

“ I hereby declare that I have read through this report entitle “Side by side speed and

distance control person following robot” and found that it has comply the partial fulfilment

for awarding the degree of Bachelor of Electrical Engineering (Mechatronic)

 Signature : …………………..............................

 Supervisor’s Name : ……………………………………..

 Date : ……………………………………..

SIDE BY SIDE SPEED AND DISTANCE CONTROL FOR PERSON

FOLLOWING ROBOT

TEOH YEW CHONG

A report is submitted in partial fulfillment of the requirement for the

Bachelor of Mechatronic Engineering

Faculty of Electrical Engineering

 UNIVERSITY TEKNIKAL MALAYSIA MELAKA

YEAR 2015

I declare that this report entitle “Side by Side Speed and Distance Control Person

Following Robot” is the result of my own research except as cited in the references. The

report has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature : ……………………………

Name : ……………………………

Date : ……………………………

i

Acknowledgement

First of all, I would like to express appreciation to Miss Nur Maisarah Binti Mohd

Sobran for serving as my supervisor of this project and giving me opportunity to learn and

apply engineering knowledge in this project. Her guidance encourages me to accomplish

my work on time. With her valuable suggestion and comment that enable me to write a

good final year report. Besides, I also would like to thanks to my friend, Koh Guan Keong

for technical guidance, sharing his knowledge and advice in this project. Lastly, I would

like to thanks to those who are giving me support and motivation to accomplish this

project.

ii

Abstract

Nowadays, the elderly in whole world is increasing year by year. Therefore, assistive

robot is introduced and applied in many applications such as in hospital and home to help

elderly. There are two types of person following robot; robot following behind and human

and side by side person following robot. But only side by side person following that has

interact more with human compare to robot following behind human. However, the

problems will occur when design a side by side person following robot which is the

distance between human and robot when robot following target human. Besides, speed

control of side by side person following robot is also necessary. There are three objectives

in this project which are to develop prototype of a side by side person following, design a

fuzzy logic controller of speed control on robot and analysis performance of robot in term

of distance and speed control. In methodology, Arduino Mega ATmega1280 as

microcontroller, ultrasonic sensor as distance measurement and brushless DC motor with

encoder as motor to move robot are used to build a robot. First experiment is to determine

the rpm of motor by adjusted the input PWM. Second experiment is to test ultrasonic

sensor and speed control on prototype while the third experiment is to determine the

performance of side by side person following robot. The result of first experiment is the

PWM able to control rpm of motor. Next, the result of second experiment showed that the

maximum distance measured by front sensor and back sensor are 301cm and 316cm.

Moreover, overshoot occurred in the result of experiment 2.

iii

Abstrak

Pada masa kini, orang tua di seluruh dunia meningkat setiap tahun. Oleh itu, robot

bantuan diperkenalkan dan digunakan dalam pelbagai aplikasi seperti di hospital dan

rumah untuk membantu warga tua. Terdapat dua jenis robot yang boleh ikut manusia; robot

berikut di belakang manusia dan robot yang ikut di sampingan manusia. Tetapi hanya robot

yang ikut di sampingan manusia mempunyai lebih berinteraksi dengan manusia daripada

robot berikut di belakang manusia. Walau bagaimanapun, masalah akan berlaku apabila

mereka bentuk robot yang ikut di sampingan manusia yang boleh menjarakkan jarak di

antara manusia dan robot apabila robot sedang ikut manusia. Selain itu, kawalan kelajuan

dengan algoritma kawalan robot yang ikut di sampingan manusia juga diperlukan. Terdapat

tiga objektif dalam projek ini iaitu untuk membangunkan prototaip robot yang ikut di

sampingan manusia, mereka bentuk algoritma kawalan untuk kawalan kelajuan pada robot

berkaitan dan analisis prestasi robot dari segi jarak kawalan dan kelajuan kawalan. Dalam

metodologi, Arduino Mega ATmega1280 sebagai pengawal mikro, sensor ultrasonic

sebagai pengukuran jarak dan brushless DC motor dengan encoder sebagai motor untuk

menggerakkan robot. Eksperimen pertama adalah untuk analisis rpm motor diselaraskan

oleh PWM input. Eksperimen kedua adalah untuk menguji sensor ultrasonik dan kawalan

kelajuan pada prototaip manakala eksperimen yang ketiga ialah untuk mengujikan prestasi

robot yang ikut di sebelah manusia. Hasil daripada eksperimen pertama adalah PWM yang

dapat mengawal rpm motor. Seterusnya, hasil daripada eksperimen kedua menunjukkan

bahawa maksimum jarak pengesanan bagi sensor depan dan sensor belakang adalah 301cm

dan 316cm. Selain itu, terlajak berlaku ketika menjalankan experiment kedua.

iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ACKNOWLEDGEMENT i

 ABSTRACT ii

 ABSTRAK iii

 TABLES OF CONTENTS iv

 LIST OF TABLES vi

 LIST OF FIGURES vii

 LIST OF ABBREVIATIONS ix

 LIST OF APPENDICES x

 1 INTRODUCTION 1

 1.1 Motivation 1

 1.2 Problem Statement 2

 1.3 Objective 3

 1.4 Scope 3

 2 LITERATURE REVIEW 5

 2.1 Introduction 5

2.2 Review on Previous Study of Person Following Robot 5

 2.2.1 Comparison 12

 2.2.2 Summary 13

 3 METHODOLOGY 14

 3.1 Introduction 14

 3.2 General Overview of Hardware 14

3.3 Material 17

 3.3.1 Arduino Mega ATMega 1280 17

3.3.2 Brushless DC motor with Encoder 18

v

 3.3.3 Motor Driver BLHD50K 19

3.3.4 Ultrasonic Sensor 20

 3.4 Circuit 22

 3.5 Software 23

3.6 Fuzzy Logic 24

 3.6.1 Input 24

 3.6.2 Output 25

3.6.3 Fuzzy Rules 26

3.7 Overview of Side by Side Following Robot 28

 3.7.1 Flowchart of Program of Side by Side

 Person Following Robot 28

 3.7.2 Block Diagram 29

3.8 Project Setup 30

 3.4.1 Experiment 1 30

 3.4.2 Experiment 2 32

 4 RESULT AND ANALYSIS 35

 4.1 Overview 35

 4.2 Experiment 1 35

 4.2.1 Analysis of Data 38

 4.3 Experiment 2 40

 4.3.1 Analysis of Data 44

 5 CONCLUSION 47

 5.1 Conclusion 47

 5.2 Recommendation 47

 REFERENCES 49

 APPENDICES 50

vi

LIST OF TABLES

TABLE TITLE PAGE

2.1 The details of previous study 12

3.1 Other material in hardware 20

3.2 Software used to build side by side person following robot 23

3.3 Membership function for ultrasonic sensor 25

3.4 Membership function for PWM of motor 26

4.1 Percentage error of distance for front sensor 40

4.2 Percentage error of distance for back sensor 42

vii

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 Graph of percentage of total population versus year 1

2.1 People walking side by side with a mobile robot 6

2.2 Table I and II about the linguistic term and fuzzy rules for

 reference linear velocity 7

2.3 Table III and IV about the linguistic term and fuzzy rules for

 turning-gain 8

2.4 Example of fuzzy rule base used in study 9

2.5 Baseline of stereo vision system 10

2.6 Three speed stages of human and robot 11

3.1 Overview of side by side person following robot hardware 14

3.2 CAD drawing of side by side person following robot hardware 16

3.3 Hardware of side by side person following robot 17

3.4 Arduino Mega ATmega 1280 18

3.5 BLH450K DC motor 18

3.6 Speed of motor with external DC motor 19

3.7 Motor driver BLHD50K 19

3.8 Ultrasonic Ranging Module HC-SR04 20

3.9 Connection Arduino with component 22

3.10 Circuit of side by side person following robot 22

3.11 Elements of fuzzy logic 24

3.12 Matlab Fuzzy Inference System 24

3.13 Rules set in Matlab Fuzzy Inference System 27

viii

FIGURE TITLE PAGE

3.14 Flowchart of side by side person following robot distance

control system 28

3.15 Block diagram of side by side person following robot 29

3.16 The circuit of brushless DC motor with motor driver and Arduino 31

3.17 Schematic circuit of brushless DC motor 31

3.18 Experiment 2 Setup 32

3.19 Location of hardware in a room 33

3.20 Experiment 2 setup and hardware tested in a room 33

4.1 First reading of RPM versus Duty cycle 34

4.2 Second reading of RPM versus Duty cycle 35

4.3 Third reading of RPM versus Duty cycle 35

4.4 Fourth reading of RPM versus Duty cycle 36

4.5 Fifth reading of RPM versus Duty cycle 36

4.6 Sixth reading of RPM versus Duty cycle 37

4.7 Average reading of RPM versus Duty cycle 37

4.8 Distance from front sensor versus RPM 39

4.9 Distance from back sensor versus RPM 39

4.10 Overshoot in graph of distance versus RPM 40

4.11 Target moving location 44

ix

LIST OF ABBREVIATIONS

RPM = Revolution Per Minute

PWM = Pulse-Width Modulation

x

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Grantt Chart 50

B Programming for experiment of motor speed control 51

C Programming of experiment 2 53

D Data Result of experiment 2 71

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, assistive robot is widely developed to assist human in daily life such as use

to help patient in hospital or elderly in home nursing. But if the assistive robot can have

interacted with human, the robot can assist human more effectively [1]. Besides, assistive

robot also is introduced by Japan government for the purpose of assist elderly in daily life,

it is due to from the World Bank population aging research Japan has a highest percentage

of aging of total population (25%) compare to other country [2] [3]. Moreover, in Malaysia

the data show 1.5 million Malaysian are elderly.

Figure 1.1: Graph of percentage of total population versus year

Percentage of total

population (%)

Year

2

Person following robot is one of the assistive robot which can follow and assist human.

There are 2 types of person following robot; first type is robot following behind human and

second type is side by side person following robot. Robot following behind human has the

most researches compare to side by side person following robot. But robot following

behind human has less interacted with human due to this robot only follow at behind of

human and when human walking, human does not know the status of robot whether it is

follow or not. So, side by side person following robot is most suitable due to it is following

target human beside him/her has more interact with human.

This type of robot can widely develop in many applications such as factories, office

and supermarket. Side by side person following robot can be used in office, work as an

assistant of human help them record and remind human. Besides, side by side person

following robot also can use in the field of tourism such as guide human walking to reach

their destination. Furthermore, side by side person following robot as an assistive robot can

use as home nursing robot. [4]

1.2 Problem statement

From the previous researches, most only focus on the robot following behind a human,

however it seems not much advantage for human since human and robot less interact at all.

So to let human and robot have interacted is to design the robot side by side following a

human. Then both human and robot can get information from each other easily.

Furthermore, a side by side person following robot that able to follow target human

and can always besides target when following target. Therefore the motor speed control is

needed to follow target human. This part of speed control is depends on the signal of

human tracking sensor. The signal of human tracking sensor sends to microcontroller and

then is calculated. Afterward the feedback signal will control speed of motor.

3

When a side by side person following robot is following a target human, the robot

must able to measure distance, d between robot and human. In order to to control speed of

robot, a suitable control algorithm is needed with inputs signal from distance sensor, so

that output is the speed of both motors, vm, can be adjusted according the sensors signal.

For example, if target is far around 150cm from robot, the robot can speed up due to target

may walk away from the view of distance sensor. If the target is near around 50cm from

robot, the robot may using medium speed to follow human.

1.3 Objective of Project

There are three objectives in this project.

i. To develop prototype of a side by side person following robot

ii. To design control algorithm for a side by side person following robot that has

speed control.

iii. To analysis the performance of developed side by side person following robot

in term of speed and distance control.

1.4 Scope

The scopes of this project are outlines as follows.

1. From this project is to design a side by side person following robot which

able to measure distance between human when following human and able to

control the speed to follow human.

2. Besides, the path of human walking is straight line only when followed by

side by side person following robot.

3. Moreover, there is no obstacle between human and side by side person

4

following robot when robot is following target human. The side by side

person following robot is tested in a room of no obstacle.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Person following robot is a famous research due to it is very useful in assist human

future life. The information from the previous research is use as guide to build a better side

by side person following robot in this project. This chapter is about review, comparison

and summary of previous researches on person following robot.

2.2 Review on previous study of person following robot

A study about side by side person following robot with the objective of able to follow

beside target person and can keep a safe distance between target person and robot when

both robot and human are moving. In this study, laser range finder with the detection range

of 30m is used to detect target human. One unit of laser range finder can cover 180 degree

of field of view, so two units laser range finder will built inside the robot which can cover

360 degree means it can detect surrounding of robot. Eight parameters are considered to

design a better person following robot such as social relative distance, relative angle,

relative velocity, distance to obstacle, sub goal, velocity, angular velocity and acceleration

[5].

Besides, the robot is tested in three conditions by using three methods. First method is

the standard prediction method which is to guess next position of target by using

mathematical methods, linear extrapolation of the velocity. Next, second method is the

6

self-anticipation. This method is use to plan the next step of robot movement to enlarge its

utility with preferred linear velocity, angular velocity and acceleration. After these two

methods the next method is the partner and self-anticipation. It plans next step movement

of robot to maximize robot utility and target utility. There are few shortcomings in the

study [5] such as parameters are not systematically calibrate, standard prediction method

and the self-anticipation have the problem of lacks of ability to make the robot take a lead

toward the target. Figure 2.1 is shows a success side by side person following robot by

considering eight parameters [5].

Figure 2.1: People walking side by side with a mobile robot

Source:[5]

In [6] proposed a person following robot with fuzzy based control system. The paper

used Radio-frequency identification (RFID) with antenna is able to detect the position

target human by giving the target person with an ID and stereo camera to detect human.

But when human is out of the detection range of stereo camera, only can depends RFID

detect the position target human. Moreover, two control strategies are used in this study;

intelligent control strategy and fuzzy based controller. Intelligent control strategy is to

control the robot for turning toward target when target is away from robot, two parameters

are used which are the turning gain and linear velocity. The direction and distance from

7

tracking part is obtained and from these two to do adjustment for turning gain and linear

velocity. Then, the turning gain is adjusted online to make sure the target is in the view of

camera, as the direction between target and robot is increased the turning gain is also

increased while turning radius is decreased. There are two main parts using fuzzy based

controller to control the motion of person following robot; reference linear velocity and

turning-gain.

Furthermore, in order to get the reference linear velocity, vre, two inputs is considered

and there are the distance, xr, between target and robot when both are moving and the

vertical velocity of target, vx. The rules between distance, xr, and vertical velocity of target,

vx to get reference linear velocity is shown in Figure 2.2 with linguistic term. For example,

if the distance, xr, is very near (VN) and the vertical velocity of target, vx is very slow (VS),

then reference linear velocity, vre is very slow (VS) [6].

Figure 2.2: Table I and II about linguistic term and fuzzy rules for reference linear velocity

Source:[6]

 For the turning-gain controller, the absolute direction, yr and horizontal velocity of

8

target, vy will considered as inputs to obtain output turning-gain of robot, k. The rules used

to obtain turning-gain, k is shown in Figure 2.3. The example of the rules is if the absolute

direction, yr is negative far (NF) and velocity of target, vy is negative slow (NS), and then

the output turning-gain, k is large [6].

Figure 2.3: Table III and IV about linguistic term and fuzzy rules for turning-gain

Source:[6]

 Moreover, the other research about person following robot is proposed with goal of

ability to follow target person and able to keep safe distance between target and robot when

both are moving. The sensor used to track human position is IR based co-ordinate system,

while the distance sensor used is ultrasonic sensor. Fuzzy rules is applied in this research

which means the inputs of position (Left, Mid and Right) and distance (Near, Locked and

Far) to obtain the output, robot velocity. The Figure 2.4 show the fuzzy rule based in the

control system [7].

9

Figure 2.4: Example of fuzzy rule based used in the study

Source:[7]

 From those rules the person following robot is tested in three conditions such as target

in centre location of robot, target is in left side of robot and target is in right side of target.

At the first conditions, the robot able to follow up human speeds with full power and can

keep a safe distance with target. Besides, the robot able to make a curve turn to follow

target by controlling left and right motor in the next two conditions [7].

 Furthermore, a study about person following Omni-directional vehicle robot is focus

more on position of the target. So input of position controller is based on 2 stereo camera

sensors and reference position which is XR, YR and ZR. Typically there are two methods of

control to calculate the distance between target human and robot, namely, position-based

control and features-based control but this study is focus on the position-based control.

Image captured is extracted, geometric model and camera model is used to predict the

target pose. The study apply PD controller for the calculation of the position controller,

while the position reference is the distance between person following robot and target

human. After that the output position controller is derived by using Jacobain matrix, and

then will become the input of velocity controller. The RT-Linux is used for calculate the

position information from the stereo camera position and control the motion of robot [8].

10

Figure 2.5: Baseline of stereo vision system

Source:[8]

 The speed control of person following robot is mention in [9]. Speed control of this

study is set according to three conditions such as death zone, speed control and adaptive

deceleration. Death zone is a zone of errors occurs in robot like the distance control is

different from the desired value. This is very important due to error is needed to consider

building a better side by side person following robot. Furthermore, speed control is same as

death zone where it also considered the response time of robot speed up and motion robot

is slower than human walking speed. At the same time, adaptive deceleration algorithm is

also considered depends on the speed decrease stage.

Three speed stages was introduced in the paper [9] and there are speed increase stage,

speed saturation stage and speed decrease stage. These three stages are about the categories

of robot speed and robot speed will changed according the output signal from the Kinect

sensor. In order to find the error of human relative angle, PD controllers is used and

apply on the servo motors control of robot. After the person following robot is done, few

experiments is needed to test;

1. Target human move forward and reverse only for examining speed control.

2. Target human turn around the robot with constant distance is for testing angle

control.

3. Target human walk along a straight path for speed control and angle control

11

testing.

4. Forward and reverse path.

Figure 2.6: Three speed stages of human and robot

Source:[9]

12

2.2.1 Comparison of previous study

Table 2.1: The details of previous study

Title Tracking

algorithm

Distance algorithm Control algorithm

How Do People Walk

Side By Side? – Using

a computational model

of human behaviour

Laser range

finder : Leg

detection

Laser range finder:

Distance detection

-

Fuzzy-based intelligent

control strategy for a

person following robot

Stereo camera:

human tracking

RFID: Position

tracking

RFID: Position

tracking

Fuzzy inference

system

Modelling and Robust

analysis of a fuzzy

based person following

robot

IR with

co-ordinate:

human detection

Ultrasonic sensor:

Distance detection

Fuzzy inference

system

A controller design on

person following

omni-directional

vehicle robot

Stereo vision

sensor: position

tracking

Stereo vision sensor:

position tracking

PD controller in

position control

Robot

human-following

limited speed control

Kinect sensor:

human joints

detection

Kinect sensor:

Distance detection

PD controller in

angle control

13

2.2.2 Summary section of previous study

From the above researches can conclude that fuzzy logic system is more suitable

use on the side by side person following robot. It is due to next step of human is

unpredictable, only fuzzy logic can handle. Fuzzy logic control system will be used in

speed control and position control. Besides, the Kinect sensor, one of stereo vision

camera has the maximum range detection 4m longer range detection than ultrasonic

sensor which is only maximum 3m range detection, but the Kinect sensor is much

costly than ultrasonic sensor. Furthermore, the feedback from the journal [10] is the

limitation measurement range of Kinect in depth and width. The different type of

RFID have different range of detection and it is depends which type of RFID is used to

determine position of target human. But the RFID is also expensive than ultrasonic

sensor, so ultrasonic sensor is preferable component than can used in the side by side

person following robot.

14

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter is about the methodology of project. Main goal of this project is to build a

prototype which able to follow target person and with control algorithm that able to keep a

safe distance between human and robot when the robot moving.

3.2 General overview of hardware

Figure 3.1: Overview of side by side person following robot hardware

Side by side

person following

robot

Arduino

Motors

Motor

Drivers
Wheels with

diameter 12.7cm

Wheels

with

diameter

1.5cm

Ultrasonic

sensors

Switches

Electrical

box

15

For the prototype of side by side person following robot, Arduino will be used as the

control center for whole robot. Besides, Arduino will be programmed to control the motor

of the robot based on fuzzy logic controller. The fuzzy logic controller is actually based on

the input from human tracking sensor and distance sensor.

In order to control the speed of motor accurately, a brushless DC motor with encoder

and motor driver is used. Although Arduino can control the PWM, but the desired speed of

a motor still cannot obtain 100% accurate. So motor with encoder is chosen due to with

encoder, the speed of motor can be specified.

Besides, two ultrasonic sensors are installed on the left side of robot and separated

with a distance 20cm due to and maximum separation of two sensors will increase the

detection view of target.

Moreover, an electrical box is placed on top of prototype. An Arduino and motor

drivers are installed inside the electrical box while two switches is installed beside of the

box. One of switch is the power button for Arduino and the other switch is for motors.

16

Figure 3.2: CAD drawing of side by side person following robot

17

Figure 3.3: Hardware of side by side person following robot

3.3 Material

3.3.1 Arduino Mega ATmega 1280

Arduino Mega is a microcontroller board with 54 digital input/output pins, 16

analog inputs, 4 UARTs (hardware serial ports). 5V can be supply and operate in this

microcontroller, but it may unstable. So the best input voltage is in the range between

7V to 12V. If more than 12V, the microcontroller will be overheated. Moreover, 15 out

of 54 digital input/output pins of the Arduino Mega are PWM output pin which can

use to control motor speed. Besides, it built with a 16MHz crystal oscillator and flash

memory with 128KB.

Furthermore, it can be operated and programmed with software by connect it to a

computer with a USB cable.

Ultrasonic

sensor

Motor

Switch

18

Figure 3.4: Arduino Mega with ATmega1280 microcontroller

3.3.2 Brushless DC motor with Encoder

Figure 3.5: BLH450K DC motor

BLH450K is used as actuator of side by side person following robot. Combination

type parallel shaft gearhead is installed inside the motor. The speed reduction ratio is

100:1 used in the gearhead type. Furthermore, from the data sheet the range of motor

speed is from 100 to 3000 r/min for the case of the motor turning in load condition.

Besides, this motor needs motor driver with 24V power supply to activate it. Brushless

DC motor with encoder is chosen due to with encoders, the accuracy of motor speed

can be controlled more accurate.

19

Figure 3.6: Speed of motor with external DC voltage

Figure 3.8 is about the theoretical graph from manual book of motor BLH450K

[12]. DC voltage show in figure is the external DC supply use to signal the speed of

motor. As the external DC voltage is increasing, the speed of motor is also increasing.

3.3.3 Motor Driver BLHD50K

Figure 3.7: Motor driver BLHD50K

Motor driver BLHD50K is a type motor driver only for oriental motor

BLHM450K model. This type of motor driver has few external functions on the board

of driver such as internal speed potentiometer and acceleration/deceleration time

potentiometer. The function for internal speed potentiometer is to set the motor speed

while the acceleration/deceleration time potentiometer has function to set motor

started acceleration time and time of deceleration when motor stopped. Heat sink is

installed to prevent overheating [11].

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5

Sp
e

e
d

 /
rp

m

DC Voltage/V

Speed versus DC Voltage

20

3.3.4 Ultrasonic Sensor

Figure 3.8: Ultrasonic Ranging Module HC - SR04

Ultrasonic Ranging Module HC - SR04 with the input power supply 5V able to

detect in the range from 2cm to 4m. Besides, the surface are of objects must more than

0.5 m2; otherwise it will affect accuracy of the measuring result.

Table 3.1: Other material in hardware

Material Size Unit Image

Wheel Diameter 127mm 2

Diameter 15mm 2

Acrylic 297mm x 210mm

(Thickness 2mm)

3

297mm x 210mm

(Thickness 5mm)

1

21

Screw with nut Diameter 4mm

32

Diameter 2mm

8

Electrical Box 225mm x 150mm 1

Steel connector

joint

78mm x 78mm 8

40mm x 40mm 2

22

3.4 Circuit

Figure 3.9: Connection Arduino with component

Figure 3.10: Circuit of side by side person following robot

 The circuit design of side by side person following robot is shown in Figure 3.10.

Arduino is the microcontroller for side by side person following robot and it will receive

signal from ultrasonic sensor. The signal received by Arduino will be process based on

fuzzy rules. After that, the other signal will be produced by Arduino to motor driver.

Besides, motor will not connect directly with Arduino due to motor driver is controller for

motor and it is to control speed of motor, direction of motor movement and protect motor.

In this case, motor driver is received signal from Arduino and provide signal to control

motor speed and direction.

Fuzzy Logic

Ultrasonic

sensor
Arduino

Motor driver

Motor

23

3.5 Software

 In this section will discuss function of the software used to program the side by side

person following robot.

Table 3.2: Software used to build side by side person following robot

Software Figure Function

FIS Editor (Matlab

tools)

To design speed

controller by using

fuzzy

Online software-

MakeProto

To convert Matlab

fuzzy system to

Arduino C

Arduino software

To write coding and

upload the coding to

Arduino ATmega2560

24

3.6 Fuzzy Logic

 A set of mathematical principles is represented based on degrees of membership

function is called fuzzy logic. Fuzzy logic has 4 major elements; fuzzification, rule-base,

inference mechanism and defuzzification interface. Besides, defuzzification use centroid

method to obtain output value.

Figure 3.11: Elements of fuzzy logic

Figure 3.12:Matlab Fuzzy Inference System

Fuzzification Inference

Mechanism Defuzzification

(centroid)

Rule-base

INPUT OUTPUT

25

3.6.1 Input

Distance detected by ultrasonic sensor is the input of fuzzy logic. One of

ultrasonic sensor near the front of hardware will named as front sensor and the other

near the back of hardware will named as back sensor. The range of membership

function is from 5cm until 400cm maximum distance measurement of ultrasonic

sensor. The membership function of ultrasonic sensor will listed in Table

Table 3.3: Membership function for ultrasonic sensors

Name Range of membership

function

Figure

Front

sensor

Near: 5 to 100

Medium: 101 to 300

Far: 301 to 400

Back

sensor

Near: 5 to 100

Medium: 101 to 300

Far: 301 to 400

26

3.6.2 Output

Speed of motor is the only parameter which is needed to be controlled, so the

speed as the output for fuzzy logic. The range of membership is based on value of

PWM in Arduino which from 20 to 255. The speed membership function is listed in

table.

Table 3.4: Membership function for PWM of motor

Name Range of membership

function

Figure

Speed Low: 20 to 114

Medium: 43.5 to 231.5

Fast: 161 to 255

 3.6.3 Fuzzy Rules

There are total 12 rules is set based on 12 conditions. IF and THEN statements are

used but the because of two inputs for fuzzy logic so an AND statement is used when

happened of two input conditions.

27

Figure 3.13: Rules set in Matlab Fuzzy Inference System

Fuzzy logic is used in speed control of side by side person following robot. There are

12 rules are set:

1. If (sensor_front is near) and (sensor_back is medium) then (speed is low)

2. If (sensor_front is near) and (sensor_back is far) then (speed is medium)

3. If (sensor_front is medium) and (sensor_back is near) then (speed is low)

4. If (sensor_front is medium) and (sensor_back is far) then (speed is fast)

5. If (sensor_front is far) and (sensor_back is near) then (speed is medium)

6. If (sensor_front is far) and (sensor_back is far) then (speed is fast)

7. If (sensor_front is near) then (speed is low)

8. If (sensor_front is medium) then (speed is medium)

9. If (sensor_front is far) then (speed is fast)

10. If (sensor_back is near) (speed is low)

11. If (sensor_back is medium) (speed is medium)

12. If (sensor_back is far) (speed is fast)

28

3.7 Overview of side by side person following robot function

3.7.1 Flowchart of program of side by side person following robot

Figure 3.14: Flowchart of side by side person following robot distance control system

Start

Target detected

by distance

sensor

Motor stop

Fuzzy logic rule

based

End

YES

Front

distance >Bac

k distance

Front distance

< Back

distance

NO

NO

Direction

backward

Direction

forward

YES YES

Front distance

= Back

distance

29

Figure 3.14 is the flowchart of side by side person following robot speed control and

speed is controlled by fuzzy logic rule based control algorithm. At the beginning, the

distance sensor will detect the whether the target is moving. The robot will be stopped

when target human is at middle of ultrasonic sensor. If the distance detected by front sensor

has shorter distance than distance measured by back sensor then robot will move forward.

In addition, the robot will move backward when distance measured by back sensor has

shorter distance than distance measured by front sensor. Once the direction robot moving is

fixed and distance measured will through the fuzzy logic first before entering next stage.

Moreover, the distance will be classified into far, medium and near. When distance, D is

more than 300cm the motor will moving fast while when distance is less than 300cm but

more than 100cm then the robot will moving with medium speed. If the distance detected

is less than 100cm then the motor will started with low speed. The process will be repeated

until the OFF button is pressed.

3.7.2 Block Diagram

Figure 3.15: Block diagram of side by side person following robot

In Figure 3.19 indicates open loop block diagram for side by side person following

robot. Fuzzy logic will as the controller for whole system and motor as the actuator of

robot. Besides, the ultrasonic sensor is to measure the distance while the input is distance

and output is speed.

Fuzzy logic controller Motor

Speed Distance

Ultrasonic

sensor

30

3.8 Project Setup

 In this project setup will described the data collected through experiment. The purpose

of experiment 1 is to control the rpm of motor by controlling the PWM. Besides, the

experiment 2 is to analysis the performance side by side person following robot.

3.8.1 Experiment 1

In this experiment 1 is to control the speed of motor and then collect the data

produced by speed output of GFS4G100 DC motor. The purpose of this experiment is

to determine rpm of motor by adjusted the input PWM. By controlling motor speed,

the both motors of side by side person following robot is also can be control

independently, so the robot is able to increase and decrease the speed to follow the

target human.

The components used are GFS4G100 DC motor, Arduino microcontroller and a

24V AC adapter. In experiment, the motor will be tested in no load condition. Besides,

from the motor data sheet, it shows that the motor rpm is from 100 rpm to 3000 rpm

for the motor moving without load. First of all, Arduino are used to control the input

voltage for motor by adjusting the PWM. The PWM will be adjusted from 0 to 255

with increment of 1. The duty cycle is increasing when PWM is increasing. After that,

the speed output signal from motor will send to Arduino and show in serial monitor of

Arduino. The data collected is the average rpm from 10 readings when PWM is

increase by 1, all the average rpm values is taken six times to obtain overall average

rpm values. Besides, the data is included the motor rotation in clockwise and

counterclockwise and after that the data will be recorded in Appendix C. The most

important things need to take note is speed output signal is need to pull up the signal to

5V.

31

Figure 3.16: The circuit of brushless dc motor with motor driver and Arduino

Figure 3.17: Schematic circuit of brushless dc motor

32

3.8.2 Experiment 2

In the experiment 2 is to measure the accuracy of ultrasonic sensor and examine

the speed of person following robot when human walking. This experiment is related

to third objective the performance of side by side person following robot in term of

distance and speed control. The speed control is depends on the distance between robot

and human. In order to control the speed of robot, the accuracy of distance sensor is

necessary to build a better side by side person following robot.

Figure 3.18: Experiment 2 setup

Robot
Human

50cm

Direction

of robot

moving

Direction

of human

moving

100cm

150cm

200cm

250cm

300cm

350cm

400cm

33

Figure 3.19:Location of hardware in a room

Figure 3.20: Experiment 2 setup and hardware tested in a room

34

First of all, human and robot will stand side by side with a distance of 50cm. After

that, human will start to walk forward a distance and then stop and move away from

robot until distance between human and robot is 100cm. Moreover, human will repeat

the step of move forward and then more away from robot. The distance between

human and robot will increase with the increment of 50cm until human is 400cm

distance from robot. The robot is set to get data of distance between target and speed

output of robot.

35

CHAPTER 4

RESULT AND ANALYSIS

4.1 Overview

In the section is described about the data collected from the experiment. Besides, the

table of data will be put in Appendix and the graphs are plotted according the data. The

graph will be analysed and explained in this section.

4.2 Experiment 1

In this experiment is to control rpm of motor. The PWM is adjusted slowly to

determine the changes of speed output from motor. The graphs rpm versus duty cycle is

plotted as below.

0

500

1000

1500

2000

2500

3000

3500

0

6
.2

7

1
2

.5
5

1
8

.8
2

2
5

.1

3
1

.3
7

3
7

.6
5

4
3

.9
2

5
0

.2

5
6

.4
7

6
2

.7
5

6
9

.0
2

7
5

.2
9

8
1

.5
7

8
7

.8
4

9
4

.1
2

RPM

Duty Cycle (%)

RPM versus Duty Cycle

1st reading

36

Figure 4.1: First reading of RPM versus Duty cycle

Figure 4.2: Second reading of RPM versus Duty cycle

Figure 4.3: Third reading of RPM versus Duty cycle

0

500

1000

1500

2000

2500

3000

3500

0

7
.4

5

1
4

.9

2
2

.3
5

2
9

.8

3
7

.2
5

4
4

.7
1

5
2

.1
6

5
9

.6
1

6
7

.0
6

7
4

.5
1

8
1

.9
6

8
9

.4
1

9
6

.8
6

RPM

Duty cycle (%)

RPM versus Duty Cycle

2nd reading

0

500

1000

1500

2000

2500

3000

3500

0
6

.2
7

1
2

.5
5

1
8

.8
2

2
5

.1
3

1
.3

7
3

7
.6

5
4

3
.9

2
5

0
.2

5
6

.4
7

6
2

.7
5

6
9

.0
2

7
5

.2
9

8
1

.5
7

8
7

.8
4

9
4

.1
2

RPM

Duty Cycle(%)

RPM versus Duty Cycle

3rd reading

37

Figure 4.4: Fourth reading of RPM versus Duty cycle

Figure 4.5: Fifth reading of RPM versus Duty cycle

0

500

1000

1500

2000

2500

3000

3500

0
6

.2
7

1
2

.5
5

1
8

.8
2

2
5

.1
3

1
.3

7
3

7
.6

5
4

3
.9

2
5

0
.2

5
6

.4
7

6
2

.7
5

6
9

.0
2

7
5

.2
9

8
1

.5
7

8
7

.8
4

9
4

.1
2

RPM

Duty Cycle (%)

RPM versus Duty Cycle

4th reading

0

500

1000

1500

2000

2500

3000

3500

0
6

.2
7

1
2

.5
5

1
8

.8
2

2
5

.1
3

1
.3

7
3

7
.6

5
4

3
.9

2
5

0
.2

5
6

.4
7

6
2

.7
5

6
9

.0
2

7
5

.2
9

8
1

.5
7

8
7

.8
4

9
4

.1
2

RPM

Duty Cycle (%)

RPM versus Duty Cycle

5th reading

38

Figure 4.6: Sixth reading of RPM versus Duty cycle

Figure 4.7: Average reading of RPM versus Duty Cycle

4.2.1 Analysis of Experiment 1

From the Figure 4.1 until Figure 4.6 are representing the data recorded from the

motor speed output signal in PWM. The graphs show when the duty cycle is

increasing, the rpm of motor is also increasing but there are not increasing linearly

compare to theoretical result. The average data from figure 4.1 to figure 4.6 is

calculated and presented on Figure 4.7.

0

500

1000

1500

2000

2500

3000

3500

0
6

.2
7

1
2

.5
5

1
8

.8
2

2
5

.1
3

1
.3

7
3

7
.6

5
4

3
.9

2
5

0
.2

5
6

.4
7

6
2

.7
5

6
9

.0
2

7
5

.2
9

8
1

.5
7

8
7

.8
4

9
4

.1
2

RPM

Duty cycle (%)

RPM versus Duty Cycle

6th reading

0

500

1000

1500

2000

2500

3000

3500

0

7
.4

5

1
4

.9

2
2

.3
5

2
9

.8

3
7

.2
5

4
4

.7
1

5
2

.1
6

5
9

.6
1

6
7

.0
6

7
4

.5
1

8
1

.9
6

8
9

.4
1

9
6

.8
6

RPM

Duty Cycle (%)

Average reading

Average reading

39

From the Figure 4.7, when the duty cycle is around 1.96% the revolution per

minute of motor is started increasing from 0. It is due to the when duty cycle is 0%

means the input voltage of motor is 0V. When the duty cycle is within the 0% and the

1.96%, the input voltage is not enough to move the rotor of motor, so the rpm is still 0.

The rpm of motor is started drop at the duty cycle at 5.88%. While after the rpm drop

and the next reading of rpm is increase again. It shows not all rpm is decrease when

the increasing of duty cycle. The situation of increase and decrease of rpm is

continuing until the duty cycle is 97.65%. It is due to the low frequency PWM of

Arduino and not high enough to let the rotor turn smoothly lead motor running with

rattle. After 97.65% of duty cycle, the rpm is started increasing linearly this can

explain that the low frequency of PWM is ignored when the duty cycle is almost full,

thus the motor can move smoothly. Lastly, when the duty cycle is 100% the average

maximum rpm is 3200.16.

In addition, the standard deviation of the data is calculated. The highest standard

deviation is 219.3725 when the duty cycle is at 57.25%. It means that the largest

different of rpm readings at duty cycle 57.25%. Although revolution per minute is not

increasing smoothly, but the rpm still can controlled by PWM.

40

4.3 Experiment 2

In experiment 2 is testing the distance control and speed control. Target human will

walk from 50cm away from robot until 400cm from robot. Furthermore, the speed of robot

is set as the distance between target and robot is increasing, the speed is also increasing.

Figure 4.8: Distance from front sensor versus RPM

0

50

100

150

200

250

300

350

0

7
2

1
.7

6

6
6

8
.2

3

1
6

3
1

.3
2

1
5

6
9

.8
6

1
8

0
8

.3
2

1
7

9
5

.3
3

1
4

2
9

.5
9

1
6

0
9

.0
1

2
9

3
.6

4

1
6

1
2

.9

1
7

0
7

.9
4

1
2

4
7

.6
6

1
6

1
1

.6

6
7

8
.6

6

5
9

5
.4

2

2
6

2
1

.2
3

3
0

7
.7

4

1
7

9
3

.7
2

d
is

ta
n

ce
/c

m

RPM

Distance versus RPM

front sensor

Peak
distance

41

Figure 4.9: Distance from back sensor versus RPM

Figure 4.10: Overshoot in graph of distance versus RPM

Table 4.1: Percentage error of distance for front sensor

Case
Actual

distance(cm)

Desired

Percentage Error

(%)
RPM

Distance (cm)

Case 1: 59 50 18 0

Human is 50cm

away from robot
44 50 12 0

0

50

100

150

200

250

300

350

0

7
2

1
.7

6

6
6

8
.2

3

1
6

3
1

.3
2

1
5

6
9

.8
6

1
8

0
8

.3
2

1
7

9
5

.3
3

1
4

2
9

.5
9

1
6

0
9

.0
1

2
9

3
.6

4

1
6

1
2

.9

1
7

0
7

.9
4

1
2

4
7

.6
6

1
6

1
1

.6

6
7

8
.6

6

5
9

5
.4

2

2
6

2
1

.2
3

3
0

7
.7

4

1
7

9
3

.7
2

d
is

ta
n

ce
/c

m

RPM

Distance versus RPM

back sensor

Peak
distance

0
10

20
30

40
50

60
70

80
90

100

0 0 264.06721.76537.49706.71668.23 0

D
is

ta
n

ce

RPM

Distance versus RPM

front sensor

overshoot
desired
distance

42

44 50 12 264.06

43 50 14 721.76

46 50 8 537.49

45 50 10 706.71

43 50 14 668.23

49 50 2 0

Case 2: 200 200 0 0

Human is 200cm

away from robot.
206 200 3 1612.9

204 200 2 1661.13

205 200 2.5 1571.09

203 200 1.5 1707.94

204 200 2 1684.92

204 200 2 1684.92

202 200 1 1247.66

201 200 0.5 1919.39

202 200 1 1527.88

205 200 2.5 1611.6

206 200 3 0

Case 3: 301 300 0.33333 684.7

Human is 300cm

away from robot.
78 300 74 2472.19

301 300 0.33333 595.42

298 300 0.66667 1813.24

81 300 73 2195.39

43

296 300 1.33333 2621.23

299 300 0.33333 1088.14

301 300 0.33333 1833.18

301 300 0.33333 307.74

298 300 0.66667 2631.58

294 300 2 1690.62

298 300 0.66667 1793.72

297 300 1 772.2

296 300 1.33333 2030.46

Table 4.2: Percentage error of distance for back sensor

Case
Actual

distance(cm)

Desired
Percentage Error

(%)
RPM

Distance (cm)

Case 1: 51 50 2 0

Human is 50cm

away from robot
61 50 22 0

 55 50 10 264.06

 58 50 16 721.76

 71 50 42 537.49

 72 50 44 706.71

 50 50 0 668.23

 102 50 104 0

Case 2: 208 200 4 0

Human is 200cm

away from robot.
218 200 9 1612.9

 217 200 8.5 1661.13

 222 200 11 1571.09

 224 200 12 1707.94

 212 200 6 1684.92

 214 200 7 1684.92

 220 200 10 1247.66

44

 211 200 5.5 1919.39

 208 200 4 1527.88

 209 200 4.5 1611.6

 213 200 6.5 0

Case 3: 305 300 1.66667 684.7

Human is 300cm

away from robot.
71 300 76.33333 2472.19

 304 300 1.33333 595.42

 302 300 0.66667 1813.24

 305 300 1.66667 2195.39

 301 300 0.33333 2621.23

 299 300 0.333333 1088.14

 300 300 0 1833.18

 306 300 2 307.74

 301 300 0.33333 2631.58

 316 300 5.33333 1690.62

 304 300 1.33333 1793.72

 299 300 0.333333 772.2

 299 300 0.333333 2030.46

4.3.1 Analysis of Experiment 2

First of all, from beginning Figure 4.8 and 4.9 indicate the distance between

target and robot is started from around 50cm slowly increase with increment of

50cm until the target having distance around 300cm away from side by side person

following robot. In Table 4.11 and 4.12, the zero rpm is means that the robot is

stopped. Besides, the lowest distance measured by front sensor 43cm in Case 1 of

the Table 4.11 with 14% of error. For the lowest distance measured by back sensor

is 50cm in Case 1 in Table 4.12 with 0% of error. Furthermore, the target is started

moving forward and the motor is started moving with 264.06 rpm in Case 1 of both

Table 4.11 and 4.12. Next overshoot is occurred in Figure 4.10 shows that during

the starting of experiment.

Essentially the ultrasonic sensor has the maximum 400cm of distance

45

measurement and the experiment is set for target human moving away from robot

until 400cm to test the accuracy of ultrasonic sensors, but the Figure 4.8 and 4.9

peak distance detected by front sensor is 301cm while peak distance showed by

back sensor is 316cm. The side by side robot is actually stopped moving, when

target human is moving to 350cm away from robot. The maximum sensing distance

is affected by material, for example the jeans wear by target is a material absorbs

sound wave, so it limits the maximum sensing distance.

In addition, the maximum percentage error obtained from front sensor is 74%

which is shown in Case 3 of Table 4.11 and the distance measured is 78cm. At the

same time, maximum percentage error from back sensor is 76.3333% in Table 4.12

Case 3 also and it is higher than percentage error of front sensor. These errors may

be due to disturbance from nearby environment.

Figure 4.11: Target moving location

From figure 4.8 and 4.9, there are slightly difference distance detected by

front sensor and back sensor. The distance detected by back sensor is slightly

higher than front sensor. In figure 4.13 explain how the back sensor is slightly

20cm

Front sensor

Back sensor

Human A

Human
B

x

y

W

Z

46

higher than front sensor. At point A, target human is stop and target is at the

middle of between front sensor and back sensor. W is the distance detected by

front sensor and Z is the distance detected by back sensor. When W and Z is

almost same distance, the robot will stop. Moreover, when target is moving

forward as point B, the front sensor will detect target with distance X and back

sensor will detect target with distance Y. Distance Y is bigger than X so that why

the back sensor is slightly higher than front sensor.

Moreover, the highest rpm of motor in Table 4.11 and Table 4.12 is 2631.58

rpm when the target has a distance 298cm with 0.666667% error detected by front

sensor and 301cm measured by back sensor with error 0.3333%. However, there is

a problem not showed in result which is the real speed of motor. The speed output,

rpm directly produced by motor is excluded the calculation of gear ratio.

Therefore, the actual speed of motor produced is lower than expected result for

example taking the maximum rpm from figure 4.8 and 4.9, the wheel radius is

6.35cm.

2631.58

100
 × 2𝜋(6.35𝑐𝑚) ÷ 60 = 17.5𝑐𝑚/𝑠

The side by side person following robot is moving with 17.5cm/s which is

maximum speed when target human is around 300cm away from robot.

47

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The prototype of side by side person following robot is designed with two ultrasonic

sensors installed on the left side of robot. Besides, two motors with motor drivers are used

as the actuator of robot. In order to control speed of motor fuzzy logic controller is

implemented into side by side person following robot where the input of fuzzy logic is

distance and output is speed. 12 fuzzy rules are set based on 12 condition may happened.

In experiment 1, the highest standard deviation is 219.3725 when the duty cycle is at 57.25%

although rpm is increasing with fluctuation, but the rpm still can control by PWM. From

experiment 2, the maximum distance detection by the front sensor is only 301cm while the

maximum distance detection by back sensor is 316cm. Moreover, the maximum error

distance error by front sensor and back sensor are 74% and 76.3333%. These large errors

are occurred when human is 300cm away from robot where the distance measured by front

sensor and back sensor are 78cm and 71cm. Furthermore, overshoot is occurred in fuzzy

logic controller during the second experiment.

5.2 Future Work

For the future research, the side by side person following robot need to improve the

type of motor used. Although the motor used has a larger torque but the gear ratio of motor

has lower the speed of motor and lead the robot not able to follow human maximum speed.

48

Therefore, the gear ratio of motor should be lower. Lastly, overshoot result can be

improved by change the range of membership function.

49

REFERENCES:

1. David Feil-Seifer and Maja J Mataric, Defining Socially Assistive Robotics, IEEE 9th

International c0nference on rehabilitation robotics, July 2005.

2. The World Bank Group (2014), Population ages 65 and above (% of total), Available:

http://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS/countries/JP?display=graph

3. Reno J. Tibke, “Japan’s Taking Robot Action: Honda, Sekisui House, and New

Government Funding”, Copyright © 2001 – 2013.

4. Tapus, A., & Mataric, M. (n.d.). Towards Socially Assistive Robotics. Journal of the

Robotics Society of Japan, 576-578.

5. Yoichi Morales, Satoru Satake, Rajibul Huq, Dylan Glas, Takayuki Kanda & Norihiro

Hagita, How Do People Walk Side By Side?-Using A Computational Model Of

Human Behavior For A Social Robot, USA, 2012.

6. Songmin Jia, Lijia Wang, Shuang Wang & Congxuan Bai, Fuzzy-based intelligent

control strategy for a person following robot, IEEE International Conference on

Robotics and Biomimetics (ROBIO), 2013.

7. Tarik Bin Alamgir, Ibrahim Jawad Alfar & Muhammad Mahbubur Rashid, Modeling

and robust analysis of a fuzzy based person following robot, IEEE International

Conference on Computer and Communication Engineering, July 2012.

8. Prasarn Kiddee & Akira Shimada, A controller design on person following

Omni-directional Vehicle Robots, IEEE SICE annual conference, 2007.

9. Jianzhao Cai & Takafumi Matsumaru, Robot human-following limited speed control,

IEEE International Symposium on robot and human interactive communication, 2013.

10. TranSafety, Inc., Road Engineering Journal, October, 1997

11. Brushless Motor and Driver Package BLH Series Operating Manual, Oriental Motor

Co., Ltd, 2011

50

APPENDIX A

Grantt chart

FYP 1

FYP 2

Week 1 2 3 4 5 6 7 8 9 10 11

Briefing

Registration

Grantt Chart

Literature

Review

Motivation

Objective

Scope

Methodology

Preliminary

Result

Conclusion

Submit Report

Presentation

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prototype

Development

Locate

Position of

Ultrasonic

Sensor

Design

Control

Algorithm

Programming

Experiment

Analysis &

Discussion

Submit Draft

Report

Slides

Preparation

Presentation

51

APPENDIX B

Programming for experiment of motor speed control

int pin = 2;

unsigned long duration;

float totaltime;

float rpm;

float averagerpm;

void setup()

{

 pinMode(pin, INPUT_PULLUP); // change “pin” to electrical behavior

 Serial.begin(9600);

 Serial.println("Started"); // print “Started”

}

void loop()

{

 for (int i=0;i<256;i++) // PWM increasing with increment 1

 {

 averagerpm = 0;

 analogWrite(3,i);

for (int times = 0;times<10;times++) // get the readings 10 times

{

 duration = pulseIn(pin, HIGH); //timing when HIGH state

 duration = (duration+300); //timing plus pulse width

 totaltime= (duration/1000000.000000);

 rpm= (2.000000/totaltime);

52

 if (rpm >=4000){

 rpm = 0;

 }

 averagerpm = averagerpm + rpm; // total rpm

 }

 averagerpm = averagerpm / 10; // average rpm

 Serial.print(i/2.55); // print duty cycle

 Serial.print("\t");

 Serial.println(averagerpm); // print average rpm

 delay(100);

 }

 Serial.println("Finished!");

}

53

APPENDIX C

//***

// Matlab .fis to arduino C converter v2.0.0.29032014

// - Karthik Nadig, USA

// Please report bugs to: karthiknadig@gmail.com

//***

#include "fis_header.h"

#define echoPin 7 // Echo Pin

#define trigPin 8 // Trigger Pin

#define echoPin1 24

#define trigPin1 26

long duration, distan,distance; // Duration used to calculate distance

long durat,distan1,distance1;

int pin = 28;

unsigned long time;

float totaltime;

float rpm;

// Number of inputs to the fuzzy inference system

const int fis_gcI = 2;

// Number of outputs to the fuzzy inference system

const int fis_gcO = 1;

// Number of rules to the fuzzy inference system

const int fis_gcR = 12;

FIS_TYPE g_fisInput[fis_gcI];

FIS_TYPE g_fisOutput[fis_gcO];

54

// Setup routine runs once when you press reset:

void setup()

{

 pinMode(pin, INPUT_PULLUP); // change “pin” to electrical behavior

 Serial.begin (9600);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 pinMode(trigPin1, OUTPUT);

 pinMode(echoPin1, INPUT);

 // initialize the Analog pins for output.

 // Pin mode for Output: speed

 pinMode(2 , OUTPUT);

 // Pin mode for Output: LM

 pinMode(3, OUTPUT);

 // Pin mode for Output: RM

 pinMode(4, OUTPUT);

 // Pin mode for Output: LM_direction

 pinMode(5, OUTPUT);

 // Pin mode for Output: RM_Direction

 pinMode(6, OUTPUT);

}

// Loop routine runs over and over again forever:

void loop()

{

 distance=0;

 distance1=0;

 for (int times = 0;times<10;times++)

 { digitalWrite(trigPin, LOW);

55

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

 //Calculate the distance (in cm) based on the speed of sound.

 distan = duration/58.2;

 distance = distance + distan;

 }

 distance = distance / 10;

 for (int times = 0;times<10;times++)

 { digitalWrite(trigPin1, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin1, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin1, LOW);

 durat = pulseIn(echoPin1, HIGH);

 //Calculate the distance (in cm) based on the speed of sound.

 distan1 = durat/58.2;

 distance1 = distance1 + distan1;

 }

56

 distance1 = distance1 / 10;

 // Read Input: sensor_front

 g_fisInput[0] = distance1;

 // Read Input: sensor_back

 g_fisInput[1] = distance;

 g_fisOutput[0] = 0;

 fis_evaluate();

 // Set output vlaue: speed

 analogWrite(2 , g_fisOutput[0]);

 if(distance1<=100 && distance<=100)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 if(abs(distance-distance1)<=8)

 {

 digitalWrite(3,HIGH);

 digitalWrite(4,HIGH);

57

 }

 else if(distance1<distance)

 {

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,LOW);//Left

 digitalWrite(6,HIGH);//Right

 }

 else if(distance1>distance)

 {

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,HIGH);//Left backward

 digitalWrite(6,LOW);//Right backward

 }

 }

 else if(distance1<=300 && distance<=300 && distance1>=101 && distance>=101)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 if(abs(distance-distance1)<=8)

 {

 digitalWrite(3,HIGH);

 digitalWrite(4,HIGH);

 }

58

 else if(distance1<distance)

 {

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,LOW);//Left

 digitalWrite(6,HIGH);//Right

 }

 else if(distance1>distance)

 {

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,HIGH);//Left backward

 digitalWrite(6,LOW);//Right backward

 }

 }

 else if(distance1<=400 && distance<=400 && distance1>=301 && distance>=301)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 if(abs(distance-distance1)<=8)

 {

 digitalWrite(3,HIGH);

 digitalWrite(4,HIGH);

 }

 else if(distance1<distance)

 {

59

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,LOW);//Left

 digitalWrite(6,HIGH);//Right

 }

 else if(distance1>distance)

 {

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,HIGH);//Left backward

 digitalWrite(6,LOW);//Right backward

 }

 }

 else if(distance1<=100 && distance>100 && distance<=400 && distance1>=30)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 // if(abs(distance-distance1)<=70)

 // {

 // digitalWrite(3,HIGH);

 // digitalWrite(4,HIGH);

 // }

 //else

 //{

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

60

 digitalWrite(5,LOW);//Left

 digitalWrite(6,HIGH);//Right

 //}

 }

 else if(distance1<=300 && distance>300 && distance<=400 && distance1>=30)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,LOW);//Left

 digitalWrite(6,HIGH);//Right

 }

 else if(distance1>100 && distance<=100 && distance1<=400 && distance>=30)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,HIGH);//Left

 digitalWrite(6,LOW);//Right

61

 }

 else if(distance1>300 && distance<=300 && distance1<=400 && distance>=30)

 {

 Serial.println(distance1);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 Serial.println(distance);

 Serial.print("\t");

 Serial.println(rpm); // print average rpm

 digitalWrite(3,LOW);

 digitalWrite(4,LOW);

 digitalWrite(5,HIGH);//Left

 digitalWrite(6,LOW);//Right

 }

 else if (distance1>400 && distance >400)

 {

 digitalWrite(3,HIGH);

 digitalWrite(4,HIGH);

 }

}

//***

// Support functions for Fuzzy Inference System

//***

// Triangular Member Function

FIS_TYPE fis_trimf(FIS_TYPE x, FIS_TYPE* p)

{

62

 FIS_TYPE a = p[0], b = p[1], c = p[2];

 FIS_TYPE t1 = (x - a) / (b - a);

 FIS_TYPE t2 = (c - x) / (c - b);

 if ((a == b) && (b == c)) return (FIS_TYPE) (x == a);

 if (a == b) return (FIS_TYPE) (t2*(b <= x)*(x <= c));

 if (b == c) return (FIS_TYPE) (t1*(a <= x)*(x <= b));

 t1 = min(t1, t2);

 return (FIS_TYPE) max(t1, 0);

}

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b)

{

 return min(a, b);

}

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b)

{

 return max(a, b);

}

FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp)

{

 int i;

 FIS_TYPE ret = 0;

 if (size == 0) return ret;

 if (size == 1) return array[0];

 ret = array[0];

 for (i = 1; i < size; i++)

63

 {

 ret = (*pfnOp)(ret, array[i]);

 }

 return ret;

}

//***

// Data for Fuzzy Inference System

//***

// Pointers to the implementations of member functions

_FIS_MF fis_gMF[] =

{

 fis_trimf

};

// Count of member function for each Input

int fis_gIMFCount[] = { 3, 3 };

// Count of member function for each Output

int fis_gOMFCount[] = { 3 };

// Coefficients for the Input Member Functions

FIS_TYPE fis_gMFI0Coeff1[] = { -153, 5, 30 };

FIS_TYPE fis_gMFI0Coeff2[] = { 30, 40, 50 };

FIS_TYPE fis_gMFI0Coeff3[] = { 50, 400, 411 };

FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2,

fis_gMFI0Coeff3 };

FIS_TYPE fis_gMFI1Coeff1[] = { -153, 5, 30 };

64

FIS_TYPE fis_gMFI1Coeff2[] = { 30, 40, 50 };

FIS_TYPE fis_gMFI1Coeff3[] = { 50, 400, 558 };

FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2,

fis_gMFI1Coeff3 };

FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff };

// Coefficients for the Input Member Functions

FIS_TYPE fis_gMFO0Coeff1[] = { -74, 20, 114 };

FIS_TYPE fis_gMFO0Coeff2[] = { 43.5, 137.5, 231.5 };

FIS_TYPE fis_gMFO0Coeff3[] = { 161, 255, 349 };

FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2,

fis_gMFO0Coeff3 };

FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff };

// Input membership function set

int fis_gMFI0[] = { 0, 0, 0 };

int fis_gMFI1[] = { 0, 0, 0 };

int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1};

// Output membership function set

int fis_gMFO0[] = { 0, 0, 0 };

int* fis_gMFO[] = { fis_gMFO0};

// Rule Weights

FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Type

int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Inputs

65

int fis_gRI0[] = { 1, 1 };

int fis_gRI1[] = { 1, 3 };

int fis_gRI2[] = { 2, 1 };

int fis_gRI3[] = { 2, 3 };

int fis_gRI4[] = { 3, 1 };

int fis_gRI5[] = { 3, 2 };

int fis_gRI6[] = { 1, 0 };

int fis_gRI7[] = { 2, 0 };

int fis_gRI8[] = { 3, 0 };

int fis_gRI9[] = { 0, 1 };

int fis_gRI10[] = { 0, 2 };

int fis_gRI11[] = { 0, 3 };

int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6,

fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11 };

// Rule Outputs

int fis_gRO0[] = { 1 };

int fis_gRO1[] = { 2 };

int fis_gRO2[] = { 1 };

int fis_gRO3[] = { 3 };

int fis_gRO4[] = { 2 };

int fis_gRO5[] = { 3 };

int fis_gRO6[] = { 1 };

int fis_gRO7[] = { 2 };

int fis_gRO8[] = { 3 };

int fis_gRO9[] = { 1 };

int fis_gRO10[] = { 2 };

int fis_gRO11[] = { 3 };

int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5,

fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11 };

66

// Input range Min

FIS_TYPE fis_gIMin[] = { 5, 5 };

// Input range Max

FIS_TYPE fis_gIMax[] = { 400, 400 };

// Output range Min

FIS_TYPE fis_gOMin[] = { 20 };

// Output range Max

FIS_TYPE fis_gOMax[] = { 255 };

//***

// Data dependent support functions for Fuzzy Inference System

//***

FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o)

{

 FIS_TYPE mfOut;

 int r;

 for (r = 0; r < fis_gcR; ++r)

 {

 int index = fis_gRO[r][o];

 if (index > 0)

 {

 index = index - 1;

 mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else if (index < 0)

67

 {

 index = -index - 1;

 mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else

 {

 mfOut = 0;

 }

 fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]);

 }

 return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max);

}

FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o)

{

 FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1);

 FIS_TYPE area = 0;

 FIS_TYPE momentum = 0;

 FIS_TYPE dist, slice;

 int i;

 // calculate the area under the curve formed by the MF outputs

 for (i = 0; i < FIS_RESOLUSION; ++i){

 dist = fis_gOMin[o] + (step * i);

 slice = step * fis_MF_out(fuzzyRuleSet, dist, o);

 area += slice;

 momentum += slice*dist;

 }

68

 return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area));

}

//***

// Fuzzy Inference System

//***

void fis_evaluate()

{

 FIS_TYPE fuzzyInput0[] = { 0, 0, 0 };

 FIS_TYPE fuzzyInput1[] = { 0, 0, 0 };

 FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, };

 FIS_TYPE fuzzyOutput0[] = { 0, 0, 0 };

 FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, };

 FIS_TYPE fuzzyRules[fis_gcR] = { 0 };

 FIS_TYPE fuzzyFires[fis_gcR] = { 0 };

 FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };

 FIS_TYPE sW = 0;

 // Transforming input to fuzzy Input

 int i, j, r, o;

 for (i = 0; i < fis_gcI; ++i)

 {

 for (j = 0; j < fis_gIMFCount[i]; ++j)

 {

 fuzzyInput[i][j] =

 (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]);

 }

 }

 int index = 0;

69

 for (r = 0; r < fis_gcR; ++r)

 {

 if (fis_gRType[r] == 1)

 {

 fuzzyFires[r] = FIS_MAX;

 for (i = 0; i < fis_gcI; ++i)

 {

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index -

1]);

 else

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1);

 }

 }

 else

 {

 fuzzyFires[r] = FIS_MIN;

 for (i = 0; i < fis_gcI; ++i)

 {

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index -

1]);

 else

 fuzzyFires[r] = fis_max(fuzzyFires[r], 0);

70

 }

 }

 fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];

 sW += fuzzyFires[r];

 }

 if (sW == 0)

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);

 }

 }

 else

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o);

 }

 }

}

71

APPENDIX D

Data Result of Experiment 2

Front sensor RPM Back sensor RPM

59 0 51 0

44 0 61 0

44 264.06 55 264.06

43 721.76 58 721.76

46 537.49 71 537.49

45 706.71 72 706.71

43 668.23 50 668.23

49 0 102 0

98 0 114 0

101 1631.32 114 1631.32

100 1863.93 109 1863.93

100 1870.91 113 1870.91

98 1569.86 110 1569.86

150 269.4 160 269.4

148 1464.13 161 1464.13

148 1808.32 158 1808.32

147 1492.54 156 1492.54

149 1615.51 156 1615.51

159 1795.33 171 1795.33

158 1556.42 169 1556.42

156 1282.87 166 1282.87

155 1429.59 166 1429.59

152 1537.28 164 1537.28

151 1644.74 162 1644.74

151 1609.01 161 1609.01

151 1616.81 159 1616.81

150 1456.66 159 1456.66

151 293.64 158 293.64

151 1742.16 157 1742.16

200 0 208 0

206 1612.9 218 1612.9

204 1661.13 217 1661.13

205 1571.09 222 1571.09

203 1707.94 224 1707.94

72

204 1684.92 212 1684.92

204 1684.92 214 1684.92

202 1247.66 220 1247.66

201 1919.39 211 1919.39

202 1527.88 208 1527.88

205 1611.6 209 1611.6

206 0 213 0

261 0 261 0

259 678.66 268 678.66

301 684.7 305 684.7

78 2472.19 71 2472.19

301 595.42 304 595.42

298 1813.24 302 1813.24

81 2195.39 305 2195.39

296 2621.23 301 2621.23

299 1088.14 299 1088.14

301 1833.18 300 1833.18

301 307.74 306 307.74

298 2631.58 301 2631.58

294 1690.62 316 1690.62

298 1793.72 304 1793.72

297 772.2 299 772.2

296 2030.46 299 2030.46

