

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF FORMULA VARSITY CAR TYRE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor's Degree in Automotive Technology (Department of Mechanical Engineering Technology)(Hons.)

By,

DANIAL SOPHIAN BIN ONN B071210028 901008055339

FACULTY OF ENGINEERING TECHNOLOGY 2015

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: PERFORMANCE ANALYSIS OF FORMULA VARSITY CAR TYRE

SESI PENGAJIAN: 2014/15 Semester 2

DANIAL SOPHIAN BIN ONN Saya

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- **Sila tandakan (√)

SULIT	atau kep	dungi maklumat yang berdarjah keselamatan entingan Malaysia sebagaimana yang termaktub KTA RAHSIA RASMI 1972)
✓ TERH		dungi maklumat TERHAD yang telah ditentukan inisasi/badan di mana penyelidikan dijalankan)
TIDAK	TERHAD	
1		Disahkan oleh:
		? hade
Alamat Tetap:		Cop Rasmi:
2787 Jln Angkasa	Nuri 26,	
Taman Angkasa N	luri, 76100,	ewant trender
Melaka .		-
Tarikh: 28 · 1 . 1	L	Tarikh:

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "PERFORMANCE ANALYSIS OF FORMULA VARSITY CAR TYRE" is the results of my own research except as cited in references.

Signature

DANIAL SOPHIAN BIN ONN Author's Name

Date 2 JUNE 2015

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Automotive Technology (Department of Mechanical Engineering Technology) (Hons.). The member of the supervisory is as follow:

(Project Supervisor)

DR. MUHAMMAD ZAHIR BIN HASSAN

Pensyarah Kanan Jabatan Teknologi Kejuruteraan Mekenikal Fakulti Teknologi Kejuruteraan Universiti Teknikal Malaysia Melaka

(Project Co- Supervisor)

AHMAD ZUL HUSNI BIN CHE MAMAT Jurutera Pengajar Jabatan Teknologi Kejuruteraan Mekanikai Fakulti Teknologi Kejuruteraan

Universiti Teknikal Malaysia Melaka

ABSTRAK

Tayar pneumatik automotif memainkan peranan penting dalam sistem suspensi kenderaan.Pemilihan tayar yang digunakan adalah penting dalam meningkatkan pengendalian kenderaan dan prestasi. Formula Varsity adalah satu pertandingan lumba gaya formula berasaskan pelajar dan telah dianjurkan sejak tahun 2006 oleh Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka (UTeM). Pertandingan ini mencabar pelajar dari Malaysia IPTA / IPTS / Politeknik untuk merekabentuk, menganalisis, membina dan berlumba model kerja sebuah kereta lumba dalam keadaan trek sebenar. Pertandingan ini telah diilhamkan oleh pertandigan yang sama dinamakan sebagai Formula SAE® dianjurkan setiap tahun di negara-negara utama di seluruh dunia oleh Persatuan Jurutera Automotif. Pengalaman dan pengetahuan yang berharga dari peristiwa yang lepas telah memberi ruang dalam penambahbaikan untuk jentera lumba baru seperti meningkatkan kebolehan mengambil selekoh dan pengendalian yang baik bagi membolehkan nisbah kuasa enjin yang lebih tinggi dan mengurangkan 'oversteer' dan 'understeer' untuk membina jentera yang lebih cekap dan kompetitif. Menuju ke arah matlamat yang sama, projek ini telah dijalankan untuk mewujudkan kaedah eksperimen dipanggil ujian jalan raya untuk menentukan tayar terbaik untuk dipasang di dalam jentera perlumbaan baru dan pada masa yang sama mempunyai ciriciri pengendalian yang baik berbanding sebelumnya.

ABSTRACT

Automotive pneumatic tyre plays an important role in the vehicle suspension system. The selection of the tyre used is vital in improving the vehicle handling and performance. Formula Varsity is a student based formula style racing competition that was organized since 2006 by Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM). The competition challenges students from Malaysian IPTA/IPTS/Polytechnics to design, analyze, build and race the working model of a racing car in real track condition. The competition was inspired by similar event named as Formula SAE® organized yearly in major countries around the world by the Society of Automotive Engineers. Experience and valuable knowledge gathered from the previous event has brought up various rooms of improvements for the new race car such as improving cornering ability and handling properties to enable higher power-to-weight ratio and less oversteer and understeer to be achieved thus resulting in a more efficient and competitive race car. Responding towards similar goal, this project was conducted to create an experimental method called road test to determine the best tyre to be fitted in the new race car and at the same time has good handling properties compared to its predecessor.

DEDICATION

This thesis I dedicate to my both of my parents for their non-stop moral support, for giving all my needs during the completion of this thesis from the beginning to end. Also, not forgetting my friends for supporting me all the way.

I would also want to send this dedication to my soul mate who gives moral support during the hard times.

ACKNOWLEDGEMENT

First of all I would like to express my grateful to ALLAH s.w.t. for the blessing given to complete this study. In preparing this paper, I have engaged with many people in helping me completing this thesis. I wish to express my sincere appreciation to my supervisor Dr. Muhammad Zahir Hassan and co-supervisor Mr. Ahmad Zul Husni Bin Che Mamat for their encouragement, guidance, advice and motivation. Without thier continuous support and interest, this thesis would not have been the same as presented here.

I would like to express my gratitude to all my friends for their help and advice. I highly appreciate those who help in giving ideas and information needed in order to complete this thesis.

Last but not least, I would say that without the endless love and relentless support from my family, I would not have been here. The most sincere appreciation to my father, mother and sister who always support and encourage me along the road to success.

Thank you all.

TABLE OF CONTENT

ADSU	rak]
Abst	ract	i
Dedic	cation	ii
Ackn	nowledgement	iv
Table	e of Content	•
List o	of Tables	>
List o	of Figures	xi
List A	Abbreviations, Symbols and Nomenclatures	x
СНА	APTER 1: INTRODUCTION	
1.1	Overview	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope	3
СНА	PTER 2: LITERATURE REVIEW	
2.1	Туге	5
2.2	History of Automotive Tyre	5
2.3	Tyre Components	7
2.4	Tyre Designation	10

2.5	Tyre Cla	assification	14
	2.5.1	Radial Ply Tyre	14
	2.5.2	Non Radial Ply Tyre	15
	2.5.3	Differences in the Dynamics of Radial and Non- Radial Tyres	16
2.6	Road Us	se Tyres	17
2.7	Semi-sli	ck Tyres	17
2.8	Full-slic	k Tyres	18
2.9	Achilles	ATR K-Sport	19
2.10	Toyo R	388	20
2.11	Tyre Tre	ead Design	20
2.12	Thermal	Efficiency of Tyre	21
	2.12.1	Hysteresis	21
	2.12.2	Total Strain Energy	23
	2.12.3	Dissipative Energy	23
	2.12.4	Heat Generation Rate	24
2.13	Therma	l Imager	25
	2.13.1	Working principle of thermal imaging	26
	2.13.2	Thermal imaging camera	27
	2.13.3	Thermal imager for mechanical application	28
	2.13.4	Thermal imaging software	30

CHAPTER 3: METHODOLOGY

3.1	Researc	ch design	31
3.2	Materia	al selection	32
	3.2.1	Tyre Selection	32
3.3	Prepara	ation for Road Test	33
	3.3.1	Car Specifications	33
	3.3.2	Weight	34
	3.3.3	Allignment	34
3.4	Road T	est	35
	3.4.1	Braking test	35
	3.4.2	Handling test	36
	3.4.3	Acceleration test	37
	3.4.4	Lap time	38
3.5	Melaka	a International Motorsports Circuit (MIMC)	39
3.6	Therma	al inspection procedures	40
	3.6.1	Define the task	40
	3.6.2	Perform a baseline inspection	41
	3.6.3	Start inspecting	42
3.7	Data A	nalyzing	43

CHAPTER 4: RESULTS AND DISCUSSION

4.0	Introduction	44
4.1	Braking test results	45
	4.1.1 Achilles ATR K-sport	45
	4.1.2 Bridgestone	50
	4.1.3 Comparison in braking performance	54
4.2	Handling test results	55
	4.2.1 Achilles ATR K-sport	55
	4.2.2 Bridgestone	59
	4.2.3 Comparison in handling performance	64
4.3	Acceleration test results	65
	4.3.1 Achilles ATR K-sport	65
	4.3.2 Bridgestone	69
	4.3.3 Comparison in acceleration performance	73
4.4	Lap time	74
	4.4.1 Achilles ATR K-sport	74
	4.4.2 Bridgestone	78
	4.4.3 Comparison in Performance	82
4.5	Thermal image	83
	4.5.1 Thermal image for Achilles tyre at initial state in dry condition	83
	4.5.2 Thermal image for Achilles tyre after 3 runs in dry condition	84
	4.5.3 Thermal image for Achilles tyre after final run in dry condition	85

	4.5.4 Thermal image for Achilles tyre at initial state in wet condition	86
	4.5.5 Thermal image for Bridgestone tyre at initial state in dry condition	87
	4.5.6 Thermal image for Bridgestone tyre after 3 runs in dry condition	89
	4.5.7 Thermal image for Bridgestone tyre at initial state in wet condition	90
4.6	The relation between tyre temperature and tyre performance	91
СНА	PTER 5: CONCLUSION	
5.1	Conclusion	92
5.2	Recommendations for further work	94
REF	ERENCES	95
APPENDIX I		97
APPI	APPENDIX II	

LIST OF TABLES

TABLE	TITLE	PAGE
2-1	Load Index Table	12
2-2	Speed Rating Table	12
3-1	Weight of 2012 Formula Varsity Race car	29
3-2	Alignment Values of 2012 Formula Varsity Racecar	29
4-1	Braking test results for the first 3 runs	45
4-2	Braking test results for the second set of runs	46
4-3	Braking test results for the final run	47
4-4	Braking test results for the first 3 runs in wet condition	48
4-5	Braking test results for the second set of runs	49
4-6	Braking test results for the first 3 runs	50
4-7	Braking test results for the second set of runs	51
4-8	Braking test results for the final run	51
4-9	Braking test results for the first 3 runs in wet condition	52
4-10	Braking test results for the second set of runs	53
4-11	Handling test results for the first 3 runs	56
4-12	Handling test results for the second set of runs	56
4-13	Handling test results for the final run	57
4-14	Handling test results for the first 3 runs	58
4-15	Handling test results for second set of run	59
4-16	Handling test result for the first 3 runs	60

4-17	Handling test results for second set of run	61
4-18	Handling test results for final run	61
4-19	Handling test results for the first 3 runs	62
4-20	Handling test results for the second set of runs	63
4-21	Acceleration test results for the first 3 runs.	65
4-22	Acceleration test results for the second set of runs	66
4-23	Acceleration test results for the final run	67
4-24	Acceleration test results for the first 3 runs.	67
4-25	Acceleration test results for the second set of runs	68
4-26	Acceleration test results for the first 3 runs	69
4-27	Acceleration test results for the second set of runs	70
4-28	Acceleration test results for the final run	70
4-29	Acceleration test results for the first 3 runs	71
4-30	Acceleration test results for second set of runs	72
4-31	Lap time results for the first 3 laps	74
4-32	Lap time results for the second 3 laps	75
4-33	Lap time results for the final 3 laps	76
4-34	Lap time results for the first 3 laps	76
4-35	Lap time results for the second 3 laps	77
4-36	Lap time results for the first 3 laps	78
4-37	Lap time results for the second 3 laps	7 9
4-38	Lap time results for the final 3 laps	7 9
4-39	Lap time results for the first 3 laps.	80

хi

LIST OF FIGURES

FIGURE	TITLE	PAGE
2-1	Flow Chart of Literature Review	4
2-2	Tyre invented by Robert William Thompson in 1846	6
2-3	Components of radial tires	7
2-4	Tire designation	10
2-5	Load Index Table	12
2-6	Speed Rating Table	12
2-7	Cross section of a tire on a rim	13
2-8	Construction of radial tyre	14
2-9	Example of non-radial tyre construction	15
2-10	The deformation in contact area when	16
	cornering between radial and non-radial tyre in the presence of lateral force	
2-11	A semi slick tyre engraved with minimal tread	18
	grooves to maintain highest contact on road surface	
2-12	Achilles ATR K-Sport semi-slick tyre	20

2-13	Stress-strain relation of a rubber material element	24
	undergoing a circuit at the steady state from rolling simulation	
2-14	Thermal imager working principles	26
2-15	Applications of thermal imaging	28
2-16	Motor mechanical faults	30
3-1	The flow chart of this research	32
3-2	Formula Varsity Technical Specification	33
3-3	An example of a slalom course layout	37
3-4	Track layout of Melaka International Motorsports Circuit	39
4-1	Thermal image of the Achilles tyre at initial state in	83
	dry condition	
4-2	Thermal image of the Achilles tyre after 3 runs	84
	in dry condition	
4-3	Thermal image of the Achilles tyre after final run	85
	in dry condition	
4-4	Thermal image of the Achilles tyre at initial state	87
	in wet condition	
4-5	Thermal image of Bridgstone tyres at initial state	88
	in dry condition	

xiii

4-6	Thermal image of Bridgstone tyres after 3 runs	89
	in dry condition	
4-7	Thermal image of the Bridgestone tyre at initial state	90
	in wet condition	

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

FV - Formula Varsity

NVH - Noise, Vibration, Harshness

DMA - Dynamic Mechanical Analysis

FEA - Finite Element Analysis

CHAPTER I

INTRODUCTION

In this chapter, an overview for performance analysis of Formula Varsity race car tire will be described. The main idea, problem statement, objectives and aim of the study will also be introduced. The organization of the report is stated below.

1.1 Overview

The first practical pneumatic tire was invented by John Boyd Dunlop, born in Scotland, while working as a veterinarian in May Street, Belfast, in 1887 for his son's bicycle, in an effort to prevent the headaches his son had while riding on rough roads. Pneumatic tires are made of a flexible elastomer material, such as rubber, with reinforcing materials such as fabric and wire. Tire companies were first started in the early 20th century, and grew in tandem with the auto industry.

The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance (Kusaka, et al, 2015).

There are several types of tires have been invented nowadays for multiple purposes such as heavy lifting, road use and also performance tires used in racing. These tires vary in the construction types of the each tire. They include bias, belted bias and radial construction. This affects the handling, characteristic, behavior and uses of the tire.

Tread depth, inflation pressure, tire temperature, and road surface condition are among the most notable factors that have a noticeable effect on the tire force and moment characteristics. They can vary significantly during the operation of a tire and can effectively modify tire (and thus vehicle) performance (Sivaramakrishnan, 2015).

1.2 Problem statement

From the previous model of 2012 FV race car, it is known that the car is equipped with Bridgestone tire size 165/50/R13 which is a standard road use tire that is not suitable for racing and optimum handling characteristics. Due to its normal usage and construction, this study is made to determine the best type of tire to overcome the disadvantages from the previous chosen tire type.

The type of tire chosen is important to good cornering grip and traction and also able to withstand extreme racing conditions on the track. Knowledge of these characteristics and their effects on racecar performance can give the engineer insight into performance optimization. (Nicholas, 2013).

There are many factors that can contribute to the handling performance of an FV race car, they include tire thread pattern, tire material composition, tire type and also tire design. The width and size of tires can also be an important factor for its handling behavior. Tires are required to produce the forces necessary to control the vehicle. Given that the tire is the only means of contact between the road and the vehicle, they are at the heart of vehicle handling and performance. (Nicholas, 2013).

This analysis is being carried out to determine the best specification of the tire to be equipped to the next UTeM FV racecar by conducting road test to get accurate information in the tire selection.

1.3 Objective

Tire is the most important component that affects the vehicle dynamics. The tire cornering characteristic and gripping of the tire play a key role in determining the directional control and stability of the vehicle. Road tests are done to visualize the direct behavior and characteristic of the tire equipped to the vehicle to measure its performance on the track by implementing various tests.

The objective of the project is to study and analyze the road performance of the tire by conducting road test. The goals are as stated below:

- I. To conduct road test of FV race car equipped with the tire to analyze.
- II. To determine the thermal efficiency of the tire at maximum traction.
- III. To determine the type of thread and material used on the tire.
- IV. To determine the best type of tire to be used on the FV race car.

1.4 Scope

In line with the objective stated above, the scopes are:

- 1. Analyzing road test on UTeM FV race car equipped with Achilles ATR K-sport 165/55/R14 72V tire.
- 2. Determining the thermal efficiency, thread pattern, material and type of tire to be used.

CHAPTER 2

LITERATURE REVIEW

In this chapter, brief information of tires will be presented. Construction types, nomenclature of pneumatic tires will be explained. Review of previous tire performance analysis and road test will also be presented. The flow of the literature review is shown in **Figure 2-1**

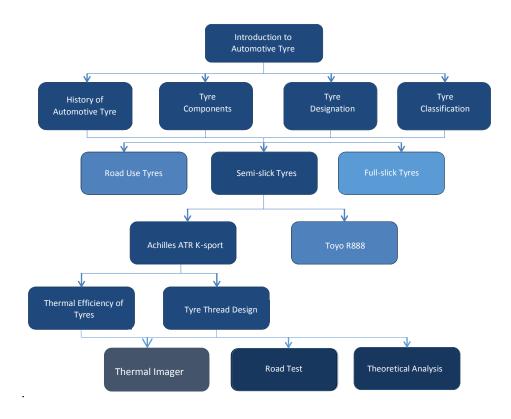


Figure 2-1: Flow Chart of Literature Review

2.1 Tyre

One of the main components of an automotive chassis system is the tyre. Most of the weight of a vehicle is supported by the components of the chassis system including wheels and tyres. Tyres act like springs by using air as cushions and absorb most of the shocks caused by road irregularities. The tire sidewalls flexes as they make contact with road irregularities. This action reduces the effect of road shocks on the vehicle, passengers and load. Tyres also function as a medium of contact with the road to provide traction and grip. With that, the vehicle would be able to accelerate, brake and make turns without skidding (NHTSA, 2012)

It can be concluded that the very motion of a vehicle is controlled entirely through the forces exerted by the tyre on the road surface. To support and control the movement of a vehicle, the tires needs to interact well with the road surface and provide needed forces in order to overcome skidding. The kinematic behavior of the vehicle is produced by the interaction between the tyre and road surface which is determined by the path of the tyre, which in other terms called as "footprint". For years engineers have been researching and taken serious attention to the study of tire footprint to develop the tire with adequate durability and performance.

2.2 History of Automotive Tyre

In earlier days, tyres were originally made of durable material that circles a fragile round wheel made of steel hoop on a wooden spoked wagon wheel. The pneumatic tires today are much more advanced and different compared to the tyres during those times. The tyres during olden days were just a material durable enough to withstand the elements and to protect and give a longer service life to the wheels.