IMPLEMENTATION OF RDBMS VIA SQOOP IN A SMALL HADOOP CLUSTER

CHIA LI YEN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: IMPLEMENTATION OF RDBMS VIA SQOOP IN A SMALL HADOOP <u>CLUSTER</u>

SESI PENGAJIAN: 2012/2013

Saya _____

CHIA LI YEN

mengaku membenarkan tesis (PSM) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

	SULIT	(Mengandungi maklumat yang berdarjah
		keselamatan atau kepentingan Malaysia
		seperti yang termaktub di dalam AKTA
		RAHSIA RASMI 1972)
	TERHAD	(Mengandungi maklumat TERHAD yang
		telah ditentukan oleh organisasi/badan di
		mana penyelidikan dijalankan)
/	TIDAK TERHAD	

(TANDATANGAN PENULIS)

Alamat tetap: <u>A-1-08 P/Puri Suakasih Psn Suakasih</u> <u>BTHO 43200 Bt 9, Cheras, Selangor.</u>

Tarikh:

(TANDATANGAN PENYELIA) <u>PM Dr. Azah Kamilah binti</u> <u>Draman @ Muda</u>

Tarikh:

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

IMPLEMENTATION OF RDBMS VIA SQOOP IN A SMALL HADOOP CLUSTER

CHIA LI YEN

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Database Management)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

DECLARATION

I hereby declare that this project report entitled

IMPLEMENTATION OF RDBMS VIA SQOOP IN A SMALL HADOOP CLUSTER

is written by me and is my own effort and that no part has been plagiarized without citations

STUDENT

: ______(CHIA LI YEN)

SUPERVISOR :

Date:

Date:

(PM DR. AZAH KAMILAH BINTI DRAMAN @ MUDA) I

DEDICATION

I dedicate this to my parents, lecturers, and friends. I earnestly feel that without their inspiration, able guidance and dedication, I would not be able to pass through the tiring process of this work.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

I would like to express the deepest appreciation to my supervisor, Associate Prof Dr. Azah Kamilah binti Draman @ Muda, who introduced me to this new technology and gave me the chance to do the project. Without her guidance and support, this dissertation would not have been possible.

I would like to thank a lecturer, Associate Prof Dr. Choo Yun Huoy, who gave me some guidance throughout the project. Without her guidance, I could not complete the project so successful.

In addition, a thank you to Dr. Lim Kim Chuan, who borrow me his lab and the hardware that fulfill the system and hardware requirement of this project. Without his hardware, the project could not end successfully.

Last but not least, I would like to thank my beloved family and my friends who always support me. Thank you very much.

ABSTRACT

Hadoop is an open source project for distributed storage and processing of large sets of data on commodity hardware. Hadoop works well with structured as well as unstructured data. Basically, Hadoop is not a database, it is a distributed file system (HDFS) to let user store large amount of data on a cloud of machines and handling data redundancy. On top of it, Hadoop provides an API for processing the stored data, which is known as Map-Reduce. The basic idea is, since the data is stored in many nodes, so better process the data in a distributed way where each node can process the data stored on it rather than spend a lot of time moving it over the network. Sqoop (SQL-to-Hadoop) is used to extract data from non-Hadoop data stores, transform the data into a form usable by Hadoop, and then load the data into HDFS. This process is called ETL, for Extract, Transform, and Load. For those existing big company that want to use Hadoop for data storage, Sqoop will be used to maintain the old existing data and bring those old data into Hadoop. Sqoop also can export the data from Hadoop to non-Hadoop data stores. Therefore, it provides bi-directional data transfer between Hadoop and non-Hadoop data stores. This project is a research on implementation of RDBMS via Sqoop in a small Hadoop cluster. The existing old data in RDBMS will be imported into Hadoop cluster by using Sqoop component of Hadoop and the new data will be inserted into HDFS of Hadoop. After the import process is carried out, an application is created and designed to show how does the old data from those standalone databases can integrate well with each other and combine with the new data that will be inserted via interface.

ABSTRAK

Hadoop merupakan satu projek open source berfungsi untuk penyimpanan data secara agihan dan pemprosesan set data yang besar dalam perkakasan komoditi. Hadoop boleh berfungsi dengan data yang berstruktur dan data yang tidak berstruktur. Pada asasnya, Hadoop bukan satu pangkalan data, ia merupakan sistem fail yang diagihkan kepada pengguna untuk menyimpan saiz data yang besar pada *cloud machine* dan pengendalian data yang berlebihan. Selain daripada itu, Hadoop juga telah menyediakan API untuk memproses data yang telah disimpan, iaitu MapReduce. Idea asasnya lebih baik memproses data yang telah disimpan dalam sistem fail daripada menggunakan masa yang banyak untuk berfungsi. Sqoop (SOL-to-Hadoop) digunakan untuk mengambil data dari pangkalan data yang bukan Hadoop, dan menukarkan data ke dalam bentuk yang boleh digunakan oleh Hadoop dan kemudian memuatkan data tesebut ke dalam HDFS. Proses ini dipanggil ETL: Extract, Transform and Load. Bagi sesetengah syarikat besar yang ingin menggunakan Hadoop untuk penyimpanan data, Sqoop boleh digunakan untuk mengekalkan data lama yang sedia ada dan membawa data-data tersebut ke dalam Hadoop. Sqoop juga boleh mengeksport data dari Hadoop ke dalam pangkalan data yang bukan Hadoop. Oleh itu, Sqoop membolehkan pemindahan data dalam dua arah antara Hadoop dan RDBMS. Projek ini mengkaji prelaksanaan RDBMS melalui Sqoop dalam kelompok Hadoop yang kecil. Data yang sedia ada dalam RDBMS akan diimport ke dalam Hadoop dengan menggunakan komponen Sqoop Hadoop dan data baru akan dimasukkan ke dalam HDFS Hadoop. Selepas proses import dijalankan, aplikasi akan dibangunkan untuk menunjukkan bagaimana data lama dari pangkalan data yang standalone boleh mengintegrasikan dengan baik antara satu sama lain dan menggabungkan dengan data baru yang akan dimasukkan melalui aplikasi.

TABLE OF CONTENTS

CHAPTER SUBJECT	PAGE
-----------------	------

DECLARATION	Ι
DEDICATION	II
ACKNOWLEDGEMENT	III
ABSTRACT	IV
ABSTRAK	V
TABLE OF CONTENTS	VI
LIST OF TABLES	X
LIST OF FIGURES	XII
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

CHAPTER II	LIT	ERATURE REVIEW	
	1.6	Conclusion	4
	1.5	Expected Output	3
	1.4	Project Significance	3
	1.3	Objective	3
	1.2	Problem Statement(s)	2
	1.1	Project Background	1

	2.1	Introduction		5		
	2.2	Apach	ne Hadoop	6		
		2.2.1	Data Structures	7		
	2.3	Techn	iques and Technology (Hadoop)	8		
		2.3.1	HDFS	8		
		2.3.2	MapReduce	11		
		2.3.3	YARN	14		
		2.3.4	Hive	16		
			2.3.4.1 Differences between	17		
			HiveQL and SQL			
		2.3.5	Pig	18		
			2.3.5.1 Pig vs Hive	19		
		2.3.6	HBase	22		
		2.3.7	Sqoop	24		
		2.3.8	ZooKeeper	25		
	2.4	Concl	usion	26		
CHAPTER III	PRC	PROJECT METHODOLOGY AND				
	PLA	PLANNING				
	3.1	Introd	uction	27		
	3.2	Projec	et Methodology	27		
		3.2.1	Data Analytics Lifecycle	28		
		3.2.2	Methodology Used	30		
	3.3	Projec	et Schedule and Milestones	31		
		3.3.1	Milestones	32		
		3.3.2	Gantt Chart	34		
	3.4	Concl	usion	35		
CHAPTER IV	ANA	ANALYSIS				
	4.1	Introd	uction	36		
	4.2	Hadoo	op Distributions	36		
		4.2.1	Clodera (CDH)	37		
		4.2.2	MapR (M3, M5, M7)	38		

		4.2.3	Hortonwor	ks (HDP)	39	
	4.3	Comp	oarisons of H	adoop Distributions	40	
	4.4	Differences between traditional				
		Relational Database and Hadoop				
	4.5	Concl	usion		43	
CHAPTER V	DES	IGN				
	5.1	Introd	luction		44	
	5.2	System	m Architectu	re Design	45	
	5.3	Datab	ase Design		47	
		5.3.1	Conceptual	Design	47	
		5.3.2	Logical De	sign	49	
			5.3.2.1 SM	P Database	50	
			5.3.2.2 Co-	Cu Database	53	
			5.3.2.3 Lib	rary Database	54	
		5.3.3	Physical D	esign	56	
	5.4	Grapł	nical User Int	erface (GUI) Design	56	
	5.5	Concl	usion		61	
CHAPTER VI	IMPLEMENTATION					
	6.1	Introduction			62	
	6.2	Envir	onment Setuj	0	62	
		6.2.1	Sandbox Ir	stallation and	63	
			Configurin	g Steps		
			6.2.1.1	Configured Static IP	63	
			6.2.1.2	Set Hostname	64	
			6.2.1.3	SSH Setup	64	
			6.2.1.4	Disable Key Security	66	
				Options		
			6.2.1.5	NTP Service Setup	66	
			6.2.1.6	Flush Networking	67	
				Rules		
			6.2.1.7	Disable Transparent	67	

				Huge Pages (THP)	
			6.2.1.8	Create Node	68
				Appliances	
		6.2.2	Remainin	g Nodes Setup	68
			6.2.2.1	Modify Node-Specific	69
				Settings	
			6.2.2.2	Ensure Connectivity	70
				between Nodes	
		6.2.3	Install Cl	uster via Ambari	70
	6.3	Databa	ise Implem	entation	79
		6.3.1	SMP Da	tabase	79
		6.3.2	Co-Cu I	Database	81
		6.3.3	Library	Database	83
	6.4	Sqoop	Hive-impo	ort Implementation	84
		6.4.1	SMP Da	atabase	85
		6.4.2	Co-Cu I	Database	85
		6.4.3	Library	Database	85
	6.5	Conclu	usion		86
CHAPTER VII	CON	ICLUSI	ON		
	7.1	Introdu	uction		87
	7.2	Observ	vation on V	Veakness & Strengths	87
	7.3	Conclu	usion		88
	REF	ERENC	ES		89
	APP	ENDIX	A A	MBARI	91
	APP	ENDIX	B H	UE	106
	APP	ENDIX	C U	SER MANUAL	109

LIST OF TABLES

TABLE	SUBJECT
IADLL	DUDJECI

PAGE

2.1	Differences between Pig and Hive	20
2.2	Row-oriented vs column-oriented	22
3.1	Milestones	32
3.2	Gantt chart	34
4.1	Ten factors review Hadoop distribution	40
5.1	Data dictionary of student table	50
5.2	Data dictionary of course table	50
5.3	Data dictionary of faculty table	51
5.4	Data dictionary of subject table	51
5.5	Data dictionary of course_subject table	51
5.6	Data dictionary of elective_subject table	52
5.7	Data dictionary of reg_sub table	52
5.8	Data dictionary of student table	53
5.9	Data dictionary of reg_koku table	53
5.10	Data dictionary of koku table	54
5.11	Data dictionary of student table	54
5.12	Data dictionary of book table	55
5.13	Data dictionary of reference table	55

5.14	Data dictionary of borrow_book table	55
6.1	Hosts	68

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE	SUBJECT
--------	---------

PAGE

2.1	Blocks formation in HDFS	9
2.2	HDFS architecture	10
2.3	Hadoop command to execute MapReduce	12
2.4	Task Instance in TaskTracker	12
2.5	Shuffle and sort	13
2.6	YARN	15
2.7	Hive	16
2.8	Pig	19
2.9	Sqoop workflow	24
3.1	Data Analytics Lifecycle	28
3.2	Methodology used in this project	30
4.1	Overview of CDH 5	37
4.2	Overview of MapR	38
4.3	Overview of HDP	39
5.1	Architecture Design of Hadoop cluster	45
5.2	Architecture Design of Hadoop cluster with	46
	RDBMS	
5.3	ERD of SMP database	47

5.4	ERD of Co-Cu database	48
5.5	ERD of Library database	49
5.6	Login page	56
5.7	Homepage	57
5.8	Subject list	57
5.9	Subject Registration	58
5.10	View registered subjects	58
5.11	Popularities of co-curricular activities	59
5.12	Reference books based on subject	59
6.1	Hostname of master node	64
6.2	RSA key pair is generated and copied	64
6.3	Key is copied and paste in file authorized_keys	65
6.4	Tighten up the file system permission	65
6.5	Create file config in /root/ .ssh directory	65
6.6	Disabled the Linux firewall	66
6.7	Ensure iptables are not running	66
6.8	Start the NTP service	66
6.9	Flush out the existing network settings	67
6.10	Content to append in /ets/rc.local file	67
6.11	MAC address of adapter 2 in Network settings	69
6.12	SSH command	70
6.13	Login	70
6.14	Get Started	71
6.15	Select stack	71
6.16	Install options	72
6.17	Confirm Hosts	72
6.18	Host Checks with warnings	73
6.19	Python HostCleanup.script	73
6.20	Host checks without warnings	74
6.21	Choose services	74
6.22	Assign Masters	75

6.23	Assign Slaves and Clients	75
6.24	Customize services	76
6.25	Review	76
6.26	Install	77
6.27	Start and test	77
6.28	Summary	78
6.29	Dashboard Ambari 1.7	78
6.30	Example of CREATE table with ACID support	84
6.31	Sqoop import command for ORACLE	85
6.32	Sqoop import command for MySQL	85
6.33	Sqoop import command for SQL server	86

XIV

LIST OF ABBREVIATION

ABBREVIATION DESCRIPTION

HDFS	Hadoop Distributed File System
YARN	Yet Another Resource Negotiator
CDH	Cloudera Hadoop Distribution
HDP	Hortonworks Data Platform
NFS	Network File System
ACID	Atomicity, Consistency, Isolation and Durability
SSH	Secure Shell
RSA	Rivest, Shamir and Adelman
SELINUX	Security-Enhanced Linux
NTP	Network Time Protocol
THP	Transparent Huge Pages
VM	Virtual Machine

CHAPTER I

INTRODUCTION

1.1 Project Background

Hadoop is an open source project that offers another approach to store and process data. For those hoping to tackle the capability of big data, Hadoop is the platform of choice. Hadoop has two core components out of so many components, that is, file store (HDFS) to store large amount of file data on a cloud of machines, handling data redundancy and programming framework (MapReduce), an associated implementation for processing and generating large data sets with a parallel, distributed algorithm on a cluster.

This project implemented by using five nodes (m1.hdp2, m2.hdp2, w1.hdp2, w2.hdp2 and w3.hdp2). m1.hdp2 acts as master or NameNode in HDFS, m2.hdp2 acts as Secondary NameNode or knows as checkpoint node, while w1.hdp2, w2.hdp2 and w3.hdp2 are act as slaves or DataNode in HDFS. The job of NameNode are managing namespace in HDFS and store MetaData (about the data being stored in DataNodes). Secondary NameNode purpose is to have a checkpoint in HDFS. DataNodes stores the actual Data and send the information of data stored to the NameNode.

At the same time, m1.hdp2 acts as JobTracker in MapReduce, while w1.hdp2, w2.hdp2 and w3.hdp2 are act as TaskTracker. The job of JobTracker is divide job and assigns it to TaskTracker, while TaskTracker run the tasks and report the status of task to JobTracker.

Sqoop is a tool used for data transfer from relational database into HDFS. There are three types of different relational databases are using in this project, which are, ORACLE, MySQL and SQL Server. The data will be imported from the selected relational database into Hive, which act as data warehouse in Hadoop. User can retrieve the data from Hive by using HiveQL language, which is a SQL like statement. Hive will convert the HiveQL language into a MapReduce job.

1.2 Problem Statement(s)

The problems are identified and described as below:

- *i.* Hadoop is an open source project, so there are many vendors have developed their own distributions by adding some new functionality. Consequently, user does not know which Hadoop distribution to choose.
- *ii.* Hadoop is a new platform to store and process data. But, how does it work? Are there any differences with Relational Database Management System? If there are existing data in old relational database, can Hadoop build on top of it?
- *iii.* How can an application work with Hadoop?

1.3 Objective

The purposes to develop the project are listed as below:

- Objective 1: To compare Hadoop Framework Distribution among different open source distributor (Cloudera, Hortonwork, MapR and etc.).
- Objective 2: To design a database using the proposed Hadoop Framework.
- Objective 3: To implement the proposed design in a prototype.

1.4 **Project Significance**

Users can see the comparison of Hadoop Framework Distribution among different open source distribution. The result of the comparison can help user to understand more about the Hadoop that developed by different open source. Users also can see how Hadoop works with its components. Besides, users also can know how the data can be imported into Hadoop from RDBMS by using Sqoop. From a prototype that is developed, users can see how well does the Hadoop work with an application.

1.5 Expected Output

The expected outputs from the project are listed as below:

- Output 1: Can get a comparative analysis on different Hadoop Framework Distribution.
- Output 2: Database design using the proposed Hadoop Framework is created.
- Output 3: Simple prototype or interface to implement the database is developed.

1.6 Conclusion

This chapter has briefly introduced what is the project all about and how can Hadoop works with RDBMS. The objectives have clearly stated the purpose of the project to carry out and how to solve the problems found. The next chapter will discuss about the literature review of the selected services that will contribute to the project.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter, some services will be discussed about their function and how the services contribute in a cluster. The services that will be described in this chapter are those selected to be used in this project, which is based on the need of the project. From this chapter, user can know how important for those services to be installed in the cluster.

The selected services are HDFS, MapReduce, YARN, Hive, Pig, HBase, Sqoop and ZooKeeper. An overview of a service will be described for each service. But, the main components of a Hadoop cluster are HDFS and MapReduce. Therefore, some explanation on the way how do they work in the cluster will be discussed in this chapter in more detail.

2.2 Apache Hadoop

As the World Wide Web grew, search engines and indexes were made to help people find relevant information. During the early years, search results were returned by humans. But as the number of web pages grew from dozens to millions, computerization was needed. Web crawlers were made, many as university-led research projects and search engine startups took off (Yahoo, etc).

One such project was Nutch – an open-source web search engine – and the brainchild of Dough Cutting and Mike Cafarella. Their goal was to invent a way to return web search results faster by distributing data and calculations across different computers so multiple tasks could be accomplished simultaneously. Also during this time, another search engine project called Google was in progress. It was based on the same concept – storing and processing data in a distributed, automated way so that more relevant web search results could be returned faster.

In 2006, Cutting joined Yahoo and took with him the Nutch project as well as ideas based on Google's early work with automating distributed data storage and processing. The Nutch project was divided. The web crawler portion remained as Nutch. The distributed computing and processing portion became Hadoop (named after Cutting's son's toy elephant). In 2008, Yahoo released Hadoop as an open-source project, and, today Hadoop's framework and family of technologies are managed and maintained by the non-profit Apache Software Foundation (ASF), a global community of software developers and contributors.

In a "normal" relational database, data is found and analyzed using queries, based on Structured Query Language (SQL). Non-relational databases use queries too,

6