
PJP/2012/FTMK/(1D)/S01002

CHARACTERISATION OF DATA SET FEATURES FOR STORAGE SPACE

OPTIMISATION USING FUNCTIONAL DEPENDENCY

PENYELIDIK:

DR. NURUL AKMAR EMRAN

DR. NORASWALIZA ABDULLAH

NUZAIMAH MUSTAFA

FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI

2013

PJP/2012/FTMK/(1D)/S01002

TABLE OF CONTENTS

 PAGE
ABSTRACT ii

ACKNOWLEDGEMENT iii

LIST OF TABLES iv

LIST OF FIGURES v

LIST OF ABBREVIATIONS vi

CHAPTER 1 1

INTRODUCTION 1
1.1 Background 1
1.2 The Proxy-based Approach 2
1.3 Functional Dependency 4
1.4 Problem statement 6
1.5 Research Questions 7
1.6 Aims and Objective 7
1.7 Research Contribution 7

CHAPTER 2 8

LITERATURE REVIEW 8
2.1 Background 8
2.2 Application of Functional Dependency in different domain 8

2.2.1 Methods for FDs discovery 9
2.3 Data Incompleteness problem: Missing values 16
2.4 Conclusions 17

CHAPTER 3 19

MATERIALS AND METHODS 19
3.1 Background 19
3.2 Research Methodology 19
3.3 Data source of Microbial Genomics data sets 22

3.2.1 Description of the semantics of Taxon table attributes 24
3.2.2 Observation of missing values in Taxon table 25

3.4 TANE Algorithm for discovery of FDs 26
3.3.1 TANE Algorithm categories 27

3.5 The method in preparing analysis of space requirement 31
3.5.1 Proxy based approach for space optimisation 32

3.6 Conclusions 34
CHAPTER 4 35

RESULTS 35
4.1 Background 35
4.2 Proxy discovery from Taxon sub-tables 35

4.2.1 Summary output of table AE_F 46
4.2.2 Summary output of table AE_G 49
4.2.3 Summary output of table AE_H 52
4.2.4 Summary output of table AE_I 56

PJP/2012/FTMK/(1D)/S01002

4.2.5 Summary output of table AE_J 60
4.2.6 Summary output of table AE_K 63
4.2.7 Summary output of table AE_L 67

4.3 Summary of Space requirement results 71
4.3.1 Multi-valued table for Table AE_F 71
4.3.2 Multi-valued table for Table AE_G 72
4.3.3 Multi-valued table for Table AE_H 72
4.3.4 Multi-valued table for Table AE_I 73
4.3.5 Multi-valued table for Table AE_J 74
4.3.6 Multi-valued table for Table AE_K 75
4.3.7 Multi-valued table for Table AE_L 76

4.4 Conclusions 77
CHAPTER 5 78

RESULTS ANALYSIS AND DISCUSSIONS 78
5.1 Background 78
5.2 Analysis of FD accuracy for candidate proxy in Taxon sub-tables 78
5.3 Space Requirement Analysis 84
5.4 Conclusions 86

CHAPTER 6 87

CONCLUSIONS 87
REFERENCES 89

APPENDICES 91

PJP/2012/FTMK/(1D)/S01002

ABSTRACT

Within data intensive applications, data volumes often be large enough for storage space
requirements to become an issue that must be dealt by data centre providers. The growth of
data volumes calls for a way to manage storage space efficiently. One way to manage data
storage space is through space optimisation. In order to optimise space, data centre
providers need to choose space optimisation method(s) that is useful for the data sets being
stored. However, studies on the characteristics of data sets that will be useful for space
optimisation is limited even though such information is crucial in designing space
optimisation strategy. We argue that, if we could determine the characteristics of data sets
that are useful (or less useful) for space optimisation, data centre providers could make
guided decision in implementing their space optimisation strategy. This research focuses
on investigating the characteristics of data sets for space optimisation using functional
dependency technique. The contribution of this research is the result of the experiment and
the analysis conducted against real data sets for a space optimisation techniques just
mentioned. This research concludes with the characteristics of data set features discovered
within the microbial genomics data sets.

ii

PJP/2012/FTMK/(1D)/S01002

ACKNOWLEDGEMENT

Praise to Allah s.w.t for the strength, patience and endurance to complete this
research. We would like to acknowledge Universiti Teknikal Malaysia Melaka for the
financial assistance granted to pursue this research, the Faculty of Information and
Commuication Technology and the Centre for Research and Innovation Management
(CRIM). Without these bodies, the achievement of the objectives set for this research is not
possible.

Dr. Nurul Akmar Emran

Dr Noraswaliza Abdullah

Nuzaimah Mustafa

iii

PJP/2012/FTMK/(1D)/S01002

LIST OF TABLES

TABLE TITLE PAGE
Table 1: Types of dependencies ... 5
Table 2. List of attributes in Taxon .. 20
Table 3. Statistics of missing data in Taxon table .. 26
Table 4. A Proxy map in pure relational table (Emran, Abdullah, and Isa 2012) 33
Table 5. A Proxy map in a multi-valued table (Emran, Abdullah, and Isa 2012) 33
Table 6. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 ... 46
Table 7. Overall FD accuracy and proxy table size analysis for table AE_F 48
Table 8. FDs discoveries in AE_G table with G3 ranges of 0.10 to 1.00 .. 49
Table 9. Overall FD accuracy and proxy table size analysis for table AE_G 51
Table 10. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 52
Table 11. Overall FD accuracy and proxy table size analysis for table AE_H 55
Table 12. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 56
Table 13. Overall FD accuracy and proxy table size analysis for table AE_I 59
Table 14. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 60
Table 15. Overall FD accuracy and proxy table size analysis for table AE_J 62
Table 16. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 63
Table 17. Overall FD accuracy and proxy table size analysis for table AE_K 66
Table 18. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 67
Table 19. Overall FD accuracy and proxy table size analysis for table AE_L................................. 70
Table 20. Multi-table scheme of table AE_F (total instances) ... 71
Table 21. Multi-table scheme of table AE_G (total instances) .. 72
Table 22. Multi-table scheme of table AE_H (total instances) .. 72
Table 23. Multi-table scheme of table AE_I (total instances) .. 73
Table 24. Multi-table scheme of table AE_J (total instances).. 74
Table 25. Multi-table scheme of table AE_K (total instances) .. 75
Table 26. Multi-table scheme of table AE_L (total instances) ... 76
Table 27. Overall summary of FD accuracy percentage for candidate proxies. 78
Table 28. Proxy candidates that do not shows any accuracy in FD prediction 79
Table 30. Percentage of proxy table space requirement ... 84

iv

PJP/2012/FTMK/(1D)/S01002

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1: An example of substitution made by proxy attribute B for attribute D 3
Figure 2 (a) A database instance violating ∑ = {cnt, arCode reg, cnt, reg prov}. (b) An
optimum V-repair (Kolahi & Lakshmanan, 2009) ... 10
Figure 3. An example of an unclean database and possible repairs. (George, et al., 2010) 11
Figure 4. Example of various types of repairs. (George, et al., 2010) ... 12
Figure 5. Sample inconsistent databases (Molinaro and Greco 2010). .. 14
Figure 6. Sample consistent databases (Molinaro and Greco 2010). ... 14
Figure 7. Flow chart of overall methodology ... 22
Figure 8. TANE main algorithm (Adapted from Huhtala et al., 1999) .. 28
Figure 9. Generating levels algorithm (Adapted from Huhtala et al., 1999) 29
Figure 10. Computing dependencies algorithm (Adapted from Huhtala et al., 1999) 29
Figure 11. Pruning the lattice algorithm (Adapted from Huhtala et al., 1999) 30
Figure 12. Computing partitions algorithm (Adapted from Huhtala et al., 1999) 30
Figure 13. Approximate Dependencies algorithm (Adapted from Huhtala et al., 1999) 31
Figure 14. Output of TANE algorithms for table AE_F on 0.10 G3 range 36
Figure 15. Output of TANE algorithms for table AE_F on 0.20 G3 range 37
Figure 16. Output of TANE algorithms for table AE_F on 0.30 G3 range 38
Figure 17. Output of TANE algorithms for table AE_F on 0.40 G3 range 39
Figure 18. Output of TANE algorithms for table AE_F on 0.50 G3 range 40
Figure 19. Output of TANE algorithms for table AE_F on 0.60 G3 range 41
Figure 20. Output of TANE algorithms for table AE_F on 0.70 G3 range 42
Figure 21. Output of TANE algorithms for table AE_F on 0.80 G3 range 43
Figure 22. Output of TANE algorithms for table AE_F on 0.90 G3 range 44
Figure 23. Output of TANE algorithms for table AE_F on 1.00 G3 range 45
Figure 24. FD accuracy percentage and G3 errors table AE_F .. 80
Figure 25. FD accuracy percentage and G3 errors for table AE_G ... 81
Figure 26. Proxy H FD accuracy percentage and G3 errors table AE_H ... 81
Figure 27. FD accuracy percentage and G3 errors table AE_I... 82
Figure 28. FD accuracy percentage and G3 errors table AE_J .. 82
Figure 29. FD accuracy percentage and G3 errors table AE_K ... 83
Figure 30. FD accuracy percentage and G3 errors table AE_L ... 83
Figure 31. Total space required by all proxies in Taxon sub-tables ... 85

v

PJP/2012/FTMK/(1D)/S01002

LIST OF ABBREVIATIONS

FDs - Functional Dependencies

IND - Inclusion Functional Dependencies

AFD - Approximate Functional Dependencies

CFD - Conditional Functional Dependencies

DQ - Data quality

vi

PJP/2012/FTMK/(1D)/S01002

CHAPTER 1

INTRODUCTION

1.1 Background

One prominent concern in the establishment of green data centers is to decrease carbon

footprint and operating costs (e.g. cooling systems for data centers) by reducing the

amount of physical data storages required. Scientific applications which rely on large of

data volumes require physical data storages that are not only impractically large to

maintain, but also contribute to inefficient power consumption.Within the context of

scien- tific applications that require access to scientific databases, data volumes often be

large enough for storage space requirements to become an issue that must be dealt by

scientific data center providers. Expanding database storage is an option that data center

providers could take in order to address the space issue, however this option leads to an

increase in the amount of physical data storages (data servers) required. As more data

servers are added, more electrical power is needed to run the additional data servers

and to cooling-off those servers. The issue concerning data centers has been raised in a

recent estimation which stated that the worlds data centers currently consume about 330

billion kWh of electricity every year, which is almost equal to the entire electricity

demand of the UK (Horn & Cook, 2011). In addition, power consumption that exceeds

100 billion kWh generate approximately 40, 568, 000 tons of CO2 emissions (Hazelhurst,

2008), (Kang, et al., 1990), (Kumar, 1992). Thus, in establishing successful green data

centers, adding more data servers is not an interesting option to choose in dealing with the

storage space issue as this option leads to undesirable increase in power consumption

and in CO2 emissions.

1

PJP/2012/FTMK/(1D)/S01002

1.2 The Proxy-based Approach

Within the context of applications that require access to databases, data volumes

often be large enough for storage space requirements to become an issue that must be dealt

by data center providers. Expanding database storage is an option that data center providers

could take in order to address the space issue, however this option leads to an increase in

the amount of physical data storages (data servers) required.

 One way to reduce storage space requirement is by optimising the available

database space. In fact, the need to optimise space is not new, as tools and techniques for

this purpose provided by enterprise data storage vendors (such as Oracle and DB2) have

been available in the market for about a decade. At the relational table level, data

compression tools, for example, apply a repeated values removal technique to gain free

space (Lai, 2008). In addition, data deduplication techniques remove duplicate records in

the table to gain storage space (Freeman, 2007). The idea behind these space optimisation

solutions is to exploit the presence of overlaps (of values or records) within tables. Both of

these techniques are performed at the level of whole tables. A key (though often unstated)

assumption behind these optimisation techniques is that all columns can be exploited for

space optimisation. Because of this assumption, knowledge of semantics of applications

(i.e., how the columns are used) is ignored and as the consequence, data center providers

need to bear unnecessary query processing overhead for frequent compression (and

decompression) of heavily queried data.

The key lesson learnt from space optimisation techniques that are available in the

market to date is that, space optimisation techniques that achieve space saving at both

schema level and whole tables level are limited. In addition, space optimisation techniques

that consider knowledge of semantics of applications have not been studied in depth.

Because of these limitations, the two techniques described above unfortunately do not fully

support solving the storage space issue faced by data center providers, where knowledge of

how database is used must be considered for space optimisation. Therefore, an alternative

space optimisation technique is proposed to address the limitations of the existing

techniques. This new, alternative technique is crucial to support data center providers in

dealing with high storage space requirements.

2

PJP/2012/FTMK/(1D)/S01002

In this research, we propose a space optimisation technique called the proxy- based

approach. The proposed technique will be designed by exploiting the functional

dependencies discovered within the database where, smaller alternatives called proxies will

be used to substitute the information (in form of set of values) that are removed from the

database. For example, Figure 2 shows a possible substitution made in a table (Table R)

by a proxy attribute B for attribute D, an attribute which is removed from the table (shown

as shaded column) where functional dependency between B and D (denoted as B  D) is

present.

 Table R A substitution table

A B D
001 X a
002 X a
003 Y b
004 Y b
005 Y b

Figure 1: An example of substitution made by proxy attribute B for attribute D

Basically, the proxy-based approach method offers space saving through database

schema modification, in particular by dropping attributes from the schema under con

sideration. The removal of the attributes, of course, will cause information loss and

consequently will affect the queries that rely on those attributes. However, if the missing

information can be retrieved from other attribute(s), the queries could still be computed

using the smaller database. We use the term ‘proxies’ for attributes that substitute other

attributes in the schema, which is inspired by proxies in other contexts with similar roles

(e.g., in voting, a proxy is a person authorised to act on behalf of another (Petrik, 2009)).

We identified the proxies based on functional dependency relationship that can be

observed among attributes in relational tables. An understanding of the space-

accuracy trade-offs that the proxies could offer is required to facilitate the decisions in

selecting which attributes can be deleted from the universe schema. Therefore, answering

the following questions regarding proxies are crucial before we can decide on its

applicability:

B  D

(X)  a

(Y)  b

3

PJP/2012/FTMK/(1D)/S01002

• How do proxies contribute to space saving?

• How do we select the attributes to drop from the schema?

• What determines the amount of space saving that can be offered by proxies?

The idea behind the technique we propose is to achieve space saving through both

database schema modification and exploitation of the presence of overlaps. Specifically,

space saving through schema modification is achieved by dropping some attributes from

the schema. If some attributes are dropped from the schema, the amount of space saved is

roughly determined by the number of attributes being dropped and the number of tuples

the table contains. For example, consider a table which consists of 100 tuples, with several

attributes in its schema. If we drop an attribute from the schema, then the amount of space

saved is 100 units of instances1 (which is of course, is convertible to disk storage unit in

bytes).

The question that arises is whether all attributes in the schema are droppable. To

answer this question we need to understand the semantics of the application. As for

the microbial genomics application, we need to understand how the data set is used in

answering data set requests for the analyses. In particular, we need to know how attributes

in the schema of the microbial database tables are used.

Nevertheless, before we can validate the usefulness of this alternative technique,

studies on the characteristics of data sets that will be useful for space optimisation is

needed. This information is crucial in designing space optimisation strategy for data centre

providers that need to deal with storage space constraints. Moreover, substituting the

values of the column which are missing (as the result of dropping the table columns from

the schema is crucial) in order to determine the practicality of the approach. Therefore, in

this research, the known functional dependency theory will be applied to predict the

missing values in the data sets. In the next section, the types of functinal dependency will

be presented.

1.3 Functional Dependency

The major roles of dependencies are involved in designing of database, quality

management of data and knowledge representation. Basically, the dependencies are used in

normalization of database and applied in database design to deserve the quality of data.

1 We regard each cell in a common relational table as an instance

4

PJP/2012/FTMK/(1D)/S01002

Dependencies in knowledge discovery are mined from available data from a database. This

extraction process is known as dependency discovery where the objective is to find all the

dependencies in available data. Types of dependencies are functional dependency (FDs),

Inclusion Dependency (INDs), Approximate Functional Dependency (AFD) and

conditional Functional Dependency (CFDs).

Table 1: Types of dependencies

Dependency Definition

Functional

Dependencies (FDs)

A functional dependency (FDs) describes a relationship between

attributes in a single relation. An attribute is functionally

dependent on another if we can use the value of one attribute to

determine the value of another. (Liu, et al., 2012)

Approximate

Functional

Dependencies (AFDs)

An Approximate Functional Dependency (AFDs) is define as

approximate satisfaction of a normal FD f : X Y. (Liu, et al.,

2012)

Conditional Functional

Dependencies (CFDs)

A Conditional Functional Dependency is an expansion of FDs by

supporting patterns of semantically associated constants, and also

used in cleaning of relational data. (Liu, et al., 2012)

Inclusion

Dependencies (INDs)

An Inclusion Functional Dependency (INDs) one of the valuable

dependency since it helping the developer to define what data

must be duplicated in what relations in a database. (Liu, et al.,

2012)

The statement X->Y is the same for most of the FDs and AFDs. The difference

only can be seen through the satisfaction level. The statement X->Y must satisfy for all the

tuple of relation in FDs while AFDs shows small part of tuples to be violate in FD

5

PJP/2012/FTMK/(1D)/S01002

statement. On the side, CFDs use different statement (X-> Y,S) and the satisfaction is

based on the tuples that match the tableau. The CFD can equivalent to FD if the tableau

have one and only pattern tuple with “-“ values.

 One of the important uses of discovered dependencies is to improve the data

quality. The primary function of implementing dependency in a database is to permit the

data quality of the database. Missing values or errors in data sets can be recognised by

analysing the discovered dependencies that hold among the attributes. Finally, this will

help to evaluate the quality of data. Data errors or missing values cause negative effect in

many application domains for example in bioinformatics. Basically, missing values occurs

in bioinformatics for various reasons such as incomplete resolution, image corruption and

due to presence of foreign particle or dust in a sample. This kind of missing values may

cause irregularity in analysis of biological data for example to determine the function,

domain or taxonomy of a certain species. Recently many researchers focus to improve data

quality of a database by discovering dependencies among the data set attributes. (Liu, et

al., 2012).

 Among the four types of dependencies, functional dependency has the main key

function in the determination of missing data. FDs also guarantee the accuracy of missing

data prediction compared to the other dependencies. Beside this, the FDs used to discover

the attributes to analyse space reduction in the database storage.

 Therefore, the major focus in this research is implementing functional dependency

to learn the characteristics of data set attributes (called as proxies) in preparation of

missing values prediction for microbial genomics data sets. The perception of functional

dependency is one of the primary dependencies which is important in designing and

developing of a database. In contrast of design the database using FDs, properties of FDs

studies as well. FDs may consider as integrity constraints that determine semantics of data.

Data quality problem may arise due to violations of FDs in a sample datasets. Hence this

missing data prediction may help to solve the data quality problem as well as to reduce the

storage space.

1.4 Problem statement

In implementing storage space optimisation using the proxy-based approach, we need to

understand the characteristics of data sets that will be of useful to utilise the proxies. In this

6

PJP/2012/FTMK/(1D)/S01002

research, we address the problem of: ‘How can we determine the characteristics of data

sets that will be make proxies useful in terms of space saving?’

1.5 Research Questions

The following are the research questions that we set to answer in order to deal with the

problem as mentioned in Section 1.4:

1. How FDs can be used to predict the missing data?

2. What are the requirements to prepare the data sets for missing data prediction?

3. What are the characteristics good proxies?

1.6 Aims and Objective

This research aims to define the characteristics of proxies and to determine whether it is

useful and implementable in practice. The following are the primary research objectives:

1. To identify the types of dependencies from the literature

2. To analyse properties of FDs that can offer missing data prediction

3. To discover FDs that are useful for missing values prediction.

1.7 Research Contribution

Studies on the characteristics of data sets that will be useful for space optimisation is

needed is crucial in designing space optimisation strategy for data centre providers that

need to deal with storage space constraints. By understanding the characteristics of data

sets that will contribute to gaining spaces, databased designer can make informed decision

regarding to data centers capacity planning. The contribution of this research is the result

of the experiment and analysis conducted against real data sets for space optimisation

techniques using proxies.

7

PJP/2012/FTMK/(1D)/S01002

CHAPTER 2

LITERATURE REVIEW

2.1 Background

In this chapter, we provide a literature review on data dependency with the aim to learn the

different forms of dependencies in preparing the methods to predict missing values in data

sets. By learning the features and properties of FDs in the literature, an understanding of

the different dependencies can be achieved.

2.2 Application of Functional Dependency in different domain

Data quality, concerning completeness of data sets is not a new problem; researchers has

been started the studies since 1980’s. Some of the researchers use FDs to detect missing

data in a sample datasets. (Liu, et al., 2012).

A functional dependency states that if in a relation two rows agree on the value of a

set of attributes X then they must agree on the value of a set of attributes Y. The

dependency is written as X → Y. For example, in a relation such as Buyers (Name,

Address, City, Nation, Age, Product), there is a functional dependency City → Nation,

because for each row the value of the attribute City identifies the value of attribute Nation.

Cleaning works of data focus more on removing duplicates or dealing with syntactic errors.

(George, et al., 2010).

8

PJP/2012/FTMK/(1D)/S01002

Dependencies have very important roles in designing of database, quality

management of data and knowledge representation. Application of dependencies can be

normally in observed in database design (through normalisation data normalisation) to

preserve data consistency. Functional Dependency (FD) for instance is applied, checking

data of Disease and Symptom columns in a medical database. If Pneumonia is a value of

disease and fever is a value of symptom and if every patient has a fever, then fever is said

to be associated with pneumonia. If the relationship continues for every pair of symptom

and disease values, then disease functionally determines symptom. Additionally,

discovered of dependency from existing data will be used in determining whether data sets

in databases correct and also to check the semantics of data of an existing database. The

primary role of dependency application in database is to check the quality of data in the

database. (Li, et al., 2012).

2.2.1 Methods for FDs discovery

The methods proposed in discovery of functional dependency are either top-down

approach or bottom-up approach. Candidates of FD were generated level-by-level and then

checking of candidates of FD’s satisfaction against the relation or its partitions is

performed in top-down approach. Bottom-up approach is started with tuples comparison to

get agree-sets or difference-sets then only candidate FD were generated. This is followed

by checking them against the agree-sets or difference-sets for satisfaction (Li, et al., 2012).

It has been discovered that the large databases been violated where an underlying

set of constraints and data inconsistent through data integration systems. Data

inconsistency has been attacked in different ways and there were different steps taken to

deal with this data inconsistency. The first step is trying to extract the most reliable answer

9

PJP/2012/FTMK/(1D)/S01002

to query posed to an inconsistent database. The second step is by minimally modifying

repairing an inconsistent database; the modification can be done through deleting or

inserting tuples or value. The last step is by producing a nucleus, which is a condensed

representation of all repairs that can be used for consistent query answering. But the main

focus of the researcher here is to repair the database that violates a set of functional

dependencies by modifying attribute values. V-repairs been introduced by the researcher to

repair an inconsistent database with respect to functional dependencies. V-repairs basically

database that have variables representing incomplete information. This V-repair reproduce

two types of changes made to the original database: changing a constant to another

constant whenever there is enough information for doing so, and changing a constant to a

variable whenever we cannot suggest a constant for an incorrect value. (Kolahi &

Lakshmanan, 2009).

 name cnt prov reg arCode phone
t1 Smith CAN BC Van 604 1234567
t2 Adams CAN BC Van 604 7654321
t3 Simpson CAN BC Van 604 3456789
t4 Rice CAN AB Vic 604 9876543

(a)

 name cnt prov reg arCode phone
t1 Smith CAN BC Van 604 1234567
t2 Adams CAN BC Van 604 7654321
t3 Simpson CAN BC Van 604 3456789
t4 Rice v1 AB Vic 604 9876543

(b)

Figure 2 (a) A database instance violating ∑ = {cnt, arCode reg, cnt, reg prov}. (b)

An optimum V-repair (Kolahi & Lakshmanan, 2009)

Figure 2(a) shows a database instance over name, country (cnt), province/state

(prov), region (reg), area code (arCode) and phone. However the database instance in

Figure 2(a) violates the functional dependencies ∑ = {cnt, arCode → reg, cnt, reg →

prov}. Figure 2(b) shows two necessary value modifications to solve the repair the

10

PJP/2012/FTMK/(1D)/S01002

violations. One, researcher change the value of reg ‘Man” to the correct value of ‘Van” and

in the other is change the value ‘CAN’ with variable v1. This shows that to achieve an

optimum repair, the best option is to change the value of country to something else. The

semantics is that v1 stands for a value outside the active domain of cnt. (Kolahi &

Lakshmanan, 2009).

Functional dependency abusing is very common and may arise in the context of

data integration or Web data extraction. Functional dependency also known as Integrity

constraints, encode data semantics. Hence, FD violations show variation from the expected

semantics, which is caused due to data quality problems. Figure 3 shows a sample database

and a set of FDs, where some of the values have been violated (e.g., tuples t2 and t3 violate

ZIPCity, tuples t2 and t3 violate Name SSN,City, and tuples t1 and t4 violate ZIP 

State,City). (George, et al., 2010).

Figure 3. An example of an unclean database and possible repairs. (George, et al., 2010)

Basically, there are many ways to modify a table which is satisfies all the required

FDs. One of the way is to delete the wrong tuples (ideally, delete the fewest possible such

tuples) such that the remainder satisfies all the FDs. For example, the researcher, “repair”

11

PJP/2012/FTMK/(1D)/S01002

the relation instance in Figure 3 by deleting t1 and t3. But, if delete the whole tuples may

arise new problem where loss of “clean” data if only one of its attribute value is wrong.

However the researcher modifies the selected attribute values. Figure 3 show two possible

ways to repairs obtained from attribute modifications; and the questions marks specify that

an attribute value can be modified to one o several values in order to satisfy the FDs. In

between, the researcher also mentions that the existing methods do not identify the needs

of the following criteria such as Interactive data cleaning, data integration, and uncertain

query answering. (George, et al., 2010)

Figure 4. Example of various types of repairs. (George, et al., 2010)

Figure 4shows, few types of repairs have been proposed by the researcher in order

to correct the wrong value in violation of functional dependencies. Repairs I1 and I2 are

cardinality-minimal because no other repair has fewer changed cells. Clearly, I1 and I2 are

also cardinality-set-minimal and set minimal. I3 is set-minimal because reverting any of

the changed cells to the values in I will violate A  B. On the other hand, I3 is not

cardinality-set-minimal (or cardinality-minimal) because changing t1 [B] to 3 and reverting

12

PJP/2012/FTMK/(1D)/S01002

t2 [B] to 3 gives a repair of I. I4 is not set-minimal because I4 satisfies A B even after

reverting t1 [A] to 1. (George, et al., 2010).

The researchers focus analysis on semantic error detection in order to verify

accuracy of the stored information. Data constraints and functional dependencies are the

main issues in relational database. Apiletti and colleagues has proposed means of

association rule mining to discover the data constraints and functional dependencies using.

Syntactic anomalies can be divided into few categories where it is occur due it

incompleteness (lack of attribute values), inaccuracy (presence of error and outliers),

lexical errors, domain format errors and irregularity (Apiletti, et al., 2006).

Semantic anomalies where there are discrepancy, due to a conflict between some

attribute values, ambiguity, due to the presence of synonyms, homonyms or abbreviations,

redundancy due to the presence of duplicate information, inconsistency due to an integrity

constraint violation or functional constraint violation, invalidity due to the presence of

tuples that do not display anomalies of the classes above but still do not represent valid

entities (Apiletti, et al., 2006).

Association rules were applied to biological data cleaning for detecting outlier and

duplicates, and to Gene Ontology to find relationships among terms of the ontology levels.

But at the same time, it is not used to find constraints or dependencies. Using association

rules, can find the causality relationship among the attribute values. Hence, analyse the

support and confidence of each rule to detect the data constraints and functional

dependencies. (Apiletti, et al., 2006).

Molinaro and Greco (2010) found that there are some problems in repairing and

querying a database in the presence of functional dependencies and foreign key constraints.

An attributes of a particular that present on right-hand side of FDs cannot appear on the

left-hand side called canonical (FDs). Researchers proposed semantics of constraint

13

PJP/2012/FTMK/(1D)/S01002

satisfaction for databases which contain null and unknown values for the tuple insertions

and updates. (Molinaro & Greco, 2010).

(a) Research

Name Manager
p1 John
p2 Bob
p3 carl

(b) Employee

Name Phone
John 123
Bob 111

Figure 5. Sample inconsistent databases (Molinaro and Greco 2010).

Project

Name Manager
p1 #1
p2 carl

Employee

Name Phone
John 123
bob 111
carl ┴1

Figure 6. Sample consistent databases (Molinaro and Greco 2010).

Suppose to have the following set of constraints (functional dependencies and foreign key

constraints):

• fd1 : Name Manager defined over Project,

• fd2 : Name  Phone defined over Employee,

• fk : Project [Manger] ⊆ Employee [Name].

14

PJP/2012/FTMK/(1D)/S01002

Figure 5 shows an inconsistency database where there’s occurrence of violation on both fd1

and fk: for same research two different managers p1 and carl, present in research relation,

but not in employee table. Figure 6shows repairing of database. (Molinaro & Greco, 2010).

In Figure 6where #1 is an unknown value whose domain is {john, bob} whereas ┴1

is (labelled) null value. The FD fd1 satisfied through introduction of unknown value #1

which shows that the p1 gas a unique manager either john or bob. The fk in first tuple of

the relation not violated because of p1, anybody in here, is in the employee relation too.

The consistency of the original database w.r.t. fk is restored by inserting the manager carl

into the employee relation. (Molinaro & Greco, 2010).

Null value was introduced in the Figure 6for the phone number of carl because of

the information is missing. Here, we do not know whether the telephone number of carl

does not exist or exists but is not known. Thus, neither the ‘‘nonexistent” (a value does not

exist) nor the ‘‘unknown” (a value exists but is not known) interpretation of the null is

applicable in this situation. Thus, both unknown and null values express incomplete

information, even though unknown values are ‘‘more informative than” null values.

(Molinaro & Greco, 2010).

From the database of Figure 2.5, the consistent answer to the query asking for the

manager of p2 is carl, because this answer can be obtained from every possible world of

the repaired database. Clearly, there is no consistent answer to the query asking for the

manager of p1, whereas the consistent answer to the query asking for the telephone number

of p2 ’s manager is ┴1, that means that we have no information about it. (Molinaro &

Greco, 2010).

In addition, Yao, J.Hamilton and J.Butz, n.d. had proposed a new method for

discovery of functional dependency called FD_mine. This new approach will help to

decrease the size of data set as well to detect the number of FDs present. Beside this, this

15

PJP/2012/FTMK/(1D)/S01002

algorithm will also prevent the data set from lost its information. This FD_Mine algorithm

is based on level-wise searching. For example the results from level k will be used in next

level which is level k+1. At first, all the FDs X->Y where X and Y are the single attributes

were stored in FD_SET F1. Thus, the candidates in this set refer to L1. Candidates Xi Xj of

L2 was generated from F1 and L1. Second level, FDs are detected from Xi Xj -> Y and

stored in FD_SET F2. And then, F1, F2, L1, and L2 utilised to produce the L3 candidates

and so on till there’s no remaining of candidates. (i.e., Lk = ϕ (k ≤ n- 1)). (Yao, et al., n.d.)

2.3 Data Incompleteness problem: Missing values

Missing values in a sample datasets is not a new problem faced by the scientist due to its

negative impacts on scientific analysis results. In bioinformatics database management, it

is important to get complete and correct datasets. This is because in future this datasets will

be used for further research such as experimental analysis or development of model. Many

field such as computer science, statistics, economics, and bioinformatics are concerned for

good data quality. The focus of this research is on the missing values problem faced by

microbial genomics domain. Microbial genomics is the study of microbe’s genomes, it

sequences, functions and structures. Bioinformatics can be divided into few different

domains for instance genomics, proteomics, RNA and DNA, gene expression, and

phylogenetics.

The following are the studies in which missing values are key factor in several

application domains:

• In gene expression microarray data, missing values frequently create problems.

Because missing data, can delay the downstream analysis such as gene clustering,

16

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Background
	1.2 The Proxy-based Approach
	1.3 Functional Dependency
	1.4 Problem statement
	1.5 Research Questions
	1.6 Aims and Objective
	1.7 Research Contribution

	CHAPTER 2
	LITERATURE REVIEW
	2
	2.1 Background
	2.2 Application of Functional Dependency in different domain
	2.2.1 Methods for FDs discovery

	2.3 Data Incompleteness problem: Missing values
	2.4 Conclusions

	CHAPTER 3
	MATERIALS AND METHODS
	3
	3.1 Background
	3.2 Research Methodology
	3.3 Data source of Microbial Genomics data sets
	3.2.1 Description of the semantics of Taxon table attributes
	3.2.2 Observation of missing values in Taxon table

	3.4 TANE Algorithm for discovery of FDs
	3.3.1 TANE Algorithm categories

	3.5 The method in preparing analysis of space requirement
	3.5.1 Proxy based approach for space optimisation

	3.6 Conclusions

	CHAPTER 4
	RESULTS
	4
	4.1 Background
	4.2 Proxy discovery from Taxon sub-tables
	4.2.1 Summary output of table AE_F
	4.2.2 Summary output of table AE_G
	4.2.3 Summary output of table AE_H
	4.2.4 Summary output of table AE_I
	4.2.5 Summary output of table AE_J
	4.2.6 Summary output of table AE_K
	4.2.7 Summary output of table AE_L

	4.3 Summary of Space requirement results
	4.3.1 Multi-valued table for Table AE_F
	4.3.2 Multi-valued table for Table AE_G
	4.3.3 Multi-valued table for Table AE_H
	4.3.4 Multi-valued table for Table AE_I
	4.3.5 Multi-valued table for Table AE_J
	4.3.6 Multi-valued table for Table AE_K
	4.3.7 Multi-valued table for Table AE_L

	4.4 Conclusions

	CHAPTER 5
	RESULTS ANALYSIS AND DISCUSSIONS
	5
	5.1 Background
	5.2 Analysis of FD accuracy for candidate proxy in Taxon sub-tables
	5.3 Space Requirement Analysis
	5.4 Conclusions

	CHAPTER 6
	CONCLUSIONS

	REFERENCES
	APPENDICES

