DESIGN AND DEVELOPMENT OF A LOW POWER COMPACT INTEGRATED PROCESSOR OF AN EMBEDDED SYSTEM

SAM SENG YANG

This Report is Submitted in Partial Fulfilment of Requirements for The Bachelor Degree of Electronic Engineering (Telecommunication Electronic)

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

June 2016

C Universiti Teknikal Malaysia Melaka

FAKULT	UNIVERSTI TEKNIKAL MALAYSIA MELAKA 1 kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Projek	D DEVELOP A LOW POWER COMPACT
Sesi Pengajian : 1 5 /	1 6
SayaSAN	A SENG YANG (HURUF BESAR)
mengaku membenarkan Laporan syarat-syarat kegunaan seperti be	Projek Sarjana Muda ini disimpan di Perpustakaan dengan rikut:
1. Laporan adalah hakmilik	Universiti Teknikal Malaysia Melaka.
	membuat salinan untuk tujuan pengajian sahaja.
 Perpustakaan dibenarkan institusi pengajian tinggi. Sila tandakan (√): 	membuat salinan laporan ini sebagai bahan pertukaran antara
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(FANGAN PENULIS)	Da. WORKS VAN CHIEW Ponsy Gran Kanian . Fainult Khemperan sleitronit & Feynmerian Kaniyerov (COPIDATE GANDA 31/ANGAN PRENNELLIAW), Hang Tuah Jaya 76100 Uurlan Tunggal, Melaka
Tarikh: 10 JUNE 2016	Tarikh: 10/06/2016

"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature	. for
Author	SAM SENG YANG
Date	10 JUNE 2016

C Universiti Teknikal Malaysia Melaka

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics/ Computer Engineering/ Electronic Telecommunication/ Wireless Communication) * with Honours."

Signature

6

Supervisor's Name

Date

DR WONG YAN CHIEW

Dedicated to my beloved family, for your love and supports. To my friends, for your wits, intelligence and guidance in life.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Prima facea, I am grateful to the God for the good health and wellbeing that were necessary to complete this final year project.

Foremost, I would like to express my sincere gratitude to my main supervisor Dr. Wong Yan Chiew for her patience, support, directions, enthusiasm, motivation and commentators. Her counsel and help were vital in completing this project. Without her guidance and support, my final year project would not be so successful. Besides, I would like to thank to my co-supervisor Dr. Syafeeza Binti Ahmad Radzi, she has guided me to construct the designs of my project. Moreover, I am also grateful to Sreedharan Baskara Dass for his technical support, sharing expertise and valuable guidance on Synopsis platform.

My sincere thanks also goes to my fellow friends for encouragement, insightful comments, and hard questions especially BENT colleagues who have given support and shared brilliant ideas throughout the whole year. Great appreciation goes to the FKEKK staffs who have donated towards my considerations.

Last but not least, I would like to thank my parents for giving birth to me at the first place and supporting me spiritually throughout my life and my family members for their bread and butter.

ABSTRACT

Microprocessor without Interlocked Pipeline Stages (MIPS) is a popular implementation of a Reduced Instruction Set Computer (RISC). MIPS architectures are typically 32-bit, but 64-bit versions have been developed in more recent years. The demands for low cost and low power consumption are the characteristics to embedded processors. This project is to design and develop an integrated processor of an embedded system with low power consumption. Verilog language is used to design and construct the modules of processor in this project. There are two type of simulations tools which are Synopsis and Vivado are used to simulate the designs. This project will focus on designing a simple 16-bit Central Procession Unit (CPU) with onboard Static Random Access Memory (SRAM) memory. The designed processor is developed into a layout with 0.18µm Silterra process technology. The developed processor is compared to DW8051 core with the analysis on timing, power consumption and area of the core. A comparison between Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I²C) is done and developed to layout with the same process technology. The analysis of the processor is based on the timing, power and area that generated from the simulation. The developed processor should be effective yet simple that fulfills the features required in a modern embedded system but without too much unnecessary complexity.

ABSTRAK

Mikropemproses tanpa Peringkat Kuncikait Pipeline (MIPS) adalah pelaksanaan popular di Instruction a Mengurangkan Set Komputer (RISC). senibina MIPS biasanya 32-bit, tetapi versi 64-bit telah dibangunkan dalam tahun-tahun kebelakangan ini. Tuntutan untuk kos rendah dan penggunaan kuasa yang rendah adalah ciri-ciri kepada pemproses terbenam. Projek ini adalah untuk mereka bentuk dan membangunkan pemproses bersepadu sistem terbenam dengan penggunaan kuasa yang rendah. bahasa Verilog digunakan untuk mereka bentuk dan membina modul pemproses dalam projek ini. Terdapat dua jenis alat simulasi iaitu Sinopsis dan Vivado yang digunakan untuk mensimulasikan reka bentuk. Projek ini akan memberi tumpuan kepada mereka bentuk 16-bit Unit Perarakan Central mudah (CPU) dengan kapal Memory Statik capaian rawak (SRAM) ingatan. Pemproses direka dibangunkan ke dalam susun atur dengan teknologi 0.18µm proses Silterra. Pemproses maju berbanding DW8051 teras dengan analisis pada masa, penggunaan kuasa dan kawasan teras. Perbandingan Peripheral Interface Siri (SPI) dan Litar Inter-Bersepadu (I²C) dilakukan dan dibangunkan untuk susun atur dengan teknologi proses yang sama. Analisis pemproses adalah berdasarkan kepada masa, kuasa dan bidang yang dijana daripada penyelakuan. Pemproses dibangunkan harus berkesan lagi mudah yang memenuhi ciri yang diperlukan dalam sistem terbenam yang moden tetapi tanpa terlalu banyak kerumitan yang tidak perlu.

TABLE OF CONTENTS

	CONTENT	PAGE
	TITLE	1
	STATUS VERIFICATION FORM	ii
	STUDENT DECLARATION	iii
	SUPERVISOR DECLARATION	iv
	DEDICATION	v
	ACKNOWLEDGMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	xv
	LIST OF APPENDIX	xviii
	LIST OF ABBREVIATIONS	xix
СНАРТЕ	CR I	I
INTROD	UCTION	1
1.1	Project Background	1
1.2	Problem Statements	3
1.3	Objectives	3
1.4	Scope of Project	4
1.5	Chapter Organization	4

4

CHAPTER II

CHAPTER II	6
LITERATURE REVIEW	6
2.1 Reduced Instruction Set Computer (RISC) Architecture	7
2.2 Complex Instruction Set Computing (CISC) Architecture	7
2.3 Microprocessor without Interlocked Pipeline Stage (MIPS) Architecture	8
2.3.1 Pipelined MIPS Architecture	8
2.3.2 MIPS Multi-Cycle Stages	10
2.3.2.1 Instruction Fetch (IF)	10
2.3.2.2 Instruction Decode (ID)	10
2.3.2.3 Data Execution (EX)	10
2.3.2.4 Data Memory Access (MEM)	11
2.3.2.5 Memory Write Back (WB)	11
2.4 Background of DW8051	11
2.4.1 Architecture of DW8051	12
2.4.1.1 Memory Organization	13
2.4.1.2 Instruction Set	13
2.4.1.3 CPU Timing	13
2.5 Topologies of 8-bit Integrated Processor	14
2.5.1 8-bit Fixed Point Cordic Processor with Extended Operation Set	14
2.5.2 A Miniature On-Chip Multi-Functional ECG Signal Processor	15
2.5.3 On-Die Supply-Voltage Noise Sensor Processor	16
2.5.4 GaAs 8-bit Slice Processor	17
2.5.5 Vision Processor with 8-bit Digitized I/O	17
2.5.6 8-bit AES Crypto-Processor	18
2.5.7 Machine Learning Processor	19
2.5.8 Biomedical Signal Processor	19
2.5.9 Review of Integrated Processor	20
2.6 Discussion	21
2.7 Conclusion	22

CHAPTER	111	23
METHODO	LOGY	
3.1 (General Process Flow	24
3.2 I	Process Flow in Synopsis	25
3.2.1	Specification	26
3.2.2	Cell Description Coding (RTL)	26
3.2.3	Logic Simulation	26
3.2.4	Logic Synthesis	27
3.2.5	Formal Verification	28
3.2.6	Floorplanning, Placement & Routing	28
3.2.7	Physical Verification	29
3.3 (Conclusion	29
CHAPTER	IV	30
ANALYSIS	ON MIPS PROCESSOR	
4.1 I	nstruction width approach	31
4.2 I	Design Schematic	33
4.3 \$	Simulation on Discovery Visual Environment (DVE)	34
4.4 \	verification via Zedboard and Vivado Design Suite	36
4.5 H	Results	38
4.5.1	Timing report	38
4.5.2	Power Report	38
4.5.3	Area Report	39
4.5	.3.1 Total Standard cell area	40
4.5	.3.2 Physical area and layout of the core	41
4.6 I	Discussion	43
4.7 (Conclusion	45
CHAPTER	V	46
ANALYSIS	ON DW8051 CORE	
5.1 /	Analysis in coreConsultant	47

xi

5.1.1 Specification settings	47
5.1.2 Clock cycle time	47
5.2 Results	48
5.2.1 Timing Report	48
5.2.2 Power Report	50
5.2.3 Area Report	51
5.2.3.1 Total Standard cell area	51
5.2.3.2 Physical area and layout of the core	52
5.3 Discussion	53
5.4 Conclusion	54
CHAPTER VI	55
COMPARISON BETWEEN DESIGNED 16-BIT MIPS PROCESSOR AND	
DW8051 CORE	
6.1 Introduction	56
6.2 Comparison between RISC architecture and CISC architecture	56
6.3 Results	57
6.3.1 Timing report	57
6.3.2 Power Report	57
6.3.3 Area Report	59
6.3.3.1 Total Standard cell area	59
6.3.3.2 Physical area and layout of the core	60
6.4 Discussion	61
6.5 Conclusion	62
CHAPTER VII	63
PERIPHERAL INTERFACE	
7.1 Serial Peripheral Interface (SPI)	64
7.1.1 Schematic Circuit of SPI	65
7.1.2 Simulation of SPI on DVE	66
7.2 Inter-Integrated Circuit (I ² C)	67

xii

	xiii
7.2.1 Schematic Circuit of I ² C	68
7.2.2 Simulation of I ² C on DVE	69
7.3 Analysis on Synopsis	70
7.4 Results	70
7.4.1 Timing Report	70
7.4.2 Power Report	70
7.4.3 Area Report	71
7.4.3.1 Total Standard cell area	72
7.4.3.2 Physical area and layout of the core	73
7.5 Discussion	74
7.6 Conclusion	75
CHAPTER VIII	76
CONCLUSION AND RECOMMENDATIONS	
8.1 Conclusion	76
8.2 Recommendations	77
BIBILIOGRAPHY	78
APPENDIX I	83
APPENDIX II	87
APPENDIX III	90
APPENDIX IV	102
APPENDIX V	106
APPENDIX VI	111

C Universiti Teknikal Malaysia Melaka

LIST OF TABLE

Table No. Title	Page
Table 2.1 Comparison of Topologies	21
Table 4.1 Comparison of 32-bit MIPS and 16-bit MIPS Computers.	32
Table 4.2 Timing Report for 16-bit and 32-bit MIPS processor	38
Table 4.3 Power Report for 16-bit and 32-bit MIPS processor	39
Table 4.4 Area Report (Standard Cell) for 16-bit and 32-bit MIPS processor	40
Table 4.5 Area Report (Physical) for 16-bit and 32-bit MIPS processor	41
Table 5.1 Timing Report for DW8051 core in DC Shell and ICC Shell	49
Table 5.2 Power Report for DW8051 core	50
Table 5.3 Area Report (Standard Cell) for DW8051 core	51
Table 5.4 Area Report (Physical) for DW8051 core	52
Table 6.1 Timing report for 16-bit MIPS processor and DW8051 core	57
Table 6.2 Power report for 16-bit MIPS processor and DW8051 core	58
Table 6.3 Area report (Standard cell) of 16-bit MIPS processor and DW8051 core	59
Table 6.4 Report area (Physical) of 16-bit MIPS processor and DW8051 core	60
Table 7.1 Timing Report of SPI and I ² C	70
Table 7.2 Power Report of SPI and I ² C	71
Table 7.3 Area Report (Standard Cell) of SPI and I ² C	72
Table 7.4 Area Report (Physical) of SPI and I ² C	73

LIST OF FIGURE

Figure No. Title	Page
Figure 2.1 MIPS Top Level Structure	8
Figure 2.2 MIPS Architecture	9
Figure 2.3 Block Diagram for DW8051	12
Figure 2.4 Memory Map	13
Figure 2.5 CPU Timing for Single-Cycle Instruction	14
Figure 2.6 Recursion Building Blocks	15
Figure 2.7 System Architecture of the Multi-Functional ECG Signal Processor	16
Figure 2.8 Block Diagram of On-die Noise Sensor Processor	16
Figure 2.9 Chip Floorplan with input/output Signals	17
Figure 2.10 Block Diagram of an I/O Block	18
Figure 2.11 AES Core Data Path	18
Figure 2.12 Processor Architecture with Machine-Learning Accelerator	19
Figure 2.13 Block Diagrams of OR1200 Processor and Implemented Low-Power	BSP20
Figure 3.1 General Process Flow of Project	25
Figure 3.2 Flow chart of implementation of designs.	26
Figure 3.3 Logic Simulation Flowchart	27
Figure 3.4 Logic Synthesis Flowchart	27
Figure 3.5 Formal Verification	28
Figure 3.6 Floorplanning	28
Figure 3.7 Physical Verification	29
Figure 4.1 32-bit MIPS Instruction Format	32
Figure 4.2 16-bit MIPS Instruction Format	32
Figure 4.3 Schematic Circuit of 16-bit MIPS Processor in Synopsis	33

 $\mathbf{X}\mathbf{V}$

Figure 4.4 Schematic Circuit of 16-bit MIP	S Processor in Vivado	34
Figure 4.5 Simulation of 16-bit MIPS proce	ssor in Synopsis	35
Figure 4.6 Simulation of 16-bit MIPS proce	ssor in Vivado	35
Figure 4.7 Simulation in Vivado Software		36
Figure 4.8 Zedboard		37
Figure 4.9 Switches and LED Display on Ze	edboard	37
Figure 4.10 Graph of total power vs 16-bit a	ind 32-bit MIPS processor	39
Figure 4.11 Graph of total standard cell area	vs 16-bit and 32-bit MIPS processor	41
Figure 4.12 Layout of 16-bit MIPS Processo	or	42
Figure 4.13 Layout of 32-bit MIPS Processo)r	42
Figure 5.1 Design Parameters		47
Figure 5.2 Clock Cycle Configuration		48
Figure 5.3 Graph of different clock period o	f DW8051	49
Figure 5.4 Graph of total power vs clock per	riod of DW8051 core	50
Figure 5.5 Graph of clock period vs total sta	indard cell area	51
Figure 5.6 Layout of DW8051 Core		52
Figure 6.1 Graph of total power vs 16-bit M	IPS processor and DW8051 core	58
Figure 6.2 Graph of total standard cell area	vs 16-bit MIPS processor and DW8051	core
		59
Figure 6.3 Layout of 16-bit MIPS processor	P. 1	60
Figure 6.4 Layout of DW8051 core		61
Figure 7.1 Block diagram of SPI		64
Figure 7.2 Schematic circuit of SPI in Synop	psis	65
Figure 7.3 Schematic circuit of SPI in Vivao	lo	65
Figure 7.4 Simulation of SPI in DVE in Syn	opsis	66
Figure 7.5 Simulation of SPI in Vivado		66
Figure 7.6 Block diagram of I ² C		67
Figure 7.7 Schematic circuit of I ² C in Synop	osis	68
Figure 7.8 Schematic circuit of I ² C in Vivad	lo	68
Figure 7.9 Simulation of I ² C on DVE in Syn	nopsis	69
Figure 7.10 Simulation of I ² C in Vivado		69

xvi

	Figure 7.12 Graph of total standard cell area of SPI and I ² C	72
Example 7.14 Levent of L^2C	Figure 7.13 Layout of SPI	73
Figure 7.14 Layout of FC	Figure 7.14 Layout of I ² C	74

xvii

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDIX

Appendix No.	Title	Page
APPENDIX I	- Commands in Synopsis	83
APPENDIX II	- Reports that generated from Synopsis	87
APPENDIX III	- Comparison between 16-bit MIPS processor and 32-bit MIPS	90
	processor (Paper to be publish)	
APPENDIX IV	- Comparison between designed 16-bit MIPS processor with	102
	DW8051 core (Paper to be publish)	
APPENDIX V	- Comparison between SPI and I ² C (Paper to be publish)	106
APPENDIX VI	– Poster INOTEK	111

LIST OF ABBREVIATIONS

- MIPS Microprocessor without Interlocked Pipeline Stages
- RISC Reduced Instruction Set Computing
- CISC Complex Instruction Set Computing
- IC Integrated Circuit
- HDL Hardware Description Language
- VHDL VHSIC Hardware Description Language
- CPU Central Processing Unit
- SRAM Static Random Access Memory
- SPI Serial Peripheral Interface
- I²C Inter-Integrated Circuit
- RAM Random Access Memory
- ROM Read Only Memory
- VCS Verilog Compiler Simulation
- DC Design Compiler
- ICC Integrated Circuit Compiler
- DVE Discovery Visual Environment
- SDA Serial Data
- SCL Serial Clock
- SS Slave Select
- MOSI Master Out Slave In
- MISO Master In Slave Out
- CLK Clock

CHAPTER I

INTRODUCTION

In this chapter, we are explaining about the details of the project which is design and development of a low power compact integrated processor of an embedded system. Besides that, we also explained about objectives, problem statement, scope of project and chapter organization.

1.1 Project Background

Microprocessor without Interlocked Pipeline Stages (MIPS) is a popular implementation of a Reduced Instruction Set Computer (RISC). MIPS architectures are typically 32-bit, but 64-bit versions have been developed in more recent years. An embedded processor consumed with low power and low cost are the demands nowadays. This project is to design and develop an integrated processor of an embedded system with low power consumption. The growth of processor with its complexity are concerned to the design with hundreds or thousands of logic gates. The large memories with high speed interfaces which give a higher performance to the processor is the reason that processor become more complex. The designers are using VHLD as design methodology to develop high level hardware system[1].

Integrated circuit (IC) design can be divided into 3 phases from the early 70s, which are polygon pushing, schematic capture and Hardware Description Language (HDL).

Polygon Pushing is the earliest phase of IC design. Usually not many design tools are available for this technique. The designers draw the design using polygons in layout. The disadvantages for this technique is highly tedious and error prone. It also limited amount of transistors up to only a few thousand[2].

Schematic Capture is the second phase of IC design method in 80s. This technique utilizes schematic editors to capture schematics drawn using gates and transistors. It can fit up to several hundred thousand transistors. This method allowed more complex and complicated circuits to be designed[3]. This also allowed more functionality to be put together. This method is still used today at 20s.

Starting 90s, the speed growth of electronics all over the world. Time to market for IC design became more essential[4]. Every design house was trying to fit multiple functionality onto a single IC chip with max millions of transistors. Also, IC design time frame as shortest as possible. This lead to design with HDL (Verilog/VHDL).

HDL is used to describe the logic functionality of a circuit. It can also describe the behavioral aspect of a circuit function. This method is used to show the netlist of a circuit. There are few types of HDL such as Verilog, VHDL, C/C++ and Superlog which is still under research[5].

This project will focus on designing a simple 16-bit Central Procession Unit (CPU) with onboard Static Random Access Memory (SRAM) memory. The developed processor should be effective yet simple that fulfills the features required in a modern embedded system but without too much unnecessary complexity.

1.2 Problem Statements

In previous research, the instruction set of a simple 16-bit CPU with onboard SRAM memory is loosely based on the MIPS architecture with some significant simplifications. The large instruction size is mostly to accommodate large register files and large memory spaces. Therefore, a simple 16-bit CPU with onboard SRAM memory will be designed and developed using Verilog language. Low power consumption will be the focus of the design. CPU usually consumed more power because of their higher speed and complexity. With lower power consumption, processor will dissipate less heat energy from the action of the switching devices contained in the CPU. This will particular important for battery operated devices.

1.3 Objectives

There are few of objectives that should be focused in this project in order to achieve the design of project:

- To design and develop a low power compact integrated processor of an embedded system by using Verilog language.
- To verify the functionality of the developed processor.
- To develop the processor into a layout.

1.4 Scope of Project

This scope of the project is to design and develop a low power integrated processor based on the architecture of MIPS processor and using timing constraint method to identify the best frequency for the overall performance of the processor. The modules of processors are constructed in Verilog Language and synthesis using Synopsis tools. The designed processor is developed into a layout with 0.18µm Silterra process technology. However, the designed processor is in 16-bit instead of 8-bit due to the limitations of the designed processor.

1.5 Chapter Organization

This thesis comprises of seven chapters.

Generally, chapter one is more to introduction of project. In this section, we are explaining about project background, objectives, problem statements, scopes of project and chapter organization.

Chapter 2 is describing about literature review of project. In part of that, we explained about the topologies of different processor from the journals or articles that are related to the project. Besides that, comparison and differences of every topology have been stated in this chapter.

Chapter 3 is the overall of methodology of project. We explained about project schedule such as workflow and method that used to complete this project. We are using 2 platforms which are Synopsis and Vivado to analyze our designs.

Chapter 4 ,5, 6 and 7 are the results and discussions of the project. We explained about the obtained results based on the timing, area and power that generated from the simulations.

In chapter 4, we analyzed on the designed 16-bit and 32-bit MIPS processor and the power optimization of the developed processor. The discussion will explain overall problem that occur during implementation of this project from beginning until ends.

In chapter 5, we analyzed on the DW8051 core with different frequencies. The modules of DW8051 core is simulated in coreConsultant and go through synthesization in Synopsys tools.

In chapter 6, we compared the designed 16-bit MIPS processor with DW8051 core under same frequency with their corresponding timing, area and power consumption. All the analysis is graphically present and tabulated in this chapter.

In chapter 7, we analyzed on the peripheral interface which are SPI and I^2C . Both are encoded in the Verilog and running in the Synopsis in order to get the data and results. The operation of SPI and I^2C are explained in the simulation.

In Chapter 8, we concluded the overall achievements of the project. Then, we recommended some future works for further research to enhance the quality and performance of the processor.