operator’s action is not required on the robotic

arm to repeat the motion, it is all done automatically.

 Figure 3.4 is a flow chart of the process’s procedures involved in generating a

trajectory of the robotic arm using a lead-through programming method.

30

Figure 3.6: Experimental Procedures

Start

Record
Switch ON

NO

YES

1. Record Stage

Operator Moves the End-Effector to
the desired point.

Record Switch
OFF and Home

Switch ON

YES

NO

2. Home Stage

Robotic Arm goes to its initial
position.

Home Switch
OFF and Play-

back Switch ON

YES

3. Play-Back Stage

The robotic Arm Moves to the
Desired Point Automatically.

NO

END

31

3.2.4 Safety Precautions

 The three buttons should not be ON at the same time, as no action will be taken if

such a case has taken place. Additionally, for a new record of new final position the

RESET button on the Arduino DUE board itself needs to be pressed when the robotic arm

is at its initial position. Moreover, the operator needs to be careful regarding the space

between him and the robotic arm itself. On the other hand, the robotic arm trajectory path

must be out of any possible obstacles as they may cause damage to the gearing system of

the geared DC-motors used.

3.2.4 Precautions on validity issues

The system designed is proposed to be used for applications that do not require a

high level of accuracy as it uses inexpensive incremental encoders for the purpose of the

cost-reduction, which may result in a systematic error that reduces the accuracy level of the

proposed system. Additionally, a gross error may occur as well due to the dependency of

the trajectory generated on the operator himself. Lastly, the replicability of the proposed

system may show a deviation in some of the repeated trajectories due to the usage of

inexpensive geared DC motors.

3.3 Method of Analysis

 In order to evaluate the performance parameters from the obtained data several

methods were followed to analyze the data and compare them. First of all, error was

calculated using equation 3.1, where Qrec is the recorded position and Qplayed is the played-

back position.

32

% 𝐸𝑟𝑟𝑜𝑟 =
𝑄𝑟𝑒𝑐−𝑄𝑝𝑙𝑎𝑦𝑒𝑑

𝑄𝑟𝑒𝑐
 × 100% (3.1)

Moreover, Accuracy was considered and tabulated for each motor trajectory using

equation 3.2

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐸𝑟𝑟𝑜𝑟 × 100% (3.2)

 The position of the links (in degrees) was obtained from equation 3.3

𝑄 =
360 ×𝑁𝑜.𝑜𝑓 𝑃𝑢𝑙𝑠𝑒𝑠

3240
 (3.3)

 Precision of the system was examined by repeating the same recorded position

(119.3𝑜) for fifty times and check the consistency of the system through-out the fifty

trails.

33

CHAPTER 4

RESULTS AND DISCUSSION

 This chapter includes the obtained results and the discussion of the respective

results.

4.1 Record and play-back stages comparison

 After the experimental setup was prepared an experiment was conducted and the

pulses given by both encoders for the two different stages of the trajectory generation,

record and play-back, along with their respective positions in respect with time were

recorded and tabulated as shown in the appendix.

 Figure 4.1 shows the plotted graph from the data taken from Tables 4.1 and 4.2 in

the appendix, which compares the trajectory generated during the record stage and the

play-back stage in motor 1.

34

Figure 4.1: Generated Trajectories Comparison, Motor 1

 As can be seen from Figure 4.1 the time taken for the record stage is 3000

milliseconds depending on the speed of the operator's hand moving the robotic arm. In this

experiment the speed of the operator's hand applied on motor 1 can be calculated as in

Equation 4.1;

𝑆𝑝𝑒𝑒𝑑𝑟𝑒𝑐, 𝑚𝑜𝑡𝑜𝑟1 =
𝐷𝑒𝑔𝑟𝑒𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
=

117.90

3𝑠𝑒𝑐
= 39.30 𝑠𝑒𝑐⁄ (4.1)

 On the other hand the the time taken for the play-back stage is only 2000

millisecond as the motor is given only 150 pulse width modulation analog input as the full

speed gives 12 rpm which gives a speed as in Equation 4.2;

 12 𝑟𝑝𝑚 × 3600 = 43200 𝑚𝑖𝑛 × 60⁄ = 720 𝑠𝑒𝑐⁄ (4.2)

 For this reason only 150 PWM is given to the motor which produces the following

speed shown in Equation 4.3;

𝑆𝑝𝑒𝑒𝑑𝑝𝑙𝑎𝑦𝑒𝑑, 𝑚𝑜𝑡𝑜𝑟1 =
720 𝑠𝑒𝑐⁄ ×150

255
= 42.40 𝑠𝑒𝑐⁄ (4.3)

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500

Po
si

tio
n

(o
de

gr
ee

)

Time (Milliseconds)

Generated Trajectories, Motor1

Play-Back Stage

Record Stage

35

 Based on Equations 4.1 and 4.3 the time difference causes such a deviation in the

record and play-back graphs drawn with respect to time.

 As can be seen from the graph drawn in figure 4.1 in addition to the time gap there

are slight fluctuations in the trajectory generated during the play-back stage. These

fluctuations are caused as a result of the mechanical loose that results from the teeth slip of

the geared DC motor.

 Figure 4.2 shows the Plotted graph from the data taken from Tables 4.3 and 4.4 in

the appendix, which compares the trajectory generated during the record stage and the

play-back stage in motor 2.

Figure 4.2: Generated Trajectories Comparison, Motor 2

 As can be seen from Figure 4.2 the time taken for the record stage is 4050

milliseconds depending on the speed of the operator's hand moving the robotic arm. In this

experiment the speed of the operator's hand applied on motor 2 can be calculated as in

Equation 4.4

𝑆𝑝𝑒𝑒𝑑𝑟𝑒𝑐, 𝑚𝑜𝑡𝑜𝑟2 =
𝐷𝑒𝑔𝑟𝑒𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
=

115.80

4.05𝑠𝑒𝑐
= 28.60 𝑠𝑒𝑐⁄ (4.4)

0

50

100

150

200

250

0 1000 2000 3000 4000 5000

Po
si

tio
n

(o
de

gr
ee

)

Time (Milliseconds)

Generated Trajectories, Motor 2

Record Stage

Play-Back Stage

36

 On the other hand the time taken for the play-back stage is only 2600 millisecond

as the motor is given only 150 pulse width modulation analog input as the full speed gives

12 rpm which gives a speed as in Equation 4.2;

12 𝑟𝑝𝑚 × 3600 = 43200 𝑚𝑖𝑛 × 60⁄ = 720 𝑠𝑒𝑐⁄ (4.5)

 For this reason only 150 PWM is given to the motor, which produces the following

speed shown in Equation 4.5;

𝑆𝑝𝑒𝑒𝑑𝑝𝑙𝑎𝑦𝑒𝑑, 𝑚𝑜𝑡𝑜𝑟2 =
720 𝑠𝑒𝑐⁄ ×150

255
= 42.40 𝑠𝑒𝑐⁄ (4.6)

 Based on equations 4.4 and 4.4 the time difference causes such a deviation in the

record and play-back graphs drawn with respect to time.

 Moreover, it is obvious that in motor 2 the same fluctuations occurs for the

mechanical loose occurred in motor 1.

 For further visualization, Figures 4.3 and 4.4 show the real experiment results of

both the recorded trajectory and the played-back trajectory respectively.

Figure 4.3: Recorded Trajectory

37

Figure 4.4: Played-Back Trajectory

 Figures 4.5-4.9 illustrate the robotic arm undergoing both record and play-back

stages. These instantaneous positions were taken and captured with an interval of one

second as shown in the figures below.

Figure 4.5: Record Stage, to the Left, and Play-Back Stage, to the Right, at T=1sec

38

Figure 4.6: Record Stage, to the Left, and Play-Back Stage, to the Right, at T=2sec

Figure 4.7: Record Stage, to the Left, and Play-Back Stage, to the Right, at T=3sec

Figure 4.8: Record Stage, to the Left, and Play-Back Stage, to the Right, at T=4sec

39

Figure 4.9: Record Stage, to the Left, and Play-Back Stage, to the Right, at T=5sec

As can be seen from Figures, 4.5-4.9, both recorded and played-back trajectories

are following the same trajectory paths from second 1-4. On the other hand, at the T=5 the

played-back trajectory is already at its final position unlike the recorded trajectory that

entirely depends on the operator's hand-speed. However, the speed of the played-back

trajectory can be manipulated using the pulse width modulation given by the controller to

the motors. In this experiment 150 of 255 pulse width modulation was applied to both

motors.

4.2 Errors and Accuracy

Errors and accuracy are determined based on Equations 3.1 and 3.2 respectively.

Each hall-effect sensor of each encoder gives three pulses per rear shaft revolution. Gear

ratio of each motor is 270:1, so 810 pulses are given per one main shaft revolution. Both of

the sensors output states, positive and negative states, are considered, so 810 pulses ×

2states = 1620 pulses main shaft revolution⁄ . Since two hall effect sensors exist for

each motor then the total number of pulses given is 1620 × 2 =

3240 pulses main shaft rev⁄ .

 Tables, 4.1 and 4.2 show the errors and accuracy of both motors.

40

Table 4.1: Motor One Error and Accuracy.

Trial Motor 1

Pulsesrec Pulsesplayed Q1rec

(o degree)

Q1played

(o degree)

%Error %Accuracy

1 1064 1118 118.2 124.2 5% 95%

2 1064 1097 118.2 121.9 3.1% 96.9%

3 1064 1097 118.2 121.9 3.1% 96.9%

4 1064 1099 118.2 122.1 3.3% 96.7%

5 1064 1105 118.2 122.8 3.9% 96.1%

6 1064 1110 118.2 123.3 4.3% 95.7%

7 1064 1099 118.2 122.1 3.3% 96.7%

8 1064 1103 118.2 122.6 3.7% 96.3%

9 1064 1105 118.2 122.8 3.9% 96.1%

10 1064 1113 118.2 123.7 4.7% 95.3%

Mean - - - - 3.83% 96.17%

 As can be seen from Table 4.1 there is a small deviation between the recorded

position Q1rec and the played-back position Q1played that gave an average error of 96.17%

with an accuracy of 3.83%.

41

Table 4.2: Motor Two Error and Accuracy.

Trial Motor 2

Pulsesrec Pulsesplayed Q2rec

(o degree)

Q2played

(o degree)

%Error %Accuracy

1 1087 1120 120.8 124.4 2.9% 97.1%

2 1087 1129 120.8 125.4 3.8% 96.2%

3 1087 1102 120.8 122.4 1.3% 98.7%

4 1087 1106 120.8 122.9 1.7% 98.3%

5 1087 1111 120.8 123.4 2.6% 97.4%

6 1087 1105 120.8 122.8 1.7% 98.3%

7 1087 1106 120.8 122.9 1.7% 98.3%

8 1087 1105 120.8 122.8 1.7% 98.3%

9 1087 1110 120.8 123.3 2.1% 97.9%

10 1087 1108 120.8 123.1 1.9% 98.1%

Mean - - - - 2.14% 97.86%

 As can be seen from the Table 4.2 there is a small deviation between the recorded

position Q2rec and the played-back position Q2played which gives an average error of

97.86% with an accuracy of 2.14%.

 Based on Tables 4.1 and 4.2 it is noticeable that the error occurs in motor one is a

bit higher than motor two due to two main reasons. The first reason is the higher torque

applied to motor 1 as the distance between the center of motor 1 and the end-effector is

60cm, 30cm length of both links, which is double the distance between the center of motor

2 and the end-effector, 30cm of the second link only. Regardless of the amount of force

applied to the end-effector the error will still be higher on motor one as the torque is

calculated by equation 4.7;

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑓𝑜𝑟𝑐𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝐹) × 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑) (4.7)

 The second reason is that the weight carried by motor 1 is higher than the weight

carried by motor 2. The first motor, carries both links of the robotic arm along with the

second motor as shown in Figure 3.3, highlighted as joint 1. For this reason the mechanical

42

loose exists as a result of the gear slip in the first DC geared motor will noticeably affect

the first motor more than the second motor.

4.3 Precision

 After the consistency test of fifty trials was conducted a normal distribution curve,

normal bell curve, was drawn for both motor 1 and motor 2 as shown in Figures 4.10 and

4.11 respectively.

Figure 4.10: Normal Bell Curve, Motor One

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

122 124 126 128 130 132 134 136

Fr
eq

ue
nc

y

Played-back position (degree)

Motor 1

43

Figure 4.11: Normal Bell Curve, Motor Two

 Based on Figure 4.10 shown, the values obtained from the fifty trails are distributed

evenly from 1220 to 125.50 with a standard deviation of 0.9593 and a mean of 123.4880.

Due to the error indicated above in table 4.1, the values obtained are not distributed in a

high portion in one part of the graph, which indicates that every time the experiment is

conducted a slightly different value is obtained. On the other hand in figure 4.11 shown

above the values obtained are intensively distributed within the range of 1250 to 129.50

with a standard deviation of 2.33583 and a mean of 127.2940. The values of the lowest

occurrence frequency are fallen to the far right and left areas of the graph in both 4.10 and

4.11.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

122 124 126 128 130 132 134 136

Fr
eq

ue
nc

y

Played-back position (degree)

Motor 2

44

CHAPTER 5

CONCLUSION AND RECOMMENDATION

 This chapter includes the conclusion and the suggested future work.

5.1 Conclusion

 In this project a lead-through programming method is developed for offering

workers and operators who lack the basic knowledge and experience in robotic systems to

easily generate a trajectory for a robotic system in a human-friendly manner. Error between

the recorded and played-back trajectory, accuracy, precision and repeatability are tested

and results are tabulated and compared for both recorded and played-back trajectories.

Based on the obtained results, it is clear that a lead-through programming method can be

implemented in SMEs (Small and Medium Enterprises) as the designed system shows

reliability in repeating the same manually recorded trajectory with the accuracy of 96.17%

and 97.86% for motor 1 and 2, respectively. Validity of the designed system can be

observed in the deviation of the actual position from the desired position as it gives an

accepted amount of error of 3.83% and 2.14% for motor one and two, respectively.

 A prototype of the robotic arm is built with two geared DC motors which are

attached to two links that forms a robotic arm with two DOF (degree of freedom). Then,

45

the experiment is conducted, by generating a trajectory to a specified desired position and

then the same trajectory is repeated by the controller to analyze the performance

parameters stated in the objectives of the thesis. The proposed idea is illustrated in terms of

measuring the angel (in degree) traveled by the robotic arm in both recorded and played-

back trajectories. Then both traveled angles are drawn in the same graph for both motors

and relevant data is retrieved and analyzed from the drawn graphs.

 One of the limitations of the designed system is that it lacks in accuracy in

comparison with the systems that use interface devices such as teach pendants, but on the

other hand it increases the application and usefulness of the robotics implementation in

SMEs.

5.2 Future Work and Recommendation

 The designed system will be built with a wider range of applications in industrial

applications by increasing the degree of freedom to up to four DOF. Moreover, optical

sensors will be implemented to fulfill a full rotation of the installed geared DC motors,

which will give the system the ability to fully rotate a 3600 for each joint, as the limit

switch limits the rotation of the motor to a specified angle as soon as the link hits the limit

switch. Lastly, the system will be designed in fully 3D motion instead of fixing it on a

white board which produces only a 2D motion.

46

REFERENCES

[1] E. Kahale, P. Castillo, and Y. Bestaoui, “Minimum time reference trajectory

generation for an autonomous quadrotor,” 2014 Int. Conf. Unmanned Aircr. Syst.,

pp. 126–133, May 2014.

[2] International Federation of Robotics, Automation and robotics. Available at:

https://www.fidelityworldwideinvestment.com/middle-east/news-insight/21-

century-themes/automation-and-robotics.page [accessed 27 November 2014]

[3] N. Kubota, Y. Nojima, I. Adji, and F. Kojima, “Interactive Trajectory Generation

using Evolutionary Programming for A Partner Robot,” pp. 335–340, 2003.

[4] M. XRC, M. DX100 and F. RJ3iB, 'Robots are taking over -- the really dangerous

jobs', Robots.com, 2014. [Online]. Available:

http://www.robots.com/articles/viewing/robots-are-taking-over-the-really-

dangerous-jobs. [Accessed: 11- Nov- 2014].

[5] John J. Craig, Introduction to Robotics Mechanical and control. 3rd edition. United

States of America: Pearson Prentice Hall, 2005.

[6] Bara.org.uk, 'Robot Programming Methods | BARA', 2014. [Online]. Available:

http://www.bara.org.uk/robots/robot-programming-methods.html. [Accessed: 11-

Nov- 2014].

[7] V. Delsart and T. Fraichard, “Tiji, a generic trajectory generation tool for motion

planning and control,” 2010 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 1439–1444,

Oct. 2010.

47

[8] L. Pa and T. H. Speeter, Transformation of Human Hand Positions for Robotic

Hand Control. pp. 1758-1763, 1989.

[9] W. Eakins, G. Rossano, and T. Fuhlbrigge, “Lead-through robot teaching,” 2013

IEEE Conf. Technol. Pract. Robot Appl., no. c, pp. 1–4, Apr. 2013.

[10] L. Qi, D. Zhang, J. Zhang, and J. Li, “A lead-through robot programming approach

using a 6-DOF wire-based motion tracking device,” 2009 IEEE Int. Conf. Robot.

Biomimetics, pp. 1773–1777, Dec. 2009.

[11] Z. Pan, “Robotic machining from programming to process control,” 2008 7th World

Congr. Intell. Control Autom., pp. 553–558, 2008.

[12] G. Zhang, J. Wang, and J. Ge, “Robotic path learning with Graphical User

Interface,” Ieee Isr 2013, pp. 1–4, Oct. 2013.

[13] G. Zhang, “A force control assisted robot path generation system,” 2008 IEEE Int.

Conf. Autom. Sci. Eng., pp. 528–533, Aug. 2008.

[14] L. G. Timothy, Lake Elmo and Minn, “Lead-Through Robot Programming

System,” U.S. Patent 5,880,956, March 9, 1999

48

Appendix A

Table 1: Motor one, Record Stage

Time (Milliseconds) Motor 1

Pulsesrec Qrec (o degree)

0 0 150

300 14 148.4

600 126 136

900 245 122.8

1200 372 108.7

1500 504 94

1800 643 78.6

2100 764 65.1

2400 899 50.1

2700 1017 37

3000 1061 32.1

 Figure 1 below illustrates the plotted graph of position versus time from table 1, for

the trajectory generated manually by the operator.

49

Figure 1: Trajectory Generated during Record Stage, Motor one

Table 2: Motor one, Play-Back Stage

Time (Milliseconds) Motor 1

Pulsesplayed QPlayed (Degree)

0 0 150

250 119 136.8

500 236 123.8

750 391 106.6

1000 561 87.7

1250 706 71.6

1500 897 50.3

1750 1058 32.4

2000 1111 26.6

 Figure 2 below illustrates the plotted graph of position versus time from

table 2, for the trajectory generated automatically by the controller.

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500

Po
si

tio
n

(o
de

gr
ee

)

Time (Milliseconds)

Record Stage, Motor 1

50

Figure 2: Trajectory Generated during Play-Back Stage, Motor one

Table 3: Motor two, Record Stage

Time (Milliseconds) Motor 2

Pulsesrec Qrec (o degree)

0 0 0

450 2 0.2

900 26 2.9

1350 217 24.1

1800 400 44.4

2250 603 67

2700 751 83.4

3150 909 101

3600 1042 115.8

4050 1042 115.8

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500

Po
si

tio
n

(o
de

gr
ee

)

Time (Milliseconds)

Play-Back Stage, Motor 1

51

 Figure 3 below illustrates the plotted graph of position versus time from table 3, for

the trajectory generated manually by the operator.

Figure 3: Trajectory Generated during Record Stage, Motor two

Table 4: Motor two, Play-Back Stage

Time (Milliseconds) Motor 2

Pulsesplayed QPlayed (Degree)

0 0 0

260 35 3.9

520 201 22.3

780 342 38

1040 520 57.8

1300 698 77.6

1560 842 93.6

1820 1030 114.4

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Po
si

tio
n

(o
de

gr
ee

)

Time (Milliseconds)

Record Stage, Motor 2

52

2080 1039 115.4

2340 1058 117.6

2600 1058 117.6

 Figure 4 below illustrates the plotted graph of position versus time from

table 4, for the trajectory generated automatically by the controller.

Figure 4: Trajectory Generated during Play-Back Stage, Motor two

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

Po
si

tio
n

(o
de

gr
ee

Time (Milliseconds)

Play-Back Stage, Motor 2

53

Appendix B

#include <Time.h>

int encoderPinA1 = 12;

int encoderPinB1 = 11;

int encoderPinA2 = 10;

int encoderPinB2 = 13;

int recordpin = 8;

int playbackpin = 9;

int motoren1 = 5;

int motordir1 = 4;

int motoren2 = 6;

int motordir2 = 7;

int Home = 2;

int lims1 = 30;

int lims2 = 32;

int led1 = 31;

int led2 = 33;

int led3 = 35;

unsigned long time;

54

volatile int encoderPos1 = 0;

int lastReportedPos1 = 1;

int playbackpos1 = 0;

boolean A_set1 = false;

boolean B_set1 = false;

volatile int encoderPos2 = 0;

int lastReportedPos2 = 1;

int playbackpos2 = 0;

boolean A_set2 = false;

boolean B_set2 = false;

void setup() {

 pinMode(encoderPinA1, INPUT);

 pinMode(encoderPinB1, INPUT);

 pinMode(encoderPinA2, INPUT);

 pinMode(encoderPinB2, INPUT);

 pinMode(recordpin, INPUT);

 pinMode(playbackpin, INPUT);

 pinMode(Home, INPUT);

 pinMode(led1, OUTPUT);

55

 pinMode(led2, OUTPUT);

 pinMode(led3, OUTPUT);

 pinMode(motoren1, OUTPUT);

 pinMode(motordir1, OUTPUT);

 pinMode(motoren2, OUTPUT);

 pinMode(motordir2, OUTPUT);

 digitalWrite(encoderPinA1, HIGH); // Internal pullup resistor

 digitalWrite(encoderPinB1, HIGH); // Internal pullup resistor

 digitalWrite(encoderPinA2, HIGH); // Internal pullup resistor

 digitalWrite(encoderPinB2, HIGH); // Internal pullup resistor

 Serial.begin(9600);

}

void loop(){

 if (digitalRead(recordpin)==HIGH)

 {

 digitalWrite(led1, HIGH);

 attachInterrupt(11, doEncoderA1, CHANGE);

 attachInterrupt(12, doEncoderB1, CHANGE);

 attachInterrupt(13, doEncoderA2, CHANGE);

 attachInterrupt(10, doEncoderB2, CHANGE);

56

 if (lastReportedPos1 != encoderPos1) {

 Serial.print("Motor1: ");

 Serial.print(encoderPos1);

 Serial.println();

 Serial.print("Time:");

 time = millis();

 Serial.println(time);

 lastReportedPos1 = encoderPos1;

 playbackpos1 = encoderPos1;

 }

 if (lastReportedPos2 != encoderPos2) {

 Serial.print("Motor2: ");

 Serial.print(encoderPos2);

 Serial.println();

 Serial.print("Time:");

 time = millis();

 Serial.println(time);

 lastReportedPos2 = encoderPos2;

 playbackpos2 = encoderPos2;

57

 }

 else

 {

 digitalWrite(motoren1, LOW);

 digitalWrite(motordir1, LOW);

 digitalWrite(motoren2, LOW);

 digitalWrite(motordir2, LOW);

 }

 }

 if (digitalRead(Home)==HIGH)

 {

 digitalWrite(led2, HIGH);

 encoderPos1 = 0;

 encoderPos2 = 0;

 Serial.print("encoderPos1 is ");

 Serial.println(encoderPos1);

 Serial.print("playbackpos1 is ");

 Serial.println(playbackpos1);

 Serial.print("encoderPos2 is ");

 Serial.println(encoderPos2);

 Serial.print("playbackpos2 is ");

 Serial.println(playbackpos2);

 Serial.println("_ _ _ _ _ _");

58

 if(digitalRead(lims2)==HIGH) {

 digitalWrite(motoren2, LOW);

 digitalWrite(motordir2, LOW);

 }

 else if (digitalRead(lims2)==LOW) {

 digitalWrite(motoren2, HIGH);

 digitalWrite(motordir2, LOW);

 }

 if(digitalRead(lims1)==HIGH) {

 digitalWrite(motoren1, LOW);

 digitalWrite(motordir1, LOW);

 }

 else if (digitalRead(lims1)==LOW) {

 digitalWrite(motoren1, HIGH);

 digitalWrite(motordir1, HIGH);

 }

 else {

 digitalWrite(motoren1, LOW);

 digitalWrite(motordir1, LOW);

59

 digitalWrite(motoren2, LOW);

 digitalWrite(motordir2, LOW);

 }

 }

 if (digitalRead(playbackpin)==HIGH)

 {

 digitalWrite(led3, HIGH);

 attachInterrupt(11, doEncoderA1, CHANGE);

 attachInterrupt(12, doEncoderB1, CHANGE);

 attachInterrupt(13, doEncoderA2, CHANGE);

 attachInterrupt(10, doEncoderB2, CHANGE);

 Serial.print("encoderPos1 is ");

 Serial.println(encoderPos1);

 Serial.print("encoderPos2 is ");

 Serial.println(encoderPos2);

 Serial.print("Time:");

 time = millis();

 Serial.println(time);

 if (encoderPos1 < playbackpos1 && encoderPos2 < playbackpos2) {

 analogWrite(motoren1, 150);

60

 digitalWrite(motordir1, HIGH);

 analogWrite(motoren2, 150);

 digitalWrite(motordir2, HIGH);

 }

 else if (encoderPos1 < playbackpos1 && encoderPos2 >= playbackpos2) {

 analogWrite(motoren1, 150);

 digitalWrite(motordir1, HIGH);

 analogWrite(motoren2, 0);

 digitalWrite(motordir2, HIGH);

 }

 else if (encoderPos1 >= playbackpos1 && encoderPos2 < playbackpos2) {

 analogWrite(motoren1, 0);

 digitalWrite(motordir1, HIGH);

 analogWrite(motoren2, 150);

 digitalWrite(motordir2, HIGH);

 }

 else if (encoderPos1 >= playbackpos1 && encoderPos2 >= playbackpos2) {

 analogWrite(motoren1, 0);

 digitalWrite(motordir1, HIGH);

 analogWrite(motoren2, 0);

61

 digitalWrite(motordir2, HIGH);

 }

 else

 {

 analogWrite(motoren1, 0);

 analogWrite(motordir1, 0);

 analogWrite(motoren2, 0);

 analogWrite(motordir2, 0);

 }

 }

 else

 {

 analogWrite(motoren1, 0);

 analogWrite(motordir1, 0);

 analogWrite(motoren2, 0);

 analogWrite(motordir2, 0);

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);

 digitalWrite(led3, LOW);

 }

62

}

// Interrupt on A1 changing state

void doEncoderA1(){

 // Test transition

 A_set1 = digitalRead(encoderPinA1) == HIGH;

 // and adjust counter + if A leads B

 encoderPos1 += (A_set1 != B_set1) ? +1 : -1;

}

// Interrupt on B1 changing state

void doEncoderB1(){

 // Test transition

 B_set1 = digitalRead(encoderPinB1) == HIGH;

 // and adjust counter + if B follows A

 encoderPos1 += (A_set1 == B_set1) ? +1 : -1;

}

// Interrupt on A2 changing state

void doEncoderA2(){

 // Test transition

 A_set2 = digitalRead(encoderPinA2) == HIGH;

63

 // and adjust counter + if A leads B

 encoderPos2 += (A_set2 != B_set2) ? +1 : -1;

}

// Interrupt on B changing state

void doEncoderB2(){

 // Test transition

 B_set2 = digitalRead(encoderPinB2) == HIGH;

 // and adjust counter + if B follows A

 encoderPos2 += (A_set2 == B_set2) ? +1 : -1;

}

