
PJP/2012/FTMK/(1D)/S01002

CHARACTERISATION OF DATA SET FEATURES FOR STORAGE SPACE

OPTIMISATION USING FUNCTIONAL DEPENDENCY

PENYELIDIK:

DR. NURUL AKMAR EMRAN

DR. NORASWALIZA ABDULLAH

NUZAIMAH MUSTAFA

FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI

2013

PJP/2012/FTMK/(1D)/S01002

TABLE OF CONTENTS

 PAGE
ABSTRACT ii

ACKNOWLEDGEMENT iii

LIST OF TABLES iv

LIST OF FIGURES v

LIST OF ABBREVIATIONS vi

CHAPTER 1 1

INTRODUCTION 1
1.1 Background 1
1.2 The Proxy-based Approach 2
1.3 Functional Dependency 4
1.4 Problem statement 6
1.5 Research Questions 7
1.6 Aims and Objective 7
1.7 Research Contribution 7

CHAPTER 2 8

LITERATURE REVIEW 8
2.1 Background 8
2.2 Application of Functional Dependency in different domain 8

2.2.1 Methods for FDs discovery 9
2.3 Data Incompleteness problem: Missing values 16
2.4 Conclusions 17

CHAPTER 3 19

MATERIALS AND METHODS 19
3.1 Background 19
3.2 Research Methodology 19
3.3 Data source of Microbial Genomics data sets 22

3.2.1 Description of the semantics of Taxon table attributes 24
3.2.2 Observation of missing values in Taxon table 25

3.4 TANE Algorithm for discovery of FDs 26
3.3.1 TANE Algorithm categories 27

3.5 The method in preparing analysis of space requirement 31
3.5.1 Proxy based approach for space optimisation 32

3.6 Conclusions 34
CHAPTER 4 35

RESULTS 35
4.1 Background 35
4.2 Proxy discovery from Taxon sub-tables 35

4.2.1 Summary output of table AE_F 46
4.2.2 Summary output of table AE_G 49
4.2.3 Summary output of table AE_H 52
4.2.4 Summary output of table AE_I 56

PJP/2012/FTMK/(1D)/S01002

4.2.5 Summary output of table AE_J 60
4.2.6 Summary output of table AE_K 63
4.2.7 Summary output of table AE_L 67

4.3 Summary of Space requirement results 71
4.3.1 Multi-valued table for Table AE_F 71
4.3.2 Multi-valued table for Table AE_G 72
4.3.3 Multi-valued table for Table AE_H 72
4.3.4 Multi-valued table for Table AE_I 73
4.3.5 Multi-valued table for Table AE_J 74
4.3.6 Multi-valued table for Table AE_K 75
4.3.7 Multi-valued table for Table AE_L 76

4.4 Conclusions 77
CHAPTER 5 78

RESULTS ANALYSIS AND DISCUSSIONS 78
5.1 Background 78
5.2 Analysis of FD accuracy for candidate proxy in Taxon sub-tables 78
5.3 Space Requirement Analysis 84
5.4 Conclusions 86

CHAPTER 6 87

CONCLUSIONS 87
REFERENCES 89

APPENDICES 91

PJP/2012/FTMK/(1D)/S01002

ABSTRACT

Within data intensive applications, data volumes often be large enough for storage space
requirements to become an issue that must be dealt by data centre providers. The growth of
data volumes calls for a way to manage storage space efficiently. One way to manage data
storage space is through space optimisation. In order to optimise space, data centre
providers need to choose space optimisation method(s) that is useful for the data sets being
stored. However, studies on the characteristics of data sets that will be useful for space
optimisation is limited even though such information is crucial in designing space
optimisation strategy. We argue that, if we could determine the characteristics of data sets
that are useful (or less useful) for space optimisation, data centre providers could make
guided decision in implementing their space optimisation strategy. This research focuses
on investigating the characteristics of data sets for space optimisation using functional
dependency technique. The contribution of this research is the result of the experiment and
the analysis conducted against real data sets for a space optimisation techniques just
mentioned. This research concludes with the characteristics of data set features discovered
within the microbial genomics data sets.

ii

PJP/2012/FTMK/(1D)/S01002

ACKNOWLEDGEMENT

Praise to Allah s.w.t for the strength, patience and endurance to complete this
research. We would like to acknowledge Universiti Teknikal Malaysia Melaka for the
financial assistance granted to pursue this research, the Faculty of Information and
Commuication Technology and the Centre for Research and Innovation Management
(CRIM). Without these bodies, the achievement of the objectives set for this research is not
possible.

Dr. Nurul Akmar Emran

Dr Noraswaliza Abdullah

Nuzaimah Mustafa

iii

PJP/2012/FTMK/(1D)/S01002

LIST OF TABLES

TABLE TITLE PAGE
Table 1: Types of dependencies ... 5
Table 2. List of attributes in Taxon .. 20
Table 3. Statistics of missing data in Taxon table .. 26
Table 4. A Proxy map in pure relational table (Emran, Abdullah, and Isa 2012) 33
Table 5. A Proxy map in a multi-valued table (Emran, Abdullah, and Isa 2012) 33
Table 6. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 ... 46
Table 7. Overall FD accuracy and proxy table size analysis for table AE_F 48
Table 8. FDs discoveries in AE_G table with G3 ranges of 0.10 to 1.00 .. 49
Table 9. Overall FD accuracy and proxy table size analysis for table AE_G 51
Table 10. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 52
Table 11. Overall FD accuracy and proxy table size analysis for table AE_H 55
Table 12. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 56
Table 13. Overall FD accuracy and proxy table size analysis for table AE_I 59
Table 14. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 60
Table 15. Overall FD accuracy and proxy table size analysis for table AE_J 62
Table 16. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 63
Table 17. Overall FD accuracy and proxy table size analysis for table AE_K 66
Table 18. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00 67
Table 19. Overall FD accuracy and proxy table size analysis for table AE_L................................. 70
Table 20. Multi-table scheme of table AE_F (total instances) ... 71
Table 21. Multi-table scheme of table AE_G (total instances) .. 72
Table 22. Multi-table scheme of table AE_H (total instances) .. 72
Table 23. Multi-table scheme of table AE_I (total instances) .. 73
Table 24. Multi-table scheme of table AE_J (total instances).. 74
Table 25. Multi-table scheme of table AE_K (total instances) .. 75
Table 26. Multi-table scheme of table AE_L (total instances) ... 76
Table 27. Overall summary of FD accuracy percentage for candidate proxies. 78
Table 28. Proxy candidates that do not shows any accuracy in FD prediction 79
Table 30. Percentage of proxy table space requirement ... 84

iv

PJP/2012/FTMK/(1D)/S01002

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1: An example of substitution made by proxy attribute B for attribute D 3
Figure 2 (a) A database instance violating ∑ = {cnt, arCode reg, cnt, reg prov}. (b) An
optimum V-repair (Kolahi & Lakshmanan, 2009) ... 10
Figure 3. An example of an unclean database and possible repairs. (George, et al., 2010) 11
Figure 4. Example of various types of repairs. (George, et al., 2010) ... 12
Figure 5. Sample inconsistent databases (Molinaro and Greco 2010). .. 14
Figure 6. Sample consistent databases (Molinaro and Greco 2010). ... 14
Figure 7. Flow chart of overall methodology ... 22
Figure 8. TANE main algorithm (Adapted from Huhtala et al., 1999) .. 28
Figure 9. Generating levels algorithm (Adapted from Huhtala et al., 1999) 29
Figure 10. Computing dependencies algorithm (Adapted from Huhtala et al., 1999) 29
Figure 11. Pruning the lattice algorithm (Adapted from Huhtala et al., 1999) 30
Figure 12. Computing partitions algorithm (Adapted from Huhtala et al., 1999) 30
Figure 13. Approximate Dependencies algorithm (Adapted from Huhtala et al., 1999) 31
Figure 14. Output of TANE algorithms for table AE_F on 0.10 G3 range 36
Figure 15. Output of TANE algorithms for table AE_F on 0.20 G3 range 37
Figure 16. Output of TANE algorithms for table AE_F on 0.30 G3 range 38
Figure 17. Output of TANE algorithms for table AE_F on 0.40 G3 range 39
Figure 18. Output of TANE algorithms for table AE_F on 0.50 G3 range 40
Figure 19. Output of TANE algorithms for table AE_F on 0.60 G3 range 41
Figure 20. Output of TANE algorithms for table AE_F on 0.70 G3 range 42
Figure 21. Output of TANE algorithms for table AE_F on 0.80 G3 range 43
Figure 22. Output of TANE algorithms for table AE_F on 0.90 G3 range 44
Figure 23. Output of TANE algorithms for table AE_F on 1.00 G3 range 45
Figure 24. FD accuracy percentage and G3 errors table AE_F .. 80
Figure 25. FD accuracy percentage and G3 errors for table AE_G ... 81
Figure 26. Proxy H FD accuracy percentage and G3 errors table AE_H ... 81
Figure 27. FD accuracy percentage and G3 errors table AE_I... 82
Figure 28. FD accuracy percentage and G3 errors table AE_J .. 82
Figure 29. FD accuracy percentage and G3 errors table AE_K ... 83
Figure 30. FD accuracy percentage and G3 errors table AE_L ... 83
Figure 31. Total space required by all proxies in Taxon sub-tables ... 85

v

PJP/2012/FTMK/(1D)/S01002

LIST OF ABBREVIATIONS

FDs - Functional Dependencies

IND - Inclusion Functional Dependencies

AFD - Approximate Functional Dependencies

CFD - Conditional Functional Dependencies

DQ - Data quality

vi

PJP/2012/FTMK/(1D)/S01002

CHAPTER 1

INTRODUCTION

1.1 Background

One prominent concern in the establishment of green data centers is to decrease carbon

footprint and operating costs (e.g. cooling systems for data centers) by reducing the

amount of physical data storages required. Scientific applications which rely on large of

data volumes require physical data storages that are not only impractically large to

maintain, but also contribute to inefficient power consumption.Within the context of

scien- tific applications that require access to scientific databases, data volumes often be

large enough for storage space requirements to become an issue that must be dealt by

scientific data center providers. Expanding database storage is an option that data center

providers could take in order to address the space issue, however this option leads to an

increase in the amount of physical data storages (data servers) required. As more data

servers are added, more electrical power is needed to run the additional data servers

and to cooling-off those servers. The issue concerning data centers has been raised in a

recent estimation which stated that the worlds data centers currently consume about 330

billion kWh of electricity every year, which is almost equal to the entire electricity

demand of the UK (Horn & Cook, 2011). In addition, power consumption that exceeds

100 billion kWh generate approximately 40, 568, 000 tons of CO2 emissions (Hazelhurst,

2008), (Kang, et al., 1990), (Kumar, 1992). Thus, in establishing successful green data

centers, adding more data servers is not an interesting option to choose in dealing with the

storage space issue as this option leads to undesirable increase in power consumption

and in CO2 emissions.

1

PJP/2012/FTMK/(1D)/S01002

1.2 The Proxy-based Approach

Within the context of applications that require access to databases, data volumes

often be large enough for storage space requirements to become an issue that must be dealt

by data center providers. Expanding database storage is an option that data center providers

could take in order to address the space issue, however this option leads to an increase in

the amount of physical data storages (data servers) required.

 One way to reduce storage space requirement is by optimising the available

database space. In fact, the need to optimise space is not new, as tools and techniques for

this purpose provided by enterprise data storage vendors (such as Oracle and DB2) have

been available in the market for about a decade. At the relational table level, data

compression tools, for example, apply a repeated values removal technique to gain free

space (Lai, 2008). In addition, data deduplication techniques remove duplicate records in

the table to gain storage space (Freeman, 2007). The idea behind these space optimisation

solutions is to exploit the presence of overlaps (of values or records) within tables. Both of

these techniques are performed at the level of whole tables. A key (though often unstated)

assumption behind these optimisation techniques is that all columns can be exploited for

space optimisation. Because of this assumption, knowledge of semantics of applications

(i.e., how the columns are used) is ignored and as the consequence, data center providers

need to bear unnecessary query processing overhead for frequent compression (and

decompression) of heavily queried data.

The key lesson learnt from space optimisation techniques that are available in the

market to date is that, space optimisation techniques that achieve space saving at both

schema level and whole tables level are limited. In addition, space optimisation techniques

that consider knowledge of semantics of applications have not been studied in depth.

Because of these limitations, the two techniques described above unfortunately do not fully

support solving the storage space issue faced by data center providers, where knowledge of

how database is used must be considered for space optimisation. Therefore, an alternative

space optimisation technique is proposed to address the limitations of the existing

techniques. This new, alternative technique is crucial to support data center providers in

dealing with high storage space requirements.

2

PJP/2012/FTMK/(1D)/S01002

In this research, we propose a space optimisation technique called the proxy- based

approach. The proposed technique will be designed by exploiting the functional

dependencies discovered within the database where, smaller alternatives called proxies will

be used to substitute the information (in form of set of values) that are removed from the

database. For example, Figure 2 shows a possible substitution made in a table (Table R)

by a proxy attribute B for attribute D, an attribute which is removed from the table (shown

as shaded column) where functional dependency between B and D (denoted as B D) is

present.

 Table R A substitution table

A B D
001 X a
002 X a
003 Y b
004 Y b
005 Y b

Figure 1: An example of substitution made by proxy attribute B for attribute D

Basically, the proxy-based approach method offers space saving through database

schema modification, in particular by dropping attributes from the schema under con

sideration. The removal of the attributes, of course, will cause information loss and

consequently will affect the queries that rely on those attributes. However, if the missing

information can be retrieved from other attribute(s), the queries could still be computed

using the smaller database. We use the term ‘proxies’ for attributes that substitute other

attributes in the schema, which is inspired by proxies in other contexts with similar roles

(e.g., in voting, a proxy is a person authorised to act on behalf of another (Petrik, 2009)).

We identified the proxies based on functional dependency relationship that can be

observed among attributes in relational tables. An understanding of the space-

accuracy trade-offs that the proxies could offer is required to facilitate the decisions in

selecting which attributes can be deleted from the universe schema. Therefore, answering

the following questions regarding proxies are crucial before we can decide on its

applicability:

B D

(X) a

(Y) b

3

PJP/2012/FTMK/(1D)/S01002

• How do proxies contribute to space saving?

• How do we select the attributes to drop from the schema?

• What determines the amount of space saving that can be offered by proxies?

The idea behind the technique we propose is to achieve space saving through both

database schema modification and exploitation of the presence of overlaps. Specifically,

space saving through schema modification is achieved by dropping some attributes from

the schema. If some attributes are dropped from the schema, the amount of space saved is

roughly determined by the number of attributes being dropped and the number of tuples

the table contains. For example, consider a table which consists of 100 tuples, with several

attributes in its schema. If we drop an attribute from the schema, then the amount of space

saved is 100 units of instances1 (which is of course, is convertible to disk storage unit in

bytes).

The question that arises is whether all attributes in the schema are droppable. To

answer this question we need to understand the semantics of the application. As for

the microbial genomics application, we need to understand how the data set is used in

answering data set requests for the analyses. In particular, we need to know how attributes

in the schema of the microbial database tables are used.

Nevertheless, before we can validate the usefulness of this alternative technique,

studies on the characteristics of data sets that will be useful for space optimisation is

needed. This information is crucial in designing space optimisation strategy for data centre

providers that need to deal with storage space constraints. Moreover, substituting the

values of the column which are missing (as the result of dropping the table columns from

the schema is crucial) in order to determine the practicality of the approach. Therefore, in

this research, the known functional dependency theory will be applied to predict the

missing values in the data sets. In the next section, the types of functinal dependency will

be presented.

1.3 Functional Dependency

The major roles of dependencies are involved in designing of database, quality

management of data and knowledge representation. Basically, the dependencies are used in

normalization of database and applied in database design to deserve the quality of data.

1 We regard each cell in a common relational table as an instance

4

PJP/2012/FTMK/(1D)/S01002

Dependencies in knowledge discovery are mined from available data from a database. This

extraction process is known as dependency discovery where the objective is to find all the

dependencies in available data. Types of dependencies are functional dependency (FDs),

Inclusion Dependency (INDs), Approximate Functional Dependency (AFD) and

conditional Functional Dependency (CFDs).

Table 1: Types of dependencies

Dependency Definition

Functional

Dependencies (FDs)

A functional dependency (FDs) describes a relationship between

attributes in a single relation. An attribute is functionally

dependent on another if we can use the value of one attribute to

determine the value of another. (Liu, et al., 2012)

Approximate

Functional

Dependencies (AFDs)

An Approximate Functional Dependency (AFDs) is define as

approximate satisfaction of a normal FD f : X Y. (Liu, et al.,

2012)

Conditional Functional

Dependencies (CFDs)

A Conditional Functional Dependency is an expansion of FDs by

supporting patterns of semantically associated constants, and also

used in cleaning of relational data. (Liu, et al., 2012)

Inclusion

Dependencies (INDs)

An Inclusion Functional Dependency (INDs) one of the valuable

dependency since it helping the developer to define what data

must be duplicated in what relations in a database. (Liu, et al.,

2012)

The statement X->Y is the same for most of the FDs and AFDs. The difference

only can be seen through the satisfaction level. The statement X->Y must satisfy for all the

tuple of relation in FDs while AFDs shows small part of tuples to be violate in FD

5

PJP/2012/FTMK/(1D)/S01002

statement. On the side, CFDs use different statement (X-> Y,S) and the satisfaction is

based on the tuples that match the tableau. The CFD can equivalent to FD if the tableau

have one and only pattern tuple with “-“ values.

 One of the important uses of discovered dependencies is to improve the data

quality. The primary function of implementing dependency in a database is to permit the

data quality of the database. Missing values or errors in data sets can be recognised by

analysing the discovered dependencies that hold among the attributes. Finally, this will

help to evaluate the quality of data. Data errors or missing values cause negative effect in

many application domains for example in bioinformatics. Basically, missing values occurs

in bioinformatics for various reasons such as incomplete resolution, image corruption and

due to presence of foreign particle or dust in a sample. This kind of missing values may

cause irregularity in analysis of biological data for example to determine the function,

domain or taxonomy of a certain species. Recently many researchers focus to improve data

quality of a database by discovering dependencies among the data set attributes. (Liu, et

al., 2012).

 Among the four types of dependencies, functional dependency has the main key

function in the determination of missing data. FDs also guarantee the accuracy of missing

data prediction compared to the other dependencies. Beside this, the FDs used to discover

the attributes to analyse space reduction in the database storage.

 Therefore, the major focus in this research is implementing functional dependency

to learn the characteristics of data set attributes (called as proxies) in preparation of

missing values prediction for microbial genomics data sets. The perception of functional

dependency is one of the primary dependencies which is important in designing and

developing of a database. In contrast of design the database using FDs, properties of FDs

studies as well. FDs may consider as integrity constraints that determine semantics of data.

Data quality problem may arise due to violations of FDs in a sample datasets. Hence this

missing data prediction may help to solve the data quality problem as well as to reduce the

storage space.

1.4 Problem statement

In implementing storage space optimisation using the proxy-based approach, we need to

understand the characteristics of data sets that will be of useful to utilise the proxies. In this

6

PJP/2012/FTMK/(1D)/S01002

research, we address the problem of: ‘How can we determine the characteristics of data

sets that will be make proxies useful in terms of space saving?’

1.5 Research Questions

The following are the research questions that we set to answer in order to deal with the

problem as mentioned in Section 1.4:

1. How FDs can be used to predict the missing data?

2. What are the requirements to prepare the data sets for missing data prediction?

3. What are the characteristics good proxies?

1.6 Aims and Objective

This research aims to define the characteristics of proxies and to determine whether it is

useful and implementable in practice. The following are the primary research objectives:

1. To identify the types of dependencies from the literature

2. To analyse properties of FDs that can offer missing data prediction

3. To discover FDs that are useful for missing values prediction.

1.7 Research Contribution

Studies on the characteristics of data sets that will be useful for space optimisation is

needed is crucial in designing space optimisation strategy for data centre providers that

need to deal with storage space constraints. By understanding the characteristics of data

sets that will contribute to gaining spaces, databased designer can make informed decision

regarding to data centers capacity planning. The contribution of this research is the result

of the experiment and analysis conducted against real data sets for space optimisation

techniques using proxies.

7

PJP/2012/FTMK/(1D)/S01002

CHAPTER 2

LITERATURE REVIEW

2.1 Background

In this chapter, we provide a literature review on data dependency with the aim to learn the

different forms of dependencies in preparing the methods to predict missing values in data

sets. By learning the features and properties of FDs in the literature, an understanding of

the different dependencies can be achieved.

2.2 Application of Functional Dependency in different domain

Data quality, concerning completeness of data sets is not a new problem; researchers has

been started the studies since 1980’s. Some of the researchers use FDs to detect missing

data in a sample datasets. (Liu, et al., 2012).

A functional dependency states that if in a relation two rows agree on the value of a

set of attributes X then they must agree on the value of a set of attributes Y. The

dependency is written as X → Y. For example, in a relation such as Buyers (Name,

Address, City, Nation, Age, Product), there is a functional dependency City → Nation,

because for each row the value of the attribute City identifies the value of attribute Nation.

Cleaning works of data focus more on removing duplicates or dealing with syntactic errors.

(George, et al., 2010).

8

PJP/2012/FTMK/(1D)/S01002

Dependencies have very important roles in designing of database, quality

management of data and knowledge representation. Application of dependencies can be

normally in observed in database design (through normalisation data normalisation) to

preserve data consistency. Functional Dependency (FD) for instance is applied, checking

data of Disease and Symptom columns in a medical database. If Pneumonia is a value of

disease and fever is a value of symptom and if every patient has a fever, then fever is said

to be associated with pneumonia. If the relationship continues for every pair of symptom

and disease values, then disease functionally determines symptom. Additionally,

discovered of dependency from existing data will be used in determining whether data sets

in databases correct and also to check the semantics of data of an existing database. The

primary role of dependency application in database is to check the quality of data in the

database. (Li, et al., 2012).

2.2.1 Methods for FDs discovery

The methods proposed in discovery of functional dependency are either top-down

approach or bottom-up approach. Candidates of FD were generated level-by-level and then

checking of candidates of FD’s satisfaction against the relation or its partitions is

performed in top-down approach. Bottom-up approach is started with tuples comparison to

get agree-sets or difference-sets then only candidate FD were generated. This is followed

by checking them against the agree-sets or difference-sets for satisfaction (Li, et al., 2012).

It has been discovered that the large databases been violated where an underlying

set of constraints and data inconsistent through data integration systems. Data

inconsistency has been attacked in different ways and there were different steps taken to

deal with this data inconsistency. The first step is trying to extract the most reliable answer

9

PJP/2012/FTMK/(1D)/S01002

to query posed to an inconsistent database. The second step is by minimally modifying

repairing an inconsistent database; the modification can be done through deleting or

inserting tuples or value. The last step is by producing a nucleus, which is a condensed

representation of all repairs that can be used for consistent query answering. But the main

focus of the researcher here is to repair the database that violates a set of functional

dependencies by modifying attribute values. V-repairs been introduced by the researcher to

repair an inconsistent database with respect to functional dependencies. V-repairs basically

database that have variables representing incomplete information. This V-repair reproduce

two types of changes made to the original database: changing a constant to another

constant whenever there is enough information for doing so, and changing a constant to a

variable whenever we cannot suggest a constant for an incorrect value. (Kolahi &

Lakshmanan, 2009).

 name cnt prov reg arCode phone
t1 Smith CAN BC Van 604 1234567
t2 Adams CAN BC Van 604 7654321
t3 Simpson CAN BC Van 604 3456789
t4 Rice CAN AB Vic 604 9876543

(a)

 name cnt prov reg arCode phone
t1 Smith CAN BC Van 604 1234567
t2 Adams CAN BC Van 604 7654321
t3 Simpson CAN BC Van 604 3456789
t4 Rice v1 AB Vic 604 9876543

(b)

Figure 2 (a) A database instance violating ∑ = {cnt, arCode reg, cnt, reg prov}. (b)

An optimum V-repair (Kolahi & Lakshmanan, 2009)

Figure 2(a) shows a database instance over name, country (cnt), province/state

(prov), region (reg), area code (arCode) and phone. However the database instance in

Figure 2(a) violates the functional dependencies ∑ = {cnt, arCode → reg, cnt, reg →

prov}. Figure 2(b) shows two necessary value modifications to solve the repair the

10

PJP/2012/FTMK/(1D)/S01002

violations. One, researcher change the value of reg ‘Man” to the correct value of ‘Van” and

in the other is change the value ‘CAN’ with variable v1. This shows that to achieve an

optimum repair, the best option is to change the value of country to something else. The

semantics is that v1 stands for a value outside the active domain of cnt. (Kolahi &

Lakshmanan, 2009).

Functional dependency abusing is very common and may arise in the context of

data integration or Web data extraction. Functional dependency also known as Integrity

constraints, encode data semantics. Hence, FD violations show variation from the expected

semantics, which is caused due to data quality problems. Figure 3 shows a sample database

and a set of FDs, where some of the values have been violated (e.g., tuples t2 and t3 violate

ZIPCity, tuples t2 and t3 violate Name SSN,City, and tuples t1 and t4 violate ZIP

State,City). (George, et al., 2010).

Figure 3. An example of an unclean database and possible repairs. (George, et al., 2010)

Basically, there are many ways to modify a table which is satisfies all the required

FDs. One of the way is to delete the wrong tuples (ideally, delete the fewest possible such

tuples) such that the remainder satisfies all the FDs. For example, the researcher, “repair”

11

PJP/2012/FTMK/(1D)/S01002

the relation instance in Figure 3 by deleting t1 and t3. But, if delete the whole tuples may

arise new problem where loss of “clean” data if only one of its attribute value is wrong.

However the researcher modifies the selected attribute values. Figure 3 show two possible

ways to repairs obtained from attribute modifications; and the questions marks specify that

an attribute value can be modified to one o several values in order to satisfy the FDs. In

between, the researcher also mentions that the existing methods do not identify the needs

of the following criteria such as Interactive data cleaning, data integration, and uncertain

query answering. (George, et al., 2010)

Figure 4. Example of various types of repairs. (George, et al., 2010)

Figure 4shows, few types of repairs have been proposed by the researcher in order

to correct the wrong value in violation of functional dependencies. Repairs I1 and I2 are

cardinality-minimal because no other repair has fewer changed cells. Clearly, I1 and I2 are

also cardinality-set-minimal and set minimal. I3 is set-minimal because reverting any of

the changed cells to the values in I will violate A B. On the other hand, I3 is not

cardinality-set-minimal (or cardinality-minimal) because changing t1 [B] to 3 and reverting

12

PJP/2012/FTMK/(1D)/S01002

t2 [B] to 3 gives a repair of I. I4 is not set-minimal because I4 satisfies A B even after

reverting t1 [A] to 1. (George, et al., 2010).

The researchers focus analysis on semantic error detection in order to verify

accuracy of the stored information. Data constraints and functional dependencies are the

main issues in relational database. Apiletti and colleagues has proposed means of

association rule mining to discover the data constraints and functional dependencies using.

Syntactic anomalies can be divided into few categories where it is occur due it

incompleteness (lack of attribute values), inaccuracy (presence of error and outliers),

lexical errors, domain format errors and irregularity (Apiletti, et al., 2006).

Semantic anomalies where there are discrepancy, due to a conflict between some

attribute values, ambiguity, due to the presence of synonyms, homonyms or abbreviations,

redundancy due to the presence of duplicate information, inconsistency due to an integrity

constraint violation or functional constraint violation, invalidity due to the presence of

tuples that do not display anomalies of the classes above but still do not represent valid

entities (Apiletti, et al., 2006).

Association rules were applied to biological data cleaning for detecting outlier and

duplicates, and to Gene Ontology to find relationships among terms of the ontology levels.

But at the same time, it is not used to find constraints or dependencies. Using association

rules, can find the causality relationship among the attribute values. Hence, analyse the

support and confidence of each rule to detect the data constraints and functional

dependencies. (Apiletti, et al., 2006).

Molinaro and Greco (2010) found that there are some problems in repairing and

querying a database in the presence of functional dependencies and foreign key constraints.

An attributes of a particular that present on right-hand side of FDs cannot appear on the

left-hand side called canonical (FDs). Researchers proposed semantics of constraint

13

PJP/2012/FTMK/(1D)/S01002

satisfaction for databases which contain null and unknown values for the tuple insertions

and updates. (Molinaro & Greco, 2010).

(a) Research

Name Manager
p1 John
p2 Bob
p3 carl

(b) Employee

Name Phone
John 123
Bob 111

Figure 5. Sample inconsistent databases (Molinaro and Greco 2010).

Project

Name Manager
p1 #1
p2 carl

Employee

Name Phone
John 123
bob 111
carl ┴1

Figure 6. Sample consistent databases (Molinaro and Greco 2010).

Suppose to have the following set of constraints (functional dependencies and foreign key

constraints):

• fd1 : Name Manager defined over Project,

• fd2 : Name Phone defined over Employee,

• fk : Project [Manger] ⊆ Employee [Name].

14

PJP/2012/FTMK/(1D)/S01002

Figure 5 shows an inconsistency database where there’s occurrence of violation on both fd1

and fk: for same research two different managers p1 and carl, present in research relation,

but not in employee table. Figure 6shows repairing of database. (Molinaro & Greco, 2010).

In Figure 6where #1 is an unknown value whose domain is {john, bob} whereas ┴1

is (labelled) null value. The FD fd1 satisfied through introduction of unknown value #1

which shows that the p1 gas a unique manager either john or bob. The fk in first tuple of

the relation not violated because of p1, anybody in here, is in the employee relation too.

The consistency of the original database w.r.t. fk is restored by inserting the manager carl

into the employee relation. (Molinaro & Greco, 2010).

Null value was introduced in the Figure 6for the phone number of carl because of

the information is missing. Here, we do not know whether the telephone number of carl

does not exist or exists but is not known. Thus, neither the ‘‘nonexistent” (a value does not

exist) nor the ‘‘unknown” (a value exists but is not known) interpretation of the null is

applicable in this situation. Thus, both unknown and null values express incomplete

information, even though unknown values are ‘‘more informative than” null values.

(Molinaro & Greco, 2010).

From the database of Figure 2.5, the consistent answer to the query asking for the

manager of p2 is carl, because this answer can be obtained from every possible world of

the repaired database. Clearly, there is no consistent answer to the query asking for the

manager of p1, whereas the consistent answer to the query asking for the telephone number

of p2 ’s manager is ┴1, that means that we have no information about it. (Molinaro &

Greco, 2010).

In addition, Yao, J.Hamilton and J.Butz, n.d. had proposed a new method for

discovery of functional dependency called FD_mine. This new approach will help to

decrease the size of data set as well to detect the number of FDs present. Beside this, this

15

PJP/2012/FTMK/(1D)/S01002

algorithm will also prevent the data set from lost its information. This FD_Mine algorithm

is based on level-wise searching. For example the results from level k will be used in next

level which is level k+1. At first, all the FDs X->Y where X and Y are the single attributes

were stored in FD_SET F1. Thus, the candidates in this set refer to L1. Candidates Xi Xj of

L2 was generated from F1 and L1. Second level, FDs are detected from Xi Xj -> Y and

stored in FD_SET F2. And then, F1, F2, L1, and L2 utilised to produce the L3 candidates

and so on till there’s no remaining of candidates. (i.e., Lk = ϕ (k ≤ n- 1)). (Yao, et al., n.d.)

2.3 Data Incompleteness problem: Missing values

Missing values in a sample datasets is not a new problem faced by the scientist due to its

negative impacts on scientific analysis results. In bioinformatics database management, it

is important to get complete and correct datasets. This is because in future this datasets will

be used for further research such as experimental analysis or development of model. Many

field such as computer science, statistics, economics, and bioinformatics are concerned for

good data quality. The focus of this research is on the missing values problem faced by

microbial genomics domain. Microbial genomics is the study of microbe’s genomes, it

sequences, functions and structures. Bioinformatics can be divided into few different

domains for instance genomics, proteomics, RNA and DNA, gene expression, and

phylogenetics.

The following are the studies in which missing values are key factor in several

application domains:

• In gene expression microarray data, missing values frequently create problems.

Because missing data, can delay the downstream analysis such as gene clustering,

16

PJP/2012/FTMK/(1D)/S01002

distance calculation between gene networks. Tuikkala et al., proposed an

imputation method to produce complete datasets. (Tuikkala, et al., 2008)

• Phylogenetics is evolutionary relation study among a group of organisms which is

discovered through sequencing data and morphological data matrices. Missing

values cause problem in phylogenetics analysis in terms of taxonomy and

characters of organisms. Hence the overall classification among the organisms is

not accurate and complete. J.Wiens and C.Morrill conduct new approach to

determine the effect of missing data in phylogenetic analysis. They did the analysis

in terms of simulation and empirical studies. (J.Wiens & C.Morrill, 2011).

• In genomics, missing values cause problem when the data matrix cannot be

represented in memory. In addition it is also possible to produce biases in terms of

results from scientific analysis. For example in Single-nucleotide polymorphism

(SNP) identification missing values may cause calculation imbalance and

complicated for statistical analyses. Therefore, Li et al. implement an approach

called Bayesian Association with Missing Data (BAMD) to detect the SNP

interactions without any effects from missing data. (Li, et al., 2012)

Since the missing data can cause negative effects to various field, it must be handled in

a proper way where it can give best and accurate results in the analysis.

2.4 Conclusions

Basically, this chapter provides background about functional dependencies dealing with

the missing data prediction in the database and statistics in different application domains.

Here the analysis on FDs was conducted from different aspects for example in

17

PJP/2012/FTMK/(1D)/S01002

bioinformatics domain. Beside this, the FDs provide important roles in prediction of

missing data also been surveyed through the literature studies.

18

PJP/2012/FTMK/(1D)/S01002

CHAPTER 3

MATERIALS AND METHODS

3.1 Background

This chapter describes about the methodology and materials that is used in this research.

The very first step in this research illustrate about the general method and data set we used

for the analysis and why we choose it. And there are also details about the TANE

algorithm that we used to obtain the FDs between the attributes. In addition, it also

followed by conclusion of the chapter.

3.2 Research Methodology

As shown in Figure 3.1, first step in this research is to check for the data available in the

Comprehensive Microbial Resources (CMR) and to download sample data sets. CMR is a

freely available website to show information about complete prokaryotic genome. As well,

this CMR database make easier by making availability of all the organisms information, it

also giving analysis of comparison between the genomes of the different organisms. CMR

also contains genome tools, searches for genes, genomes, sequence; comparative tool

which for comparison of multiple genomes. The tools could be more useful because it’s

providing graphical displays of genomes, biochemical pathways of genome as well. The

data were stored in a database called Omniome database. There are more than 20 tables in

the Omniome database scheme. From there, Taxon table downloaded and used for missing

19

PJP/2012/FTMK/(1D)/S01002

data analysis in this research. In particular Taxon table has been selected in this research

since it has missing values in it.

 And the second step is verifying presence of the missing values in the Taxon data

set. Taxan data set were viewed in Microsoft Office Excel and each column and row of the

table checked for missing values appearances. Statistic analysis was done on percentage of

missing data in taxon table. Step three is to prepare the dataset for FDs discovery. Datasets

must be separated into sub-tables and followed by reduction of missing data columns and

rows. Here the Taxon main table is spliced up into seven categories since it has 12

attributes. For ease of reference, attributes were presented as alphabets as shown in Table

2.

Table 2. List of attributes in Taxon

Attributes Represented by

U_id A

Taxon_id B

Kingdom C

Genus D

Species E

Strain F

Intermediate_rank_1 G

Intermediate_rank_2 H

Intermediate_rank_3 I

Intermediate_rank_4 J

Intermediate_rank_5 K

Intermediate_rank_6 L

20

PJP/2012/FTMK/(1D)/S01002

The first five column (attributes) A to E is remain unchanged for all the seven tables while

the balance seven attributes were spliced into seven table as follows: AE_F, AE_G, AE_H,

AE_I, AE_J, AE_K and AE_L. The attributes A, B C, D and E are never changed because

it has been found that those attributes does not have any missing values. Hence these

attributes remain the same to analyse the presence of FDs for the missing value analysis for

the other attributes. And the schemas of the sub-tables from Taxon are as follows:

i. AE_F = (A, B, C, D, E)

ii. AE_G = (A, B, C, D, G)

iii. AE_H = (A, B, C, D, H)

iv. AE_I = (A, B, C, D, I)

v. AE_J = (A, B, C, D, J)

vi. AE_K = (A, B, C, D, K)

vii. AE_L = (A, B, C, D, L)

Fourth step is to genere test table by data cleaning the taxon table into sub-table. After data

cleaning process, the data sets saved as comma separated values file to be used as input in

TANE. Sample input table data set is shown in Appendix A. Followed by step five, TANE

algorithm is used to detect the FDs in the test table which are generated before. TANE

algorithm was developed by Huhtala and colleageus. (Huhtala, et al., 1999). Step six will

be carried out experiment to obseve the missing values in test table and the original

complete table. Results from the experiment is used further for discussion of proxies for

space requirement analysis and aslo to recommend the characteristics of proxies for

missing values prediction.

21

PJP/2012/FTMK/(1D)/S01002

Figure 7. Flow chart of overall methodology

3.3 Data source of Microbial Genomics data sets

As mentioned earlier in the methodology part, CMR database were chosen to get the

sample data set. Specifically microbial genomics database chose because most of the

diseases caused by the microbes called as pathogen. Hence there are many microbes has

been identified by the scientists in their research. Though, it is not properly managed to be

used in future; for example to obtain a vaccine or drug to cure a particular disease. Data

incompleteness may arise from this improper management of the database. Therefore,

sample data set were taken from CMR to analyse the presence of FDs which can be used in

Download dataset from CMR database

Find missing data occurrence in the particular dataset
to be used further

Prepare the dataset for FDs discovery

Generate Test Table (comma separated value files)

Discover proxies by using TANE

Analysis of results and discussion (Accuracy of FDs and amount of
storage space requirement to store proxy map)

Conclusion and Recommendation

22

PJP/2012/FTMK/(1D)/S01002

missing values prediction. Microbial genomics is the study of genome of microbes where it

determines the whole DNA sequence of the microbes. Along with this, the genes will

determine the functions and pathways of the microbes.

Chromosomes are made of nucleotides sequence which is called as gene that

encode specific product such RNA or protein molecule. Basically, gene contains biological

information for instance roles in cellular pathways and the location on a chromosome for

each specific species. The main characteristic of the genome is the taxonomic classification

(phylogenetic) including organism’s domains, phylum, class, order, family, genus, species

and strain. The reactions pathways are involving compounds such as reactants, and

enzymes to catalyse the reaction.

Fundamentally, genomics is the study of the organisation of genome’s molecule, its

content and the gene that they encode. It is divided into three categories such as structural

genomics, functional genomics, and comparative genomics. Structural genomics is the

study of the physical structure of an organism’s genomes. The major objective is to resolve

and explore the DNA sequence of the genome. Functional genomics is the analysis to

verify the genomes functions. The function is determined by the proteins that encode the

genome. The third category is comparative genomics to analyse the differences and

similarities in the genomes from different organisms. This analysis will help the

researchers to identify the conserved region in a particular genome and differentiate

function and regulation patterns.

DNA sequencing can be done using Sanger method. Whole-genome shotgun

sequencing is one of the simplest ways to analyse the microbial genomes. Here, fragments

of gene that has been produced were sequenced individually and computer is used to align

them to get a complete genome. The whole-genome shotgun is divided into four stages as

23

PJP/2012/FTMK/(1D)/S01002

follows: library construction, random sequencing, fragment alignment and gap closure, and

editing.

Researchers have complete sequencing of many bacterial genomes and make

comparison between one another as well. This output will help us in identification and

determination of structure of genome, microbial physiology, phylogeny, and also the

pathogen that cause a disease. Identification of those criteria directly will help in producing

new vaccines and drugs for the disease treatment. At last, the function of genome can be

identified by annotation, where the DNA chips were used to study the mRNA synthesis

and the organism’s protein content. The extensive contribution of the genomes comparison

is the understanding of prokaryotic evolution and assists to assume the genes that are

responsible for different cellular processes.

3.2.1 Description of the semantics of Taxon table attributes

The taxon table holds the information about each genome filled into the omniome

database. Table db_data and taxon_link has linkage of genome information with taxon

table. Taxon table’s data was taken from NCBI. Taxon table has 14 attributes and 723 rows

of tuples. The attributes of Taxon table are:

Taxon = (u_id, taxon_id, kingdom, genus, species, comment, strain,

intermediate_rank_1, intermediate_rank_2, intermediate_rank_3,

intermediate_rank_4, intermediate_rank_5, intermediate_rank_6,

short_name)

Fundamentally, kingdom in biology is known as taxonomic rank which is the top

rank or three-domain system. Kingdoms are divided into three main domains such as

bacteria, archaea, and eukarya. Classification level of the organisms during 1970’s was

24

PJP/2012/FTMK/(1D)/S01002

increase due to importance of molecular level comparisons of the genes is the key factor

besides genetic similarity and the physical appearance and behaviour.

In biology, genus (plural: genera) is the low-level taxonomic rank which is used to

classify the living and fossil organisms. Biodiversity studies especially fossil studies of a

species cannot always be identified and genera and families basically have lengthy ranges

than species which is determined by using genera and higher taxonomic level for instance

families.

Essentially species is a group of organisms that is capable of interbreeding and

reproducing good offspring. Normally species that shared common ancestors were placed

in one genus based on some similarities. The similarities are comparison of physical

attributes, for example their DNA sequences.

Strain also known as low-level taxonomic rank used in some of the biological field.

A strain is a genetic variant or a subtype of a micro-organism for instance virus, bacterium

or fungus. “Flu strain” is an example of the influenza or “flu” virus. Intermediate ranking

is about subdivision of the kingdom to get more specific gene for further use such as to

produce vaccine.

3.2.2 Observation of missing values in Taxon table

 Out of 14 attributes 1 attribute (column: comment) is completely empty. There are

total 9399 tuples in the Taxon table. And 875 rows of tuples were missing in this table.

Statistics shows that about 9.31% data were missing. This missing data may cause some

problem during further analysis. For example loss of the specific gene or strain may cause

inconsistencies in production of vaccine. In term of phylogenetic analysis also produced

25

PJP/2012/FTMK/(1D)/S01002

invariance results for organism classification. Statistics of the missing data is calculated

based on the characteristics of Taxon table as shown in Table 3.

Table 3. Statistics of missing data in Taxon table

Characteristics Total Percentage of
missing values

(%)
Attributes used 13 -

Missing attribute (fully empty) 1 -

Tuples (include with missing

values)

Total number of cells = number of

tuple(s) x number of attribute(s)

Total number of cells = 723 x 13 =

9399

-

Missing values 875 875
9399

 x 100 =9.31

3.4 TANE Algorithm for discovery of FDs

TANE is an available algorithm where presented by Huhtala et al. (1999) to discover FDs

that is not limited to small amount of datasets even for large number of datasets. This

algorithm is divided into few parts such as TANE main algorithm, generating levels,

computing dependencies, pruning the lattice, computing partitions, and approximate

dependencies. Fundamentally, TANE is partition based algorithm where set of rows are

partitioning their attributes which makes discovery of FDs faster and efficient. Besides

FDs, the partition also used to detect the AFDs with efficiently. “To find all valid minimal

non-trivial dependencies, TANE searches the set containment lattice in a level wise

26

PJP/2012/FTMK/(1D)/S01002

manner”. (Huhtala, et al., 1999). The further details of the algorithm were explained in

section 3.3.1. Advantages of TANE are:

1. Fast even for a large number of tuples.

2. Not only FDs, discovery of approximate functional dependencies easy and efficient

and the erroneous or exceptional rows can be identified easily

3. Space can be pruned effectively and how the partitions and dependencies can be

computed efficiently.

The following are the steps involved in TANE algorithm process:

i. The installation of the data set must be done: For example the file (data set) name is

AE_F.orig. Save this file in “original” folder.

ii. Than open “description” folder and edit/create AE_F.dsc file to the variables.

iii. Create new data set by using select.perl command

% cd descriptions

%../bin/select.perl AE_F.dsc

 (to produce AE_F.dat file in description folder)

iv. To get the output from the TANE: we use the following command

%bin/taneg3 <# of attributes> <# of records> <# of attributes> data/AE_F.dat 0.1 &>

TaxonAF01.txt

 (the output file is in .txt format)

3.3.1 TANE Algorithm categories

27

PJP/2012/FTMK/(1D)/S01002

Huhtala et al., (1999) developed TANE algorithm for prediction of FDs. It is divided into

six subparts such as main TANE algorithm, generating levels, computing dependencies,

pruning the lattice, computing partitions, and approximate dependencies.

Figure 8shows the main TANE algorithm’s procedure. The computation in TANE

will begins with L1 = {{A} | A ϵ R} and work out L2 from L1 and L3 from L2. The step 6

COMPUTE_DEPENDENCIES (Lℓ) is to find the least dependencies with the left hand

side in Lℓ-1. Next the PRUNE (Lℓ) will search for the space. And then, the last step

GENERATE_NEXT_LEVEL (Lℓ) produces next level from the current level. (Huhtala, et

al., 1999).

Figure 8. TANE main algorithm (Adapted from Huhtala et al., 1999)

Figure 9 shows the subsequent algorithm from the main TANE algorithm; the

generating level algorithm. Here the GENERATE_NEXT_LEVEL is computing the Lℓ+1

from Lℓ. PREFIX_BLOCKS (Lℓ) is to sort the list of attributes with same prefix block.

(Huhtala, et al., 1999).

28

PJP/2012/FTMK/(1D)/S01002

Figure 9. Generating levels algorithm (Adapted from Huhtala et al., 1999)

After generating levels algorithm, COMPUTING_DEPENDENCIES is the next

step of TANE as in Figure 10. The output is to obtain minimal dependencies from this

procedure. (Huhtala, et al., 1999).

Figure 10. Computing dependencies algorithm (Adapted from Huhtala et al., 1999)

Procedure of pruning in TANE algorithm was given in Figure 11. Essentially, this

pruning procedure contains two parts; Rhs candidates pruning and key pruning. This

pruning step is used to detect the dependencies without missing it. (Huhtala, et al., 1999).

29

PJP/2012/FTMK/(1D)/S01002

Figure 11. Pruning the lattice algorithm (Adapted from Huhtala et al., 1999)

The e value in TANE algorithm is calculated by stripped partitions procedure as in

Figure 12. An initialisation of table T to all NULL made through this procedure as an

assumption. The same table can be utilised repeatedly without re-initialisation because

before out the procedure resets to all NULL.

Figure 12. Computing partitions algorithm (Adapted from Huhtala et al., 1999)

The Figure 13 shows the approximate dependencies procedure. This procedure is

obtained from modification of TANE algorithm to find all approximate dependencies.

30

PJP/2012/FTMK/(1D)/S01002

Beside this, it not only use to find the minimal approximate dependencies but with smaller

error.

Figure 13. Approximate Dependencies algorithm (Adapted from Huhtala et al., 1999)

3.5 The method in preparing analysis of space requirement

Proxy based approach is designed for storage space optimisation. In this research, we adopt

proxy-based approach to study the requirement to predict missing values and types of

proxies which are contribute in save the space. Basically, the candidates proxies were

identified from the output produced from TANE algorithm, where the G3 errors are very

low or zero. If attribute shows very low or zero error, than it can be replaced to droppable

attribute to predict the missing values.

Pivot table can be used to count the number of instances in taxon proxy tables in

terms of space saving. Pivot table make it easy to arrange and summarise the complicated

data and drill down on details. Hence using this pivot table function in MS Excel, we

calculate the number of relationship between one tuple to another either one to one or one

to many.

31

PJP/2012/FTMK/(1D)/S01002

3.5.1 Proxy based approach for space optimisation

The rising of data volumes in many application domains, makes raise a problem to

maintain such large data storages. Though, the storage space is reducible if the space of

storage was optimised. These space optimisations not only contribute to save the space, but

also decreasing the carbon footprint and the cost of operation. Beside this, it also

optimises query response time. Additionally, this space optimisation might make easy the

job of administering which are basically requires new infrastructure, utilities like power

and cooling increase, extra floor space and extra staff. (Emran, et al., 2012).

Therefore, Emran, Abdullah, and Isa (2012) produced an approach called Proxy-

based approach which can generate space optimisation through modification of database

schema. This can be done by deleting the attributes from the particular schema. The term

‘proxies’ were used by the researchers, is to replace the attribute with another attribute in

the schema. The functional dependency relationship is used to recognise the proxies among

the attributes in a relational table.

Basically, the space saving is obtained through some modification in the schema by

dropping some of the attributes. And then, the total saved space is approximately verified

by the number of attributes has been dropped and the tuples number in the table remain.

However, the droppable attribute and the proxy must have relationship in terms of missing

data. Hence, the functional dependency relationship is obtained between the attributes in

the relational tables. Proxies for the delete able attributes been found through discover of

the relations among attributes in the tables where there is presence of FD.

This proxy-based technique apply algorithm which will get back the removed

overlaps from the meta-data, when the query is submitted against the compressed tables.

32

PJP/2012/FTMK/(1D)/S01002

For instance, a and b are the droppable attribute. A proxy map consists of the following

mappings:

a → {1,2,3,4},

b → {5,6,7,8},

where the numbers are the proxy values and the arrow shows relationship mapping. From

here, the researchers have identified two types of proxy maps as follows:

i. A pure relational table:

This structure shows each value in a droppable attribute is matched to

exactly one value of the proxy. The schema structure of the table is:

<droppableAttr, proxy>. (Table 4)

ii. A multi-valued table:

In this table, each value of droppable attribute is matched to a set of proxy

values. The schema structure of the table is: <droppableAttr, proxy>. (Table

5)

Table 4. A Proxy map in pure relational table (Emran, Abdullah, and Isa 2012)
A B
a 1
a 2
a 3
a 4
b 5
b 6
b 7
b 8

Table 5. A Proxy map in a multi-valued table (Emran, Abdullah, and Isa 2012)

33

PJP/2012/FTMK/(1D)/S01002

A B
a 1,2,3,4
b 5,6,7,8

The example also shows that, the size of proxy map in the multi-valued table is smaller

than the proxy map in pure relational table. As a result from the example, the storage space

can be saved by minimizing the proxy map in a multi-valued table structure as shown in

table 2.2. In the example above, the multi-valued table saves of 6 instances.

3.6 Conclusions

To conclude, the method has been applied according to research methodology described

above sections. The steps must be followed correctly to obtain precise results to be

analysed later. Results obtained from TANE algorithm saved as .txt file analysed and

discussed in the next chapter. The results were analysed according to accuracy or low G3

errors.

34

PJP/2012/FTMK/(1D)/S01002

CHAPTER 4

RESULTS

4.1 Background

This chapter presents the results obtained from the steps performed in the methodology

which is described in the previous chapter. The input table used for this research is in

comma separated values file than saved as .txt file. The output also saved in the same

format to make easy to view the results. There are two types of results have been obtained

from the analysis:

i. Discovery of candidate proxies and its G3 values

ii. Amount of space required to store proxy information

4.2 Proxy discovery from Taxon sub-tables

The TANE algorithm produced the output which can be viewed in notepad or WordPad.

Basically, the TANE algorithm has ten ranges which is start from 0.10 to 1.00. Since we

have total seven tables, each table can produce ten outputs. Figure 14 – Figure 23 show the

raw results for table AE_F produced by TANE algorithm and the other results were shown

in the Appendix B. Then, these results are analysed according to G3 ranges as described in

this sections above. Section 4.2.1 to 4.2.7 shows the summary of the output from TANE.

The highlighted (yellow colour) attributes are the FD-based proxies for each proxy

35

PJP/2012/FTMK/(1D)/S01002

attribute that being analysed in each section. They are F, G, H, I, J, K, and L. This

identification is basically done according to the G3 errors values produced by the TANE

algorithm.

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)
Level == 3 #candidates == 1 avg.elements == 2 (31/14)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.10 %
==> G3 threshold == 72 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)

==
total_no_of_candidates == 13
prune_key == 9
prune_key_sub == 1
prune_key_second == 0
prune_rhs == 1
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 14. Output of TANE algorithms for table AE_F on 0.10 G3 range

36

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)
Level == 3 #candidates == 1 avg.elements == 2 (31/14)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.20 %
==> G3 threshold == 144 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)
5 -> 4 (81 / 0.11)

==
total_no_of_candidates == 13
prune_key == 9
prune_key_sub == 1
prune_key_second == 0
prune_rhs == 2
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 15. Output of TANE algorithms for table AE_F on 0.20 G3 range

37

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)
Level == 3 #candidates == 1 avg.elements == 2 (31/14)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.30 %
==> G3 threshold == 216 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)
5 -> 4 (81 / 0.11)

==
total_no_of_candidates == 13
prune_key == 9
prune_key_sub == 1
prune_key_second == 0
prune_rhs == 2
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 16. Output of TANE algorithms for table AE_F on 0.30 G3 range

38

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)
Level == 3 #candidates == 1 avg.elements == 2 (31/14)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.40 %
==> G3 threshold == 288 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)
5 -> 4 (81 / 0.11)

==
total_no_of_candidates == 13
prune_key == 10
prune_key_sub == 1
prune_key_second == 0
prune_rhs == 2
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 17. Output of TANE algorithms for table AE_F on 0.40 G3 range

39

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.50 %
==> G3 threshold == 360 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
5 -> 1 (approximate key: 300 / 0.42)
5 -> 2 (approximate key: 300 / 0.42)
5 -> 3 (approximate key: 300 / 0.42)
5 -> 4 (approximate key: 300 / 0.42)
5 -> 6 (approximate key: 300 / 0.42)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)
4 -> 5 (322 / 0.45)

==
total_no_of_candidates == 12
prune_key == 10
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 3
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 18. Output of TANE algorithms for table AE_F on 0.50 G3 range

40

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.60 %
==> G3 threshold == 432 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
5 -> 1 (approximate key: 300 / 0.42)
5 -> 2 (approximate key: 300 / 0.42)
5 -> 3 (approximate key: 300 / 0.42)
5 -> 4 (approximate key: 300 / 0.42)
5 -> 6 (approximate key: 300 / 0.42)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)
4 -> 5 (322 / 0.45)

==
total_no_of_candidates == 12
prune_key == 10
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 3
prune_rhs_sub == 0
prune_rhs_second == 3
==

Figure 19. Output of TANE algorithms for table AE_F on 0.60 G3 range

41

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.70 %
==> G3 threshold == 503 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
4 -> 1 (approximate key: 463 / 0.64)
4 -> 2 (approximate key: 463 / 0.64)
4 -> 3 (approximate key: 463 / 0.64)
4 -> 5 (approximate key: 463 / 0.64)
4 -> 6 (approximate key: 463 / 0.64)
5 -> 1 (approximate key: 300 / 0.42)
5 -> 2 (approximate key: 300 / 0.42)
5 -> 3 (approximate key: 300 / 0.42)
5 -> 4 (approximate key: 300 / 0.42)
5 -> 6 (approximate key: 300 / 0.42)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)

==
total_no_of_candidates == 12
prune_key == 11
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 5
prune_rhs_sub == 0
prune_rhs_second == 1
==

Figure 20. Output of TANE algorithms for table AE_F on 0.70 G3 range

42

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.80 %
==> G3 threshold == 576 max. rows removed
==

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
4 -> 1 (approximate key: 463 / 0.64)
4 -> 2 (approximate key: 463 / 0.64)
4 -> 3 (approximate key: 463 / 0.64)
4 -> 5 (approximate key: 463 / 0.64)
4 -> 6 (approximate key: 463 / 0.64)
5 -> 1 (approximate key: 300 / 0.42)
5 -> 2 (approximate key: 300 / 0.42)
5 -> 3 (approximate key: 300 / 0.42)
5 -> 4 (approximate key: 300 / 0.42)
5 -> 6 (approximate key: 300 / 0.42)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)

==
total_no_of_candidates == 12
prune_key == 11
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 5
prune_rhs_sub == 0
prune_rhs_second == 1
==

Figure 21. Output of TANE algorithms for table AE_F on 0.80 G3 range

43

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)
Level == 2 #candidates == 6 avg.elements == 3 (397/118)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 0.90 %
==> G3 threshold == 648 max. rows removed

-> 3 (50 / 0.07)
1 -> 2 (key)
1 -> 3 (key)
1 -> 4 (key)
1 -> 5 (key)
1 -> 6 (key)
2 -> 1 (approximate key: 18 / 0.03)
2 -> 3 (approximate key: 18 / 0.03)
2 -> 4 (approximate key: 18 / 0.03)
2 -> 5 (approximate key: 18 / 0.03)
2 -> 6 (approximate key: 18 / 0.03)
4 -> 1 (approximate key: 463 / 0.64)
4 -> 2 (approximate key: 463 / 0.64)
4 -> 3 (approximate key: 463 / 0.64)
4 -> 5 (approximate key: 463 / 0.64)
4 -> 6 (approximate key: 463 / 0.64)
5 -> 1 (approximate key: 300 / 0.42)
5 -> 2 (approximate key: 300 / 0.42)
5 -> 3 (approximate key: 300 / 0.42)
5 -> 4 (approximate key: 300 / 0.42)
5 -> 6 (approximate key: 300 / 0.42)
6 -> 1 (approximate key: 4 / 0.01)
6 -> 2 (approximate key: 4 / 0.01)
6 -> 3 (approximate key: 4 / 0.01)
6 -> 4 (approximate key: 4 / 0.01)
6 -> 5 (approximate key: 4 / 0.01)

==
total_no_of_candidates == 12
prune_key == 11
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 5
prune_rhs_sub == 0
prune_rhs_second == 1
==

Figure 22. Output of TANE algorithms for table AE_F on 0.90 G3 range

44

PJP/2012/FTMK/(1D)/S01002

Level == 1 #candidates == 6 avg.elements == 8 (1710/208)

==
Parameters (approximate dependencies):
No. of tuples == 720
No. of attributes == 6
Stop level == 6
Data == data/TaxonAF.dat
Percentage of all tuples == 1.00 %
==> G3 threshold == 720 max. rows removed
==

-> 1 (720 / 1.00)
-> 2 (715 / 0.99)
-> 3 (50 / 0.07)
-> 4 (684 / 0.95)
-> 5 (666 / 0.93)
-> 6 (717 / 1.00)

==
total_no_of_candidates == 6
prune_key == 6
prune_key_sub == 0
prune_key_second == 0
prune_rhs == 5
prune_rhs_sub == 0
prune_rhs_second == 0
==

Figure 23. Output of TANE algorithms for table AE_F on 1.00 G3 range

45

PJP/2012/FTMK/(1D)/S01002

4.2.1 Summary output of table AE_F

The results of FDs discovery from AE_F table is summarised according to the range of G3.

The tables are shown as follows:

Table 6. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.01 0.03

A -> B F->A B->A
A ->C F->B B->C
A ->D F->C B->D
A ->E F->D B->E
A ->F F->E B->F

(b) G3 range is 0.20

G3 (0.20%)
0 0.01 0.03 0.11

A -> B F->A B->A E -> D
A ->C F->B B->C
A ->D F->C B->D
A ->E F->D B->E
A ->F F->E B->F

(c) G3 range is 0.30

G3 (0.30%)
0 0.01 0.03 0.07 0.11

A -> B F->A B->A A,B,D,E,F -> C E -> D
A ->C F->B B->C
A ->D F->C B->D
A ->E F->D B->E
A ->F F->E B->F

(d) G3 range is 0.40

G3 (0.40%)
0 0.01 0.03 0.07 0.11

A -> B F->A B->A A,B,D,E,F -> C E -> D
A ->C F->B B->C
A ->D F->C B->D
A ->E F->D B->E
A ->F F->E B->F

46

PJP/2012/FTMK/(1D)/S01002

(e) G3 range is 0.50
G3 (0.50%)

0 0.01 0.03 0.07 0.42 0.45
A -> B F->A B->A A,B,D,E,F -> C E -> A D -> E
A ->C F->B B->C E -> B
A ->D F->C B->D E -> C
A ->E F->D B->E E -> D
A ->F F->E B->F E -> F

(f) G3 range is 0.60
G3 (0.60%)

0 0.01 0.03 0.07 0.42 0.45
A -> B F->A B->A A,B,D,E,F -> C E -> A D -> E
A ->C F->B B->C E -> B
A ->D F->C B->D E -> C
A ->E F->D B->E E -> D
A ->F F->E B->F E -> F

(g) G3 range is 0.70
G3 (0.70%)

0 0.01 0.03 0.07 0.42 0.64
A -> B F->A B->A A,B,D,E,F -> C E -> A D -> A
A ->C F->B B->C E -> B D -> B
A ->D F->C B->D E -> C D -> C
A ->E F->D B->E E -> D D -> E
A ->F F->E B->F E -> F D -> F

(h) G3 range is 0.80
G3 (0.80%)

0 0.01 0.03 0.07 0.42 0.64
A -> B F->A B->A A,B,D,E,F -> C E -> A D -> A
A ->C F->B B->C E -> B D -> B
A ->D F->C B->D E -> C D -> C
A ->E F->D B->E E -> D D -> E
A ->F F->E B->F E -> F D -> F

(i) G3 range is 0.90
G3 (0.90%)

0 0.01 0.03 0.07 0.42 0.64
A -> B F->A B->A A,B,D,E,F -> C E -> A D -> A
A ->C F->B B->C E -> B D -> B
A ->D F->C B->D E -> C D -> C
A ->E F->D B->E E -> D D -> E
A ->F F->E B->F E -> F D -> F

47

PJP/2012/FTMK/(1D)/S01002

(j) G3 range is 1.00
G3 (1.0%)

0.07 0.93 0.95 0.99 1.00
A,B,D,E,F -> C A,B,C,D,F -> E A,B,C,E,F -> D A,C,D,E,F-> B B,C,D,E,F ->A
 A,B,C,D,E ->F

Table 7. Overall FD accuracy and proxy table size analysis for table AE_F

Proxy

candidates
G3 FDs Accuracy

Percentage (%)
Proxy table size

A -> F 0 100 1442
B->F 0.03 97 1442
C->F - - -
D->F 0.64 36 1442
E->F 0.42 48 1442
AB->F - - -
AC->F - - -
AD->F - - -
AE->F - - -
BC->F - - -
BD->F - - -
BE->F - - -
CD->F - - -
CE->F - - -
DE->F - - -
ABC->F - - -
ABD->F - - -
ABE->F - - -
BCD->F - - -
BCE->F - - -
CDE->F - - -
ABCD->F - - -
ABCE->F - - -
BCDE->F - - -
ABCDE->F 1.00 0 4326

From the results table 7, it is found that, the presence of FDs on attribute A -> F, B

-> F, D -> F and E -> F. The FD for A->F is 100% accurate where the G3 value is 0. And

B -> F shows about 97% of accurate prediction of FDs. The other two FD predictions in

between D -> F and E -> F does not showing precise prediction. Because D->F produced

G3 error of 0.42 which is about only 58% FD accuracy. Whereas E->F produced G3 error

48

PJP/2012/FTMK/(1D)/S01002

of 0.64, about 36% FD accuracy. If the G3 value is near to zero than the prediction of FDs

is 100% accurate.

4.2.2 Summary output of table AE_G

The AE_G table also produced ten outputs through the TANE algorithm. The analyses of

the output for FD discovery from table AE_G are shown in Table 8.

Table 8. FDs discoveries in AE_G table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.01 0.02 0.07

A -> B D -> G B->A A,B,D,E,G -> C
A ->C B->C E -> G
A ->D B->D
A ->E B->E
A ->G B->G

(b) G3 range is 0.20

G3 (0.20%)
0 0.01 0.02 0.07 0.11

A -> B D -> G B->A A,B,D,E,G -> C E -> D
A ->C B->C E -> G
A ->D B->D
A ->E B->E
A ->G B->G

(c) G3 range is 0.30

G3 (0.30%)
0 0.01 0.02 0.07 0.11

A -> B D -> G B->A A,B,D,E,G -> C E -> D
A ->C B->C E -> G
A ->D B->D
A ->E B->E
A ->G B->G

49

PJP/2012/FTMK/(1D)/S01002

(d) G3 range is 0.40

G3 (0.40%)
0 0.01 0.02 0.07 0.11

A -> B D -> G B->A A,B,D,E,G -> C E -> D
A ->C B->C E -> G
A ->D B->D
A ->E B->E
A ->G B->G

(e) G3 range is 0.50
G3 (0.50%)

0 0.01 0.02 0.07 0.41 0.45
A -> B D -> G B->A A,B,D,E,G -> C E -> A D -> E
A ->C B->C E -> B
A ->D B->D E -> C
A ->E B->E E -> D
A ->G B->G E -> G

(f) G3 range is 0.60

G3 (0.60%)
0 0.02 0.07 0.41 0.45 0.53

A -> B B->A A,B,D,E,G -> C E -> A D -> E A,B,C,D,E -> G
A ->C B->C E -> B
A ->D B->D E -> C
A ->E B->E E -> D
A ->G B->G E -> G

(g) G3 range is 0.70

G3 (0.70%)
0 0.02 0.07 0.41 0.53 0.64

A -> B B->A A,B,D,E,G -> C E -> A A,B,C,D,E -> G D -> A
A ->C B->C E -> B D -> B
A ->D B->D E -> C D -> C
A ->E B->E E -> D D -> E
A ->G B->G E -> G D -> G

(h) G3 range is 0.80

G3 (0.80%)
0 0.02 0.07 0.41 0.53 0.64

A -> B B->A A,B,D,E,G -> C E -> A A,B,C,D,E -> G D -> A
A ->C B->C E -> B D -> B
A ->D B->D E -> C D -> C
A ->E B->E E -> D D -> E
A ->G B->G E -> G D -> G

50

PJP/2012/FTMK/(1D)/S01002

(i) G3 range is 0.90

G3 (0.90%)
0 0.02 0.07 0.41 0.53 0.64

A -> B B->A A,B,D,E,G -> C E -> A A,B,C,D,E -> G D -> A
A ->C B->C E -> B D -> B
A ->D B->D E -> C D -> C
A ->E B->E E -> D D -> E
A ->G B->G E -> G D -> G

(j) G3 range is 1.00
G3 (1.00%)

0.07 0.53 0.93 0.95 0.99 1.00
A,B,D,E,G -> C A,B,C,D,E -> G A,B,C,D,G -> E A,B,C,E,G -> D A,C,D,E,G -> B B,C,D,E,G -> A

Table 9. Overall FD accuracy and proxy table size analysis for table AE_G

Proxy

Candidates
G3 FDs Accuracy

Percentage (%)
Proxy table size

A ->G 0 100 1446
B->G 0.02 98 1446
C->G - - -
D->G 0.64 36 1446
E->G 0.07 | 0.41 93 | 59 1446
AB->G - - -
AC->G - - -
AD->G - - -
AE->G - - -
BC->G - - -
BD->G - - -
BE->G - - -
CD->G - - -
CE->G - - -
DE->G - - -
ABC->G - - -
ABD->G - - -
ABE->G - - -
BCD->G - - -
BCE->G - - -
CDE->G - - -
ABCD->G - - -
ABCE->G - - -
BCDE->G - - -
ABCDE->G 0.53 47 4338

51

PJP/2012/FTMK/(1D)/S01002

Table 10 shows analysis of result of table AE_G from TANE algorithm. Based on

this table some observation are can be made. There are presence of FDs in between A-> G,

B->G, D-> G and E -> G. Even though there are presence of FDs, refer to it’s G3 error

values which is 0 or nearly zero it is acceptable as accurate FDs. Hence here, A->G and B-

>G are acceptable as accurate FD occurrence because of G3 error for A->G is 0 (100%

accurate) and 0.02 G3 error for B->G (98% accurate). Besides, D-> G and E -> G showing

worst case scenarios since both produced higher percentage of G3 error. D->G produced

0.64 G3 error values which are only 36% of accurate FD occurrence. It is different case for

E->G because TANE has produced both best case scenario and worst case scenario. For

the best case scenario, when the G3 ranges used in TANE is from 0.10 to 0.40 it produces

0.07 G3 errors which are about 93% of FD existence accuracy. On the other hand, worst

case, produces 0.41 G3 error from the ranges of 0.50 to 0.90. Therefore, we have to ignore

the low G3 error of 0.07 and take into account of the higher value of G3 which is 0.41. The

worst case of E->G shows very low percentage (only 59%) of FD accuracy. Though we

can say that A, B, D, and E are the proxy candidates for G, only A and B acceptable as

good candidates as both produce very low G3 error which is near to zero.

4.2.3 Summary output of table AE_H

Table 10 shows summary of the output for AE_H table for FD discovery.

Table 10. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.01 0.02 0.04 0.07

A -> B D->H B->A E,H->D A,B,D,E,H -> C
A ->C B->C
A ->D B->D
A ->E B->E
A ->H B->H

52

PJP/2012/FTMK/(1D)/S01002

(b) G3 range is 0.20

G3 (0.20%)
0 0.01 0.02 0.07 0.10 0.11

A -> B D->H B->A A,B,D,E,H -> C E ->H E->D
A ->C B->C
A ->D B->D
A ->E B->E
A ->H B->H

(c) G3 range is 0.30

G3 (0.30%)
0 0.01 0.02 0.07 0.10 0.11

A -> B D->H B->A A,B,D,E,H -> C E ->H E->D
A ->C B->C
A ->D B->D
A ->E B->E
A ->H B->H

(d) G3 range is 0.40

G3 (0.40%)
0 0.01 0.02 0.07 0.10 0.11

A -> B D->H B->A A,B,D,E,H -> C E ->H E->D
A ->C B->C
A ->D B->D
A ->E B->E
A ->H B->H

(e) G3 range is 0.50

G3 (0.50%)
0 0.01 0.02 0.07 0.41 0.45

A -> B D->H B->A A,B,D,E,H -> C E ->A D->E
A ->C B->C E ->B
A ->D B->D E ->C
A ->E B->E E ->D
A ->H B->H E ->H

(f) G3 range is 0.60

G3 (0.60%)
0 0.01 0.02 0.07 0.41 0.45

A -> B D->H B->A A,B,D,E,H -> C E ->A D->E
A ->C B->C E ->B
A ->D B->D E ->C
A ->E B->E E ->D
A ->H B->H E ->H

53

PJP/2012/FTMK/(1D)/S01002

(g) G3 range is 0.70

G3 (0.70%)
0 0.02 0.07 0.41 0.61 0.64

A -> B B->A A,B,D,E,H -> C E ->A H->D D->A
A ->C B->C E ->B D->B
A ->D B->D E ->C D->C
A ->E B->E E ->D D->E
A ->H B->H E ->H D->H

(h) G3 range is 0.80

G3 (0.80%)
0 0.02 0.07 0.41 0.64 0.77

A -> B B->A A,B,D,E,H -> C E ->A D->A A,B,C,D,E -> H
A ->C B->C E ->B D->B
A ->D B->D E ->C D->C
A ->E B->E E ->D D->E
A ->H B->H E ->H D->H

(i) G3 range is 0.90

G3 (0.90%)
0 0.02 0.07 0.41 0.64 0.77

A -> B B->A A,B,D,E,H -> C E ->A D->A A,B,C,D,E -> H
A ->C B->C E ->B D->B
A ->D B->D E ->C D->C
A ->E B->E E ->D D->E
A ->H B->H E ->H D->H

(j) G3 range is 1.00

G3 (1.00%)
0.07 0.77 0.93 0.95 0.99 1.00

A,B,D,E,H -> C A,B,C,D,E -> H A,B,C,D,H -> E A,B,C,E,H -> D A,C,D,E,H -> B B,C,D,E,H -> A

54

PJP/2012/FTMK/(1D)/S01002

Table 11. Overall FD accuracy and proxy table size analysis for table AE_H

Proxy G3 FDs Accuracy
Percentage (%)

Proxy table size

A ->H 0 100 1446
B->H 0.02 98 1446
C->H - - -
D->H 0.01 | 0.64 99 | 36 1446
E->H 0.10 | 0.41 90 | 59 1446
AB->H - - -
AC->H - - -
AD->H - - -
AE->H - - -
BC->H - - -
BD->H - - -
BE->H - - -
CD->H - - -
CE->H - - -
DE->H - - -
ABC->H - - -
ABD->H - - -
ABE->H - - -
BCD->H - - -
BCE->H - - -
CDE->H - - -
ABCD->H - - -
ABCE->H - - -
BCDE->H - - -
ABCDE->H 0.77 33 4338

As you can see from the Table 11, not all the attributes from the input table can be

a proxy for the attribute under observation which is H. For example, A, B, D and E can be

considered as candidates proxies for attribute H. From the table, we can say that, those

candidates’ proxies not 100% accurate but have very low G3 error. Therefore, attribute A

is showing 0 G3 errors which 100% accurate existence of FD. While B showing 0.02 (98%

accuracy) G3 errors which is very low or near to zero.

On the other hand, attribute D and E shows two different scenarios. Both had

produced low G3 error and higher G3 error which can be categorised into best case

55

PJP/2012/FTMK/(1D)/S01002

scenario and worst case scenario. As usual, in this case, the low G3 error must be ignored

because when the ranges of G3 are varies it is not produce a stable G3 error value. Hence,

the higher G3 error must take to be analysed. When the ranges of G3 for D are 0.10 to 0.50

it produces 0.01 very low errors. However, this error value is not stable when the G3 range

varies from 0.60 to 0.90 producing high G3 error with 0.64 values. For E, TANE produces

0.10 G3 errors when the range is from 0.10 to 0.40; when range is increase from 0.50 to

0.90 the G3 error level increase up to 0.41. Thus, D and E are not good candidate proxies

since both produce high G3 errors.

4.2.4 Summary output of table AE_I

Here are summary of FD discovery from the outputs of table AE_F (Table 12).

Table 12. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.02 0.03 0.07

A -> B D->I B->A A,B,D,E,I -> C
A ->C B->C
A ->D B->D
A ->E B->E
A ->I B->I
 E,I->D

(b) G3 range is 0.20

G3 (0.20%)
0 0.02 0.03 0.07 0.11

A -> B D->I B->A A,B,D,E,I -> C E->D
A ->C B->C E->I
A ->D B->D
A ->E B->E
A ->I B->I

56

PJP/2012/FTMK/(1D)/S01002

(c) G3 range is 0.30

G3 (0.30%)
0 0.02 0.03 0.07 0.11

A -> B D->I B->A A,B,D,E,I -> C E->D
A ->C B->C E->I
A ->D B->D
A ->E B->E
A ->I B->I

(d) G3 range is 0.40

G3 (0.40%)
0 0.02 0.03 0.07 0.11 0.39

A -> B D->I B->A A,B,D,E,I -> C E->D I->D
A ->C B->C E->I
A ->D B->D
A ->E B->E
A ->I B->I

(e) G3 range is 0.50

G3 (0.50%)
0 0.02 0.03 0.07 0.39 0.42 0.45

A -> B D->I B->A A,B,D,E,I -> C I->D E->A D->E
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->I B->I E->I

(f) G3 range is 0.60

G3 (0.60%)
0 0.02 0.03 0.07 0.39 0.42 0.45

A -> B D->I B->A A,B,D,E,I -> C I->D E->A D->E
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->I B->I E->I

(g) G3 range is 0.70

G3 (0.70%)
0 0.03 0.07 0.39 0.42 0.64 0.70

A -> B B->A A,B,D,E,I -> C I->D E->A D->A I->E
A ->C B->C E->B D->B
A ->D B->D E->C D->C
A ->E B->E E->D D->E
A ->I B->I E->I D->I

57

PJP/2012/FTMK/(1D)/S01002

(h) G3 range is 0.80

G3 (0.80%)
0 0.03 0.07 0.39 0.42 0.64 0.70

A -> B B->A A,B,D,E,I -> C I->D E->A D->A I->E
A ->C B->C E->B D->B
A ->D B->D E->C D->C
A ->E B->E E->D D->E
A ->I B->I E->I D->I

(i) G3 range is 0.90

G3 (0.90%)
0 0.03 0.07 0.42 0.64 0.86

A -> B B->A A,B,D,E,I -> C E->A D->A I->A
A ->C B->C E->B D->B I->B
A ->D B->D E->C D->C I->C
A ->E B->E E->D D->E I->D
A ->I B->I E->I D->I I->E

(j) G3 range is 1.00

G3 (1.00%)
0.07 0.91 0.93 0.95 0.99 1.00

A,B,D,E,I -> C A,B,C,D,E->I A,B,C,D,I->E A,B,C,E,I->D A,C,D,E,I->B B,C,D,E,I->A

58

PJP/2012/FTMK/(1D)/S01002

Table 13. Overall FD accuracy and proxy table size analysis for table AE_I

Proxy G3 FDs Accuracy

Percentage (%)
Proxy table size

A ->I 0 100 1436
B->I 0.03 97 1436
C->I - - -
D->I 0.02 | 0.64 98 | 36 1436
E->I 0.11 | 0.42 89 | 58 1436
AB->I - - -
AC->I - - -
AD->I - - -
AE->I - - -
BC->I - - -
BD->I - - -
BE->I - - -
CD->I - - -
CE->I - - -
DE->I - - -
ABC->I - - -
ABD->I - - -
ABE->I - - -
BCD->I - - -
BCE->I - - -
CDE->I - - -
ABCD->I - - -
ABCE->I - - -
BCDE->I - - -
ABCDE->I 0.91 9 4308

As table AE_H, in table AE_I (Table 13) attribute A, B, D and E are can be considered as

candidates proxies for attribute F. Even though, there are four attribute consider as

candidate proxies only attribute A and B shows low G3 errors while D and E shows both

low and high G3 errors. Attribute A shows 100% of accurate FD occurrence with 0 G3

errors. Besides, attribute B shows 0.03 G3 errors (nearly 0) with 97% FD accuracy.

Attribute D and E shows best case scenario with low G3 errors and worst case

scenario with high G3 errors. From TANE, D->I produces 0.02 (98% accuracy) G3 errors

which is very low errors in between ranges of G3 are 0.10 to 0.60. Meanwhile, it shows

59

PJP/2012/FTMK/(1D)/S01002

higher G3 errors, 0.64 (36% accuracy) when there are changes in ranges of G3 from 0.70

to 0.90. Moreover, E->I shows 0.11 (89% accuracy) G3 errors on ranges of G3 are 0.10 to

0.40. It produces high G3 error, 0.42 when the G3 ranges varies from 0.50 to 0.90 which

showing only 58% of FD existence. Therefore, we have to consider the worst case scenario

in this particular situation.

4.2.5 Summary output of table AE_J

The following Table 14 shows the summary of FD discoveries from output from table

AE_F.

Table 14. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.02 0.07 0.10

A -> B B->A A,B,D,E,J -> C E->J
A ->C B->C
A ->D B->D
A ->E B->E
A ->J B->J
 D->J

(b) G3 range is 0.20

G3 (0.20%)
0 0.02 0.07 0.10

A -> B B->A A,B,D,E,J -> C E->D
A ->C B->C E->J
A ->D B->D
A ->E B->E
A ->J B->J
 D->J

(c) G3 range is 0.30

G3 (0.30%)
0 0.02 0.07 0.10 0.25

A -> B B->A A,B,D,E,J -> C E->D J->D
A ->C B->C E->J
A ->D B->D
A ->E B->E

60

PJP/2012/FTMK/(1D)/S01002

A ->J B->J
 D->J

(d) G3 range is 0.40
G3 (0.40%)

0 0.02 0.07 0.25 0.39
A -> B B->A A,B,D,E,J -> C E->D E->A
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->J B->J E->J
 D->J

(e) G3 range is 0.50

G3 (0.50%)
0 0.02 0.07 0.25 0.39 0.46

A -> B B->A A,B,D,E,J -> C E->D E->A D->E
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->J B->J E->J
 D->J

(f) G3 range is 0.60

G3 (0.60%)
0 0.02 0.07 0.25 0.39 0.46

A -> B B->A A,B,D,E,J -> C E->D E->A D->E
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->J B->J E->J
 D->J

(g) G3 range is 0.70

G3 (0.70%)
0 0.02 0.07 0.25 0.39 0.62 0.63

A -> B B->A A,B,D,E,J -> C J->D E->A J->E D->A
A ->C B->C E->B D->B
A ->D B->D E->C D->C
A ->E B->E E->D D->E
A ->J B->J E->J D->J

(h) G3 range is 0.80

G3 (0.80%)
0 0.02 0.07 0.39 0.63 0.76

A -> B B->A A,B,D,E,J -> C E->A D->A J->A
A ->C B->C E->B D->B J->B
A ->D B->D E->C D->C J->C

61

PJP/2012/FTMK/(1D)/S01002

A ->E B->E E->D D->E J->D
A ->J B->J E->J D->J J->E

(i) G3 range is 0.90
G3 (0.90%)

0 0.02 0.07 0.39 0.63 0.76
A -> B B->A A,B,D,E,J -> C E->A D->A J->A
A ->C B->C E->B D->B J->B
A ->D B->D E->C D->C J->C
A ->E B->E E->D D->E J->D
A ->J B->J E->J D->J J->E

(j) G3 range is 1.00

G3 (1.00%)
0.07 0.90 0.94 0.95 1.00

A,B,D,E,J -> C A,B,C,D,E -> J A,B,C,D,J -> E A,B,C,E,J -> D B,C,D,E,J -> A
 A,C,D,E,J -> B

Table 15. Overall FD accuracy and proxy table size analysis for table AE_J

Proxy G3 FDs Accuracy
Percentage (%)

Proxy table size

A ->J 0 100 1314
B->J 0.02 98 1314
C->J - - -
D->J 0.02 | 0.63 98 | 37 1314
E->J 0.10 | 0.39 90 | 61 1314
AB->J - - -
AC->J - - -
AD->J - - -
AE->J - - -
BC->J - - -
BD->J - - -
BE->J - - -
CD->J - - -
CE->J - - -
DE->J - - -
ABC->J - - -
ABD->J - - -
ABE->J - - -
BCD->J - - -
BCE->J - - -
CDE->J - - -
ABCD->J - - -
ABCE->J - - -
BCDE->J - - -
ABCDE->J 0.90 10 3942

62

PJP/2012/FTMK/(1D)/S01002

Table 15 shows attribute A, B, D and E are to be candidate proxies for attribute J.

Through best case scenarios, attribute A and B are to be good candidate proxies since both

showing zero and nearly zero G3 errors. Since attribute A is the key for table AE-J, than it

shows zero G3 error which is 100% accurate FD. Attribute B too shows nearly zero G3

error (0.02), 98% of accurate FD presence.

Best case scenario for D->J produces 0.02 G3 errors when the ranges are in

between 0.10 to 0.60; while the ranges increase from 0.70 to 0.90 than the G3 error

increase as well up to 0.63 (37% accuracy) which is very high showing worst case

situation. On the other hand, similar things happen to E->J where it produces 0.10 G3

errors when the ranges up to 0.30; if the G3 ranges increase from 0.40 to 0.90, accuracy of

FD become lower to 61% (0.39 G3 errors).

4.2.6 Summary output of table AE_K

Table 16 shows output from TANE algorithm for table AE_K which are summarised

according to G3 ranges.

Table 16. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.02 0.03 0.04 0.06 0.09 0.10

A -> B B->A K->D D->K A,B,D,E,K -> C E->D E->K
A ->C B->C
A ->D B->D
A ->E B->E
A ->K B->K

63

PJP/2012/FTMK/(1D)/S01002

(b) G3 range is 0.20

G3 (0.20%)
0 0.02 0.03 0.04 0.06 0.09 0.10

A -> B B->A K->D D->K A,B,D,E,K -> C E->D E->K
A ->C B->C
A ->D B->D
A ->E B->E
A ->K B->K

(c) G3 range is 0.30

G3 (0.30%)
0 0.02 0.03 0.04 0.06 0.09 0.10

A -> B B->A K->D D->K A,B,D,E,K -> C E->D E->K
A ->C B->C
A ->D B->D
A ->E B->E
A ->K B->K

(d) G3 range is 0.40

G3 (0.40%)
0 0.02 0.03 0.04 0.06 0.37 0.39

A -> B B->A K->D D->K A,B,D,E,K -> C E->A D->E
A ->C B->C E->B K->E
A ->D B->D E->C
A ->E B->E E->D
A ->K B->K E->K

(e) G3 range is 0.50

G3 (0.50%)
0 0.02 0.03 0.04 0.06 0.37 0.39

A -> B B->A K->D D->K A,B,D,E,K -> C E->A D->E
A ->C B->C E->B K->E
A ->D B->D E->C
A ->E B->E E->D
A ->K B->K E->K

(f) G3 range is 0.60

G3 (0.60%)
0 0.02 0.06 0.37 0.57 0.58

A -> B B->A A,B,D,E,K -> C E->A K->A D->A
A ->C B->C E->B K->B D->B
A ->D B->D E->C K->C D->C
A ->E B->E E->D K->D D->E
A ->K B->K E->K K->E D->K

64

PJP/2012/FTMK/(1D)/S01002

(g) G3 range is 0.70

G3 (0.70%)
0 0.02 0.06 0.37 0.57 0.58

A -> B B->A A,B,D,E,K -> C E->A K->A D->A
A ->C B->C E->B K->B D->B
A ->D B->D E->C K->C D->C
A ->E B->E E->D K->D D->E
A ->K B->K E->K K->E D->K

(h) G3 range is 0.80

G3 (0.80%)
0 0.02 0.06 0.37 0.57 0.58

A -> B B->A A,B,D,E,K -> C E->A K->A D->A
A ->C B->C E->B K->B D->B
A ->D B->D E->C K->C D->C
A ->E B->E E->D K->D D->E
A ->K B->K E->K K->E D->K

(i) G3 range is 0.90

G3 (0.90%)
0 0.02 0.06 0.37 0.57 0.58

A -> B B->A A,B,D,E,K -> C E->A K->A D->A
A ->C B->C E->B K->B D->B
A ->D B->D E->C K->C D->C
A ->E B->E E->D K->D D->E
A ->K B->K E->K K->E D->K

(j) G3 range is 1.00

G3 (1.00%)
0.06 0.93 0.95 1.00

A,B,D,E,K -> C A,B,C,D,K -> E A,B,C,E,K -> D B,C,D,E,K -> A
 A,B,C,D,E -> K A,C,D,E,K -> B

65

PJP/2012/FTMK/(1D)/S01002

Table 17. Overall FD accuracy and proxy table size analysis for table AE_K

Proxy G3 FDs Accuracy

Percentage (%)
Proxy table size

A ->K 0 100 1004
B->K 0.02 98 1004
C->K - - -
D->K 0.04 | 0.58 96 | 42 1004
E->K 0.10 | 0.37 90 | 63 1004
AB->K - - -
AC->K - - -
AD->K - - -
AE->K - - -
BC->K - - -
BD->K - - -
BE->K - - -
CD->K - - -
CE->K - - -
DE->K - - -
ABC->K - - -
ABD->K - - -
ABE->K - - -
BCD->K - - -
BCE->K - - -
CDE->K - - -
ABCD->K - - -
ABCE->K - - -
BCDE->K - - -
ABCDE->K 0.95 5 3012

Table 17 shows that not all the attribute can be considered as candidate proxies for

attribute K. Some attributes even though not 100% accurate and having very low G3 error

than it can be acceptable as candidate proxies. Therefore, here the attribute A, B, D and E

can be considered as candidate proxies for attribute K. G3 error that produced by TANE

algorithm for A->K is 0 which is 100% accurate FD presence. For B->K it produces nearly

zero error as well with 0.02 which is 98% FD accuracy.

As in previous table, there are best case and worst case scenarios in table 5.6.1.

Only worst case scenario considered in this situation since the G3 errors is not stable if

66

PJP/2012/FTMK/(1D)/S01002

changes made on ranges of G3. Hence, D->K shows 42% of accuracy with 0.58 G3 errors.

And E->K produces 0.37 G3 errors with 63% of accuracy of FD.

4.2.7 Summary output of table AE_L

This Table 18 shows the FD discovery summary for output of table AE_L in a simplified

form.

Table 18. FDs discoveries in AE_F table with G3 ranges of 0.10 to 1.00

(a) G3 range is 0.10

G3 (0.10%)
0 0.01 0.05

A -> B B->A E->D
A ->C B->C
A ->D B->D
A ->E B->E
A ->L B->L
 L->D
 A,B,D,E,L -> C

(b) G3 range is 0.20

G3 (0.20%)
0 0.01 0.05 0.15 0.19

A -> B B->A E->D E->L D->L
A ->C B->C
A ->D B->D
A ->E B->E
A ->L B->L
 L->D
 A,B,D,E,L -> C

(c) G3 range is 0.30

G3 (0.30%)
0 0.01 0.19 0.24 0.29

A -> B B->A D->L E->A L->E
A ->C B->C E->B
A ->D B->D E->C
A ->E B->E E->D
A ->L B->L E->L
 L->D
 A,B,D,E,L -> C

67

PJP/2012/FTMK/(1D)/S01002

(d) G3 range is 0.40
G3 (0.40%)

0 0.01 0.19 0.24 0.35 0.37
A -> B B->A D->L E->A L->A D->E
A ->C B->C E->B L->B
A ->D B->D E->C L->C
A ->E B->E E->D L->D
A ->L B->L E->L L->E
 A,B,D,E,L -> C

(e) G3 range is 0.50

G3 (0.50%)
0 0.01 0.24 0.35 0.46

A -> B B->A E->A L->A D->A
A ->C B->C E->B L->B D->B
A ->D B->D E->C L->C D->C
A ->E B->E E->D L->D D->E
A ->L B->L E->L L->E D->L
 A,B,D,E,L -> C

(f) G3 range is 0.60

G3 (0.60%)
0 0.01 0.24 0.35 0.46

A -> B B->A E->A L->A D->A
A ->C B->C E->B L->B D->B
A ->D B->D E->C L->C D->C
A ->E B->E E->D L->D D->E
A ->L B->L E->L L->E D->L
 A,B,D,E,L -> C

(g) G3 range is 0.70

G3 (0.70%)
0 0.01 0.24 0.35 0.46

A -> B B->A E->A L->A D->A
A ->C B->C E->B L->B D->B
A ->D B->D E->C L->C D->C
A ->E B->E E->D L->D D->E
A ->L B->L E->L L->E D->L
 A,B,D,E,L -> C

68

PJP/2012/FTMK/(1D)/S01002

(h) G3 range is 0.80
G3 (0.80%)

0 0.01 0.24 0.35 0.46
A -> B B->A E->A L->A D->A
A ->C B->C E->B L->B D->B
A ->D B->D E->C L->C D->C
A ->E B->E E->D L->D D->E
A ->L B->L E->L L->E D->L
 A,B,D,E,L -> C

(i) G3 range is 0.90

G3 (0.90%)
0 0.01 0.24 0.35 0.46

A -> B B->A E->A L->A D->A
A ->C B->C E->B L->B D->B
A ->D B->D E->C L->C D->C
A ->E B->E E->D L->D D->E
A ->L B->L E->L L->E D->L
 A,B,D,E,L -> C

(j) G3 range is 1.00

G3 (1.00%)
0.01 0.91 0.92 0.93 0.99 1.00

A,B,D,E,L ->
C

A,B,C,E,L -> D A,B,C,D,E -> L A,B,C,D,L -> E A,C,D,E,L -> B B,C,D,E,L -> A

69

PJP/2012/FTMK/(1D)/S01002

Table 19. Overall FD accuracy and proxy table size analysis for table AE_L

Proxy G3 FDs Accuracy

Percentage (%)
Proxy table size

A ->L 0 100 280
B->L 0.01 99 280
C->L - - -
D->L 0.19 | 0.46 81 | 54 280
E->L 0.15 | 0.24 85 | 76 280
AB->L - - -
AC->L - - -
AD->L - - -
AE->L - - -
BC->L - - -
BD->L - - -
BE->L - - -
CD->L - - -
CE->L - - -
DE->L - - -
ABC->L - - -
ABD->L - - -
ABE->L - - -
BCD->L - - -
BCE->L - - -
CDE->L - - -
ABCD->L - - -
ABCE->L - - -
BCDE->L - - -
ABCDE->L 0.92 8 840

In Table 19, attribute A, B, D and E are considered as candidate proxies. Though,

all this can’t become good candidate proxies, since they show different G3 errors. A good

candidate proxy has zero G3 error with 100% accuracy FD attribute A. Candidate proxy B-

>L shows nearly zero error (0.01 G3 errors) with 99% of FD presence can be considered as

good candidate proxy.

Like in the previous case, even though D and E show two different G3 errors, we

have to consider the worst case scenario. Thus, D->L and E->L produce 0.46 (54% FD

accuracy) and 0.24 (76% FD accuracy) G3 error respectively.

70

PJP/2012/FTMK/(1D)/S01002

4.3 Summary of Space requirement results

Here we have shown one of the results from FD-based proxies’ characteristic which is

percentage of space requirement for the data storage. The space requirement analysis

results shown further are total of seven sub-tables which have been separated from Taxon

main table. The proxy map size was obtained by using pivot table function in MS Excel.

This pivot function directly calculates, the total number of instances present in an attribute

(column) and also help us to analyse whether droppable proxy attribute showing one to one

relationship or one to many relationship.

4.3.1 Multi-valued table for Table AE_F

Table 20. Multi-table scheme of table AE_F (total instances)

 Strain (F) U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

719 721 1440 1440
4326

 x 100 = 33.29

 Strain (F) Taxon_id

(B)
Size of

Proxy Map
Percentage of Space

Requirement
(%)

719 721 1440 1440
4326

 x 100 = 33.29

 Strain (F) Genus (D) Size of

Proxy Map
Percentage of Space

Requirement
(%)

719 721 1440 1440
4326

 x 100 = 33.29

 Strain (F) Species (E) Size of

Proxy Map
Percentage of Space

Requirement

71

PJP/2012/FTMK/(1D)/S01002

(%)

719 721 1440 1440
4326

 x 100 = 33.29

4.3.2 Multi-valued table for Table AE_G

Table 21. Multi-table scheme of table AE_G (total instances)

Intermediate_rank_1

(G)
U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

24 723 747 747
4338

 x 100 = 17.22

Intermediate_rank_1

(G)
Taxon_id

(B)
Size of

Proxy Map
Percentage of Space

Requirement
(%)

24 723 747 747
4338

 x 100 = 17.22

Intermediate_rank_1

(G)
Genus (D) Size of

Proxy Map
Percentage of Space

Requirement
(%)

24 723 747 747
4338

 x 100 = 17.22

Intermediate_rank_1

(G)
Species (E) Size of

Proxy Map
Percentage of Space

Requirement
(%)

24 723 747 747
4338

 x 100 = 17.22

4.3.3 Multi-valued table for Table AE_H

Table 22. Multi-table scheme of table AE_H (total instances)

Intermediate_rank_2 U_id (A) Size of Percentage of Space

72

PJP/2012/FTMK/(1D)/S01002

(H) Proxy Map Requirement

(%)
53 723 776 776

4338
 x 100 = 17.89

Intermediate_rank_2
(H)

Taxon_id
(B)

Size of
Proxy Map

Percentage of Space
Requirement

(%)
53 723 776 776

4338
 x 100 = 17.89

Intermediate_rank_2
(H)

Genus (D) Size of
Proxy Map

Percentage of Space
Requirement

(%)
53 723 776 776

4338
 x 100 = 17.89

Intermediate_rank_2
(H)

Species (E) Size of
Proxy Map

Percentage of Space
Requirement

(%)
53 723 776 776

4338
 x 100 = 17.89

4.3.4 Multi-valued table for Table AE_I

Table 23. Multi-table scheme of table AE_I (total instances)

Intermediate_rank_3

(I)
U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

73

PJP/2012/FTMK/(1D)/S01002

101 718 819 819

4308
 x 100 = 19.01

Intermediate_rank_3
(I)

Taxon_id
(B)

Size of
Proxy Map

Percentage of Space
Requirement

(%)
101 718 819 819

4308
 x 100 = 19.01

Intermediate_rank_3
(I)

Genus (D) Size of
Proxy Map

Percentage of Space
Requirement

(%)
101 718 819 819

4308
 x 100 = 19.01

Intermediate_rank_3
(I)

Species (E) Size of
Proxy Map

Percentage of Space
Requirement

(%)
101 718 819 819

4308
 x 100 = 19.01

4.3.5 Multi-valued table for Table AE_J

Table 24. Multi-table scheme of table AE_J (total instances)

Intermediate_rank_4

(J)
U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

157 657 814 814
3942

 x 100 = 20.65

74

PJP/2012/FTMK/(1D)/S01002

Intermediate_rank_4

(J)
Taxon_id

(B)
Size of

Proxy Map
Percentage of Space

Requirement
(%)

157 657 814 814
3942

 x 100 = 20.65

Intermediate_rank_4

(J)
Genus (D) Size of

Proxy Map
Percentage of Space

Requirement
(%)

157 657 814 814
3942

 x 100 = 20.65

Intermediate_rank_4

(J)
Species (E) Size of

Proxy Map
Percentage of Space

Requirement
(%)

157 657 814 814
3942

 x 100 = 20.65

4.3.6 Multi-valued table for Table AE_K

Table 25. Multi-table scheme of table AE_K (total instances)

Intermediate_rank_5

(K)
U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

217 502 719 719
3012

 x 100 = 23.87

75

PJP/2012/FTMK/(1D)/S01002

Intermediate_rank_5

(K)
Taxon_id

(B)
Size of

Proxy Map
Percentage of Space

Requirement
(%)

217 502 719 719
3012

 x 100 = 23.87

Intermediate_rank_5

(K)
Genus (D) Size of

Proxy Map
Percentage of Space

Requirement
(%)

217 502 719 719
3012

 x 100 = 23.87

Intermediate_rank_5

(K)
Species (E) Size of

Proxy Map
Percentage of Space

Requirement
(%)

217 502 719 719
3012

 x 100 = 23.87

4.3.7 Multi-valued table for Table AE_L

Table 26. Multi-table scheme of table AE_L (total instances)

Intermediate_rank_6

(L)
U_id (A) Size of

Proxy Map
Percentage of Space

Requirement
(%)

92 140 232 232
840

 x 100 = 27.62

76

PJP/2012/FTMK/(1D)/S01002

Intermediate_rank_6
(L)

Taxon_id
(B)

Size of
Proxy Map

Percentage of Space
Requirement

(%)
92 140 232 232

840
 x 100 = 27.62

Intermediate_rank_6
(L)

Genus (D) Size of
Proxy Map

Percentage of Space
Requirement

(%)
92 140 232 232

840
 x 100 = 27.62

Intermediate_rank_6
(L)

Species (E) Size of
Proxy Map

Percentage of Space
Requirement

(%)
92 140 232 232

840
 x 100 = 27.62

4.4 Conclusions

This chapter provides us with summary of results from TANE algorithms. It has been

divided into ranges categories to make ease of to predict the accuracy of FDs discovery.

From here we can say that, if the produced G3 value is 0 or nearly zero, than the accuracy

of FDs are good or ~100%. In the next chapter we are going to discuss about the results

has presented in this chapter.

77

PJP/2012/FTMK/(1D)/S01002

CHAPTER 5

RESULTS ANALYSIS AND DISCUSSIONS

5.1 Background

This chapter presents a discussion about the results obtained from the TANE algorithm in

chapter 4. There are 70 outputs has been produced by TANE algorithm for seven sub-

tables of Taxon. Since TANE algorithm contains G3 ranges from 0.10 to 1.00, each table

to be produced 10 outputs.

5.2 Analysis of FD accuracy for candidate proxy in Taxon sub-tables

Table 27. Overall summary of FD accuracy percentage for candidate proxies.

(Proxy)
Attribute

U_id
(A)

Taxon_id
(B)

Genus
(D)

Species
(E)

% FD
Accuracy

% FD
Accuracy

% FD
Accuracy

% FD
Accuracy

F 100 97 36 58
G 100 98 36 59
H 100 98 36 59
I 100 97 36 58
J 100 98 37 61
K 100 98 42 63
L 100 99 54 76

Average 100 98 40 62

Table 27 shows the accuracy of all FD-based proxy candidates which are considered in this

case studies. From the table we can say that, attributes A and B shows zero and nearly zero

errors respectively. As an average, attribute A shows 100% of FD accuracy and B shows

78

PJP/2012/FTMK/(1D)/S01002

98% of FD accuracy. Therefore, attributes A and B from the microbial data sets are non

defective. But the other attributes D and E are shows higher G3 errors with low FD

accuracy percentages, hence these are defective proxy candidates. Other than this, attribute

C does not imply any dependency since the relationship not determines any error values.

The proof is as presented in Table 28. This is because, the values in the attributes are

cannot droppable, hence they not dependent each other.

Table 28. Proxy candidates that do not shows any accuracy in FD prediction

Proxy
candidates

G3 FDs Accuracy
Percentage (%)

C->L - -
AB->L - -
AC->L - -
AD->L - -
AE->L - -
BC->L - -
BD->L - -
BE->L - -
CD->L - -
CE->L - -
DE->L - -
ABC->L - -
ABD->L - -
ABE->L - -
BCD->L - -
BCE->L - -
CDE->L - -
ABCD->L - -
ABCE->L - -
BCDE->L - -

Figure 24 to 30 shows information about the G3 errors and the FD accuracy for all

the seven sub-tables from Taxon. From the figures, we can conclude that if lower the G3

errors, than the higher the percentage of FD accuracy. From the seven figures, as an overall

79

PJP/2012/FTMK/(1D)/S01002

observation can conclude attributes A and B are showing very low G3 errors with higher

percentage of FD accuracy. They were accepted as good candidate proxies.

The attribute A shows zero error, this is because it is the key attribute to the Taxon

table. In addition, attribute B can be a good proxy other than A (key attribute), because

averagely it showing 98% FD accuracy. Therefore, attribute B is able to save the data from

any loss since it becomes second important key attribute to the Taxon data set. However,

attributes D and E are not good proxy candidates as their FD accuracy percentage very low

which is far from best case scenario.

Figure 24. FD accuracy percentage and G3 errors table AE_F

100 97

58

36

0 0 0.03

0.42

0.64

1

0

0.2

0.4

0.6

0.8

1

1.2

0

20

40

60

80

100

120
G

3
er

ro
r

FD
 a

cc
ur

ac
y

(%
)

Proxy candidates

FDs Accuracy Percentage
(%)

G3 Errors

80

PJP/2012/FTMK/(1D)/S01002

Figure 25. FD accuracy percentage and G3 errors for table AE_G

Figure 26. Proxy H FD accuracy percentage and G3 errors table AE_H

100 98

59

47

36

0 0.02

0.41

0.53

0.64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

20

40

60

80

100

120

G
3

er
ro

rs

FD
 a

cc
ur

ac
y

(%
)

Proxy candidates

FDs Accuracy Percentage
(%)

G3 Errors

100 98

59

36 33

0 0.02

0.41

0.64

0.77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

20

40

60

80

100

120

G
3

er
ro

rs

FD
 a

cc
ur

ac
y

(%
)

Proxy candidates

FDs Accuracy Percentage
(%)

G3

81

PJP/2012/FTMK/(1D)/S01002

Figure 27. FD accuracy percentage and G3 errors table AE_I

Figure 28. FD accuracy percentage and G3 errors table AE_J

100 97

58

36

9
0 0.03

0.42

0.64

0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

G
3

er
ro

r

FD
 a

cc
ur

ac
y

(%
)

Proxy candidate

FDs Accuracy Percentage
(%)

G3 Error

100 98

61

37

10
0 0.02

0.39

0.63

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

G
3

er
ro

r

FD
 a

cc
ur

ac
y

Proxy Candidate

FDs Accuracy Percentage
(%)

G3 Error

82

PJP/2012/FTMK/(1D)/S01002

Figure 29. FD accuracy percentage and G3 errors table AE_K

Figure 30. FD accuracy percentage and G3 errors table AE_L

100 98

63

42

5 0 0.02

0.37

0.58

0.95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

G
3

er
ro

rs

FD
 a

cc
ur

ac
y

(%
)

Proxy Candidate

FDs Accuracy Percentage
(%)

G3

100 99

76

54

8
0 0.01

0.24

0.46

0.92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

G
3

er
ro

rs

FD
 a

cu
ra

cy
 (%

)

Proxy Candidate

FDs Accuracy Percentage
(%)

G3

83

PJP/2012/FTMK/(1D)/S01002

5.3 Space Requirement Analysis

From this case study, we can say that a good characteristic of a proxy candidates is

small amount of space required for proxy table. The amount of space required by each

table has been summarised in Table 30 and is illustrated further Figure 31 in a form of a

bar chart. As we mentioned earlier, multi-valued table scheme only required small amount

of the space for storage. The formula used to calculate for the space requirement is as

follows:

Percentage of space requirement =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑥𝑦 𝑚𝑎𝑝
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑢𝑏𝑡𝑎𝑏𝑙𝑒

 x 100

Size of proxy map = number of instances calculated in between two attributes

 Size of sub-table = number of values (data) found in a particular table

Table 29. Percentage of proxy table space requirement

Table Multi-
valued table
(number of
instances)

Size of sub-
table

Domain size in
Pivot table for

Proxy

Percentage of
Space

Requirement

 (%)
AE_G 747 4338 24 17.22
AE_H 776 4338 53 17.89
AE_I 819 4308 101 19.01
AE_J 814 3942 157 20.65
AE_K 719 3012 217 23.87
AE_L 232 840 92 27.62
AE_F 1440 4326 719 33.29

84

PJP/2012/FTMK/(1D)/S01002

Figure 31. Total space required by all proxies in Taxon sub-tables

However based on Figure 31, we can conclude that, the higher is the number of

instances of multi-valued table, the higher is the space requirement percentage. Here table

AE_F required the largest amount of space (33.29%) to store proxies information. Even

though the multi-valued table scheme used can produced less space requirement as

compared to the pure relational scheme, the size of the attribute domain influences the

amount of space required to stire the proxy maps. Hence, this is the worst case scenario,

where the space requirement for this table is the highest as compared to other tables.

24
53

101
157

217

92

719
17.22

17.89
19.01

20.65

23.87

27.62

33.29

0

5

10

15

20

25

30

35

0

200

400

600

800

1000

1200

1400

1600

AE_G AE_H AE_I AE_J AE_K AE_L AE_F

Sp
ac

e
re

qu
ire

m
en

t (
%

)

Pr
ox

y
m

ap
 si

ze
 (

nu
m

be
r o

f i
ns

ta
nc

es
)

Table

Multi-valued table (number of
instances)

Domain size in Pivot table

Percentage of Space
Requirement (%)

85

PJP/2012/FTMK/(1D)/S01002

On the other hand, table AE_G shows the best case scenario with lowest proxy map

size that requires about 17.22% of space. This can be explained by the lowest domain size

which is 24 that demands small amount of space for storing the proxy maps.

The domain size for proxy H in this table is 53 which higher than proxy G. Table

AE_H required the second smallest amount of space, which ic about 17.89% of space for

storage. Table AE_I needed about 19.01% of space; table AE_J needs 20.65% of space;

table AE_K required about 23.87% of space. Table AE_L plots the second highest space

requirement about 27.62%.

5.4 Conclusions

To conclude, the analysis results shows that not all FD-based proxy candidates are

defective. This can be proved by the G3 error values shown in the Figure 24-30. In

addition, it also support for the determination of space requirement analysis, where the

number of repeating tuple pairs has been reduced. Therefore, table AE_G shows best case

scenario since it demonstrate very low space requirement. As a result, proxy candidates in

table AE_G are the good proxies where they helping to provide small space for storage.

However, only table AE_F needed higher space since its domain size is the highest. When

the domain size is increasing, then requirement of space for storage increases as well.

86

PJP/2012/FTMK/(1D)/S01002

CHAPTER 6

CONCLUSIONS

In this research we set to analyse the characteristics of proxies and the requirements to

predict missing values in data set. To achieve the objectives we use functional dependency

analysis to find the candidate proxies for attributes that have large number of null values.

By having good proxies, we can predict the missing values with some acceptable levels of

accuracy.

We identified one important requirement to implement proxies in handling missing

values prediction which is additional space requirement. This space requirement is needed

to store the proxy maps in particular in handling missing values problems. Even though the

results of the analyses are based on case studies of biological domains, it may be used in

other application domains.

From the results, we can conclude that, attributes A and B (in Table AE_G) are

good proxy candidates as the possess both high accuracy and proxy map space requirement

charactersitics. The characteristic of good proxy shows high accuracy in FDs discovery

(low G3 errors) and low storage space requirement. Attribute A shows 100% of FD

accuracy as this is the key attribute for the Taxon table. Attribute B is also a good proxy

with high FD accuracy. Thus attribute B can used as the alternative of the droppable

attribute to substitute the missing values in the sample data set. The charactristic of poor

proxies can be seen from proxy candidates D and E’s performance. They produced

unstable G3 errors when there are changes made on the G3 ranges. Attribute D and E do

87

PJP/2012/FTMK/(1D)/S01002

not act as good proxies because their FD prediction accuracy is very low. Thus they should

not be used in missing values prediction.

Table AE_G require small amount of space as compared to the other tables, since

it has good proxy candidates with higher FD accuracy existence. However, even though

AE_F has good proxies, requires higher space for proxy maps storage as the domain size of

attribute F is bigger as compared to other proxy candidates’.

In the future, the implementation of proxies in missing values prediction analysis

will be performed in order to apply the outcome of this research. Exploration of the

characteristics of proxies should be expanded in other domain data sets in order to compare

and verify the findings in this research.

88

PJP/2012/FTMK/(1D)/S01002

REFERENCES

Anon., 2002. Microbial Genomics. In: Microbiology. 5 ed. s.l.:The McGraw-Hill Companies.

Apiletti, D., Bruno, G., Ficarra, E. & Baralis, E., 2006. Data Cleaning and Semantic Improvement
in Biological Databases.. Journal of Integrative Bioinformatics.

D.Peterson, J. et al., 2001. The Comprehensive Microbial Resource. Nucleic Acids Research,
November, Volume 29, pp. 123-125.

Davidsen, T. et al., 2009. The comprehensive microbial resource. Nucleic Acids Research,
November.pp. 1-6.

Emran, N. A., Abdullah, N. & Isa, M. N. M., 2012. Storage Space Optimisation for Green Data
Center. Malaysia, s.n.

Freeman, L., 2007. Looking Beyond the Hype: Evaluating Data Deduplication Solutions.
http://www.techrepublic.com/whitepapers/looking-beyond-the-hype-evaluating-data-deduplication-
solutions/1294015.

George, B., Ilyas, I. F. & Golab, L., 2010. Sampling the Repairs of Functional Dependency
Violations under Hard Constraints.. Singaapore, s.n., pp. 197-207.

Giannella, C. M., Dalkilic, M. M., Groth, D. P. & Robertson, E. L., 2002. Improving Query
Evaluation with Approximate Functional Dependency Based Decompositions. LNCS 2405, pp. 26-
41.

Hazelhurst, S., 2008. Scientific computing using virtual high-performance computing: A case study
using the amazon elastic computing cloud. s.l., ACM.

Herrero, J., D´ıaz-Uriarte, R. & Dopazo, J., 2003. Gene expression data preprocessing. Journal of
Bioinformatics Vol. 19 no. 5, pp. 655-656.

Horn, G. & Cook, J. V., 2011. How dirty is your data? a look at the energy choices that power
cloud, s.l.: Greenpeace International.

Huhtala, Y., Karkkainen, J., Porkka, P. & Toivonen, H., 1999. TANE: An efficeint algorithm for
discovering Functional and Approximate Dependencies. The Computer Journal, March, 31st,
Volume 2, pp. 100-111.

J.Wiens, J. & C.Morrill, M., 2011. Missing Data in Phylogenetic Analysis: Reconciling Results
from Simulations and Empirical Data.. Systematic Biology Advance Access. Vol.60., pp. 1-13.

Jombart, T., 2012. Analysing genome-wide SNP data using adegenet.. pp. 1-37.

Kang, J. H. K. et al., 1990. Feature-oriented domain analysis (FODA) feasibility study, s.l.: s.n.

Kolahi, S. & Lakshmanan, L. V. S., 2009. On Approximating Optimum Repairs for Functional
Dependency Violations.. ACM, pp. 53-62.

89

PJP/2012/FTMK/(1D)/S01002

Kumar, V., 1992. Algorithm for constraints-satisfaction problems: A survey. AI Magazine, pp. 32-
44.

Lai, E., 2008. Oracle Pushes Compression as Cheaper Database Scale-Up Method. Computerworld
White Paper.

Liu, J., Li, J., Liu, C. & Chen, Y., 2012. Discover Dependencies from Data—A Review.. IEEE
transactions on knowledge and data engineering, vol. 24, no. 2., pp. 251-264.

Li, Z. et al., 2012. Simultaneous SNP Identification In Association Studies With Missing Data..
The Annals of Applied Statistics, Vol. 6, No. 2, p. 432–456.

Markowitz, V. M. et al., 2005. The Integrated Microbial Genomes (IMG) System: A Case Study in
Biological Data Management. Trondheim, Norway, VLDB.

Molinaro, C. & Greco, S., 2010. Polynomial time queries over inconsistent databases with
functional dependencies and foreign keys.. Data & Knowledge Engineering 69, p. 709–722.

Petrik, K., 2009. Participation and e-democracy how to utilize web 2.0 for policy decision-making.
s.l., Digital Government Society of North America.

Pevsner, J., 2009. Bioinformatics and Functional Genomics. 2nd Edition ed. United States of
America: A John Wiley & Sons, Insc..

Tuikkala, J., Elo, L. L., Nevalainen, O. S. & Aittokallio, T., 2008. Missing value imputation
improves clustering and interpretation of gene expression microarray data... BMC Bioinformatics,
9:202, pp. 1-14.

Wiens, J. J., 2006. Missing data and the design of phylogenetic analyses.. Journal of Biomedical
Informatics 39, p. 34–42.

Yao, H., J.Hamilton, H. & J.Butz, C., n.d. FD_Mine: Discovering Functional Dependencies in a
Database Using Equivalences.

Yeh, P. Z. & Puri, C. A., 2010. Discovering Conditional Functional Dependencies to Detect Data
Inconsistencies. Singapore, s.n., pp. 1-7.

90

PJP/2012/FTMK/(1D)/S01002

APPENDICES

APPENDIX TITLE PAGE

A Sample input file for TANE algorithm (comma separated

values file)

93

B1 Sample Multi-valued output of pivot table for table AE_G

(G to A)

96

B2 Sample Multi-valued output of pivot table for table AE_G

(G to B)

97

B3 Sample Multi-valued output of pivot table for table AE_G

(G to D)

98

B4 Sample Multi-valued output of pivot table for table AE_G

(G to E)

99

91

PJP/2012/FTMK/(1D)/S01002

APPENDIX A

Sample input file for TANE algorithm (comma separated values file)

207,243159,Bacteria,Acidithiobacillus,ferrooxidans,Acidithiobacillus ferrooxidans
590,351607,Bacteria,Acidothermus,cellulolyticus,Acidothermus
202,240017,Bacteria,Actinomyces,naeslundii,Actinomyces
405,290397,Bacteria,Anaeromyxobacter,dehalogenans,Anaeromyxobacter
199,212042,Bacteria,Anaplasma,phagocytophilum,phagocytophilum group
326,290340,Bacteria,Arthrobacter,aurescens,Arthrobacter
654,1667,Bacteria,Arthrobacter,sp.,Arthrobacter
407,322098,Bacteria,Aster,yellows,Candidatus Phytoplasma asteris
803,553184,Bacteria,Atopobium,rimae,Atopobium
275,288681,Bacteria,Bacillus,cereus,group
250,283166,Bacteria,Bartonella,henselae,Bartonellaceae
236,283165,Bacteria,Bartonella,quintana,Bartonellaceae
187,264462,Bacteria,Bdellovibrio,bacteriovorus,Bdellovibrio bacteriovorus
734,94624,Bacteria,Bordetella,petrii,Alcaligenaceae
622,339670,Bacteria,Burkholderia,ambifaria,Burkholderia cepacia complex
584,398577,Bacteria,Burkholderia,ambifaria,Burkholderia cepacia complex
425,331271,Bacteria,Burkholderia,cenocepacia,Burkholderia cepacia complex
541,331272,Bacteria,Burkholderia,cenocepacia,Burkholderia cepacia complex
551,395019,Bacteria,Burkholderia,multivorans,Burkholderia cepacia complex
563,395019,Bacteria,Burkholderia,multivorans,Burkholderia cepacia complex
761,357348,Bacteria,Burkholderia,pseudomallei,pseudomallei
665,357347,Bacteria,Burkholderia,pseudomallei,pseudomallei group
400,320372,Bacteria,Burkholderia,pseudomallei,pseudomallei group
507,320373,Bacteria,Burkholderia,pseudomallei,pseudomallei group
146,272560,Bacteria,Burkholderia,pseudomallei,pseudomallei group
529,269482,Bacteria,Burkholderia,vietnamiensis,Burkholderia cepacia complex
31,192222,Bacteria,Campylobacter,jejuni,Campylobacter jejuni
201,195099,Bacteria,Campylobacter,jejuni,Campylobacter jejuni
334,291272,Bacteria,Candidatus,Blochmannia,Candidatus Blochmannia
200,246194,Bacteria,Carboxydothermus,hydrogenoformans,Carboxydothermus hydrogenoformans
369,340177,Bacteria,Chlorobium,chlorochromatii,Chlorobium
628,443906,Bacteria,Clavibacter,michiganensis,Clavibacter
764,31964,Bacteria,Clavibacter,michiganensis,Clavibacter
799,553204,Bacteria,Corynebacterium,amycolatum,Corynebacterium
191,257309,Bacteria,Corynebacterium,diphtheriae,Corynebacterium
120,196164,Bacteria,Corynebacterium,efficiens,Corynebacterium
307,196627,Bacteria,Corynebacterium,glutamicum,Corynebacterium
308,306537,Bacteria,Corynebacterium,jeikeium,Corynebacterium
797,553207,Bacteria,Corynebacterium,matruchotii,Corynebacterium
798,553206,Bacteria,Corynebacterium,tuberculostearicum,Corynebacterium
336,255470,Bacteria,Dehalococcoides,sp.,Dehalococcoides
203,246195,Bacteria,Dichelobacter,nodosus,Dichelobacter nodosus
197,205920,Bacteria,Ehrlichia,chaffeensis,Ehrlichia chaffeensis
472,362663,Bacteria,Escherichia,coli,Escherichia coli
206,59374,Bacteria,Fibrobacter,succinogenes,Fibrobacter succinogenes subsp. succinog
440,326424,Bacteria,Frankia,alni,Frankia
409,106370,Bacteria,Frankia,sp.,Frankia
698,1855,Bacteria,Frankia,sp.,Frankia
175,114,Bacteria,Gemmata,obscuriglobus,Gemmata obscuriglobus
168,233412,Bacteria,Haemophilus,ducreyi,Haemophilus ducreyi
309,281310,Bacteria,Haemophilus,influenzae,Pasteurellaceae
8,71421,Bacteria,Haemophilus,influenzae,Haemophilus influenzae
155,235279,Bacteria,Helicobacter,hepaticus,Helicobacter hepaticus
5,85962,Bacteria,Helicobacter,pylori,Helicobacter pylori
24,85963,Bacteria,Helicobacter,pylori,Helicobacter pylori

92

PJP/2012/FTMK/(1D)/S01002

173,81032,Bacteria,Hyphomonas,neptunium,Hyphomonas
684,266940,Bacteria,Kineococcus,radiotolerans,Kineococcus
259,272624,Bacteria,Legionella,pneumophila,Legionellaceae
235,281090,Bacteria,Leifsonia,xyli,Micrococcineae
214,267377,Archaea,Methanococcus,maripaludis,Methanococcus maripaludis
172,243233,Bacteria,Methylococcus,capsulatus,Methylococcus capsulatus
383,264732,Bacteria,Moorella,thermoacetica,Moorella
765,561007,Bacteria,Mycobacterium,abscessus,Mycobacterium
193,174277,Bacteria,Mycobacterium,avium,Mycobacterium
616,410289,Bacteria,Mycobacterium,bovis,Mycobacterium
611,350054,Bacteria,Mycobacterium,gilvum,Mycobacterium
209,246196,Bacteria,Mycobacterium,smegmatis,Mycobacterium
600,164757,Bacteria,Mycobacterium,sp.,Mycobacterium
649,189918,Bacteria,Mycobacterium,sp.,Mycobacterium
464,164756,Bacteria,Mycobacterium,sp.,Mycobacterium
656,336982,Bacteria,Mycobacterium,tuberculosis,Mycobacterium
618,419947,Bacteria,Mycobacterium,tuberculosis,Mycobacterium
603,350058,Bacteria,Mycobacterium,vanbaalenii,Mycobacterium
311,262722,Bacteria,Mycoplasma,hyopneumoniae,Mycoplasmataceae
213,246197,Bacteria,Myxococcus,xanthus,Myxococcus
349,348780,Archaea,Natronomonas,pharaonis,Halobacteriaceae
198,222891,Bacteria,Neorickettsia,sennetsu,Neorickettsia sennetsu
271,247156,Bacteria,Nocardia,farcinica,Nocardia
576,35761,Bacteria,Nocardioides,sp.,Nocardioides
672,357244,Bacteria,Orientia,tsutsugamushi,Orientia
385,319225,Bacteria,Pelodictyon,luteolum,Pelodictyon
169,243265,Bacteria,Photorhabdus,luminescens,Photorhabdus luminescens
188,100379,Bacteria,Phytoplasma,asteris,16SrI (Aster yellows group)
176,246198,Bacteria,Prevotella,intermedia,Prevotella intermedia
212,264731,Bacteria,Prevotella,ruminicola,Prevotella ruminicola
170,167539,Bacteria,Prochlorococcus,marinus,Prochlorococcus marinus subsp. marinus
314,59920,Bacteria,Prochlorococcus,marinus,Prochlorococcus
239,267747,Bacteria,Propionibacterium,acnes,Propionibacterium
787,553199,Bacteria,Propionibacterium,acnes,Propionibacterium
785,553197,Bacteria,Propionibacterium,sp.,Propionibacterium
598,290318,Bacteria,Prosthecochloris,vibrioformis,Chlorobium
36,208964,Bacteria,Pseudomonas,aeruginosa,Pseudomonas aeruginosa
118,220664,Bacteria,Pseudomonas,fluorescens,Pseudomonas fluorescens
119,205922,Bacteria,Pseudomonas,fluorescens,Pseudomonas fluorescens
55,160488,Bacteria,Pseudomonas,putida,Pseudomonas putida
89,223283,Bacteria,Pseudomonas,syringae,Pseudomonas syringae group genomosp. 3
315,205918,Bacteria,Pseudomonas,syringae,Pseudomonadales
190,103985,Bacteria,Pseudomonas,syringae,Pseudomonas savastanoi
509,288705,Bacteria,Renibacterium,salmoninarum,Renibacterium
422,347834,Bacteria,Rhizobium,etli,Rhizobium
613,216596,Bacteria,Rhizobium,leguminosarum,Rhizobium
340,272943,Bacteria,Rhodobacter,sphaeroides,Rhodobacteraceae
786,596309,Bacteria,Rhodococcus,erythropolis,Rhodococcus
474,101510,Bacteria,Rhodococcus,sp.,Rhodococcus
189,258594,Bacteria,Rhodopseudomonas,palustris,Rhodopseudomonas palustris
725,293614,Bacteria,Rickettsia,akari,Rickettsia
692,391896,Bacteria,Rickettsia,bellii,Rickettsia
432,336407,Bacteria,Rickettsia,bellii,Rickettsia
719,293613,Bacteria,Rickettsia,canadensis,Rickettsia
316,315456,Bacteria,Rickettsia,felis,Rickettsia
724,416276,Bacteria,Rickettsia,massiliae,Rickettsia
740,452659,Bacteria,Rickettsia,rickettsii,Rickettsia
693,392021,Bacteria,Rickettsia,rickettsii,Rickettsia
245,257363,Bacteria,Rickettsia,typhi,Rickettsia
783,553201,Bacteria,Rothia,mucilaginosa,Rothia

93

PJP/2012/FTMK/(1D)/S01002

469,266117,Bacteria,Rubrobacter,xylanophilus,Rubrobacter
174,246200,Bacteria,Ruegeria,pomeroyi,Silicibacter pomeroyi
651,405948,Bacteria,Saccharopolyspora,erythraea,Saccharopolyspora
325,309807,Bacteria,Salinibacter,ruber,Sphingobacteriales
700,391037,Bacteria,Salinispora,arenicola,Salinispora
612,369723,Bacteria,Salinispora,tropica,Salinispora
295,321314,Bacteria,Salmonella,enterica,Salmonella enterica subsp. enterica serovar Choleraesuis
159,209261,Bacteria,Salmonella,enterica,Salmonella enterica
763,454169,Bacteria,Salmonella,enterica,Salmonella enterica subsp. enterica serovar Heidelberg
731,272994,Bacteria,Salmonella,enterica,Salmonella enterica subsp. enterica serovar Paratyphi B
51,211586,Bacteria,Shewanella,oneidensis,Shewanella oneidensis MR-1
160,198215,Bacteria,Shigella,flexneri,Shigella flexneri
127,198214,Bacteria,Shigella,flexneri,Shigella flexneri 2a
663,366394,Bacteria,Sinorhizobium,medicae,Sinorhizobium
317,342451,Bacteria,Staphylococcus,saprophyticus,Staphylococcaceae
306,170187,Bacteria,Streptococcus,pneumoniae,Streptococcaceae
134,218496,Bacteria,Tropheryma,whipplei,Tropheryma
133,203267,Bacteria,Tropheryma,whipplei,Tropheryma
166,196600,Bacteria,Vibrio,vulnificus,Vibrio vulnificus
234,80849,Bacteria,Wolbachia,pipientis,Wolbachia
321,314565,Bacteria,Xanthomonas,campestris,Xanthomonadaceae
218,229193,Bacteria,Yersinia,pestis,Yersinia pestis
248,273123,Bacteria,Yersinia,pseudotuberculosis,Enterobacteriaceae
261,264203,Bacteria,Zymomonas,mobilis,Sphingomonadaceae

94

PJP/2012/FTMK/(1D)/S01002

APPENDIX B1

Sample Multi-valued table output of pivot table for table AE_G (G to A)

Row Labels
Intermediate_rank_1 (G)

Count of
u_id (A)

1. Actinobacteria 56
2. Aquificae 1
3. Bacteroidetes 17
4. Chlamydiae 13
5. Chlorobi 4
6. Chloroflexi 6
7. Crenarchaeota 13
8. Cyanobacteria 30
9. Deinococcus-Thermus 4
10. dsDNA viruses, no RNA stage 2
11. Euryarchaeota 33
12. Fibrobacteres 1
13. Fibrobacteres/Acidobacteria

group 1
14. Firmicutes 164
15. Fusobacteria 2
16. Korarchaeota 1
17. Nanoarchaeota 1
18. Planctomycetes 2
19. Proteobacteria 341
20. Spirochaetes 15
21. ssRNA + strand viruses, no

DNA stage 1
22. Tenericutes 8
23. Thermomicrobia 1
24. Thermotogae 6

Grand Total 723

95

PJP/2012/FTMK/(1D)/S01002

APPENDIX B2

Sample Multi-valued table output of pivot table for table AE_G (G to B)

Row Labels
Intermediate_rank_1 (G)

Count of
taxon_id (B)

1. Actinobacteria 56
2. Aquificae 1
3. Bacteroidetes 17
4. Chlamydiae 13
5. Chlorobi 4
6. Chloroflexi 6
7. Crenarchaeota 13
8. Cyanobacteria 30
9. Deinococcus-Thermus 4
10. dsDNA viruses, no RNA stage 2
11. Euryarchaeota 33
12. Fibrobacteres 1
13. Fibrobacteres/Acidobacteria

group 1
14. Firmicutes 164
15. Fusobacteria 2
16. Korarchaeota 1
17. Nanoarchaeota 1
18. Planctomycetes 2
19. Proteobacteria 341
20. Spirochaetes 15
21. ssRNA + strand viruses, no

DNA stage 1
22. Tenericutes 8
23. Thermomicrobia 1
24. Thermotogae 6

Grand Total 723

96

PJP/2012/FTMK/(1D)/S01002

APPENDIX B3

Sample Multi-valued table output of pivot table for table AE_G (G to D)

Row Labels
Intermediate_rank_1 (G)

Count of
Genus (D)

1. Actinobacteria 56
2. Aquificae 1
3. Bacteroidetes 17
4. Chlamydiae 13
5. Chlorobi 4
6. Chloroflexi 6
7. Crenarchaeota 13
8. Cyanobacteria 30
9. Deinococcus-Thermus 4
10. dsDNA viruses, no RNA stage 2
11. Euryarchaeota 33
12. Fibrobacteres 1
13. Fibrobacteres/Acidobacteria

group 1
14. Firmicutes 164
15. Fusobacteria 2
16. Korarchaeota 1
17. Nanoarchaeota 1
18. Planctomycetes 2
19. Proteobacteria 341
20. Spirochaetes 15
21. ssRNA + strand viruses, no

DNA stage 1
22. Tenericutes 8
23. Thermomicrobia 1
24. Thermotogae 6

Grand Total 723

97

PJP/2012/FTMK/(1D)/S01002

APPENDIX B4

Sample Multi-valued table output of pivot table for table AE_G (G to E)

Row Labels
Intermediate_rank_1 (G)

Count of
Species (E)

1. Actinobacteria 56
2. Aquificae 1
3. Bacteroidetes 17
4. Chlamydiae 13
5. Chlorobi 4
6. Chloroflexi 6
7. Crenarchaeota 13
8. Cyanobacteria 30
9. Deinococcus-Thermus 4
10. dsDNA viruses, no RNA stage 2
11. Euryarchaeota 33
12. Fibrobacteres 1
13. Fibrobacteres/Acidobacteria

group 1
14. Firmicutes 164
15. Fusobacteria 2
16. Korarchaeota 1
17. Nanoarchaeota 1
18. Planctomycetes 2
19. Proteobacteria 341
20. Spirochaetes 15
21. ssRNA + strand viruses, no

DNA stage 1
22. Tenericutes 8
23. Thermomicrobia 1
24. Thermotogae 6

Grand Total 723

98

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Background
	1.2 The Proxy-based Approach
	1.3 Functional Dependency
	1.4 Problem statement
	1.5 Research Questions
	1.6 Aims and Objective
	1.7 Research Contribution

	CHAPTER 2
	LITERATURE REVIEW
	2
	2.1 Background
	2.2 Application of Functional Dependency in different domain
	2.2.1 Methods for FDs discovery

	2.3 Data Incompleteness problem: Missing values
	2.4 Conclusions

	CHAPTER 3
	MATERIALS AND METHODS
	3
	3.1 Background
	3.2 Research Methodology
	3.3 Data source of Microbial Genomics data sets
	3.2.1 Description of the semantics of Taxon table attributes
	3.2.2 Observation of missing values in Taxon table

	3.4 TANE Algorithm for discovery of FDs
	3.3.1 TANE Algorithm categories

	3.5 The method in preparing analysis of space requirement
	3.5.1 Proxy based approach for space optimisation

	3.6 Conclusions

	CHAPTER 4
	RESULTS
	4
	4.1 Background
	4.2 Proxy discovery from Taxon sub-tables
	4.2.1 Summary output of table AE_F
	4.2.2 Summary output of table AE_G
	4.2.3 Summary output of table AE_H
	4.2.4 Summary output of table AE_I
	4.2.5 Summary output of table AE_J
	4.2.6 Summary output of table AE_K
	4.2.7 Summary output of table AE_L

	4.3 Summary of Space requirement results
	4.3.1 Multi-valued table for Table AE_F
	4.3.2 Multi-valued table for Table AE_G
	4.3.3 Multi-valued table for Table AE_H
	4.3.4 Multi-valued table for Table AE_I
	4.3.5 Multi-valued table for Table AE_J
	4.3.6 Multi-valued table for Table AE_K
	4.3.7 Multi-valued table for Table AE_L

	4.4 Conclusions

	CHAPTER 5
	RESULTS ANALYSIS AND DISCUSSIONS
	5
	5.1 Background
	5.2 Analysis of FD accuracy for candidate proxy in Taxon sub-tables
	5.3 Space Requirement Analysis
	5.4 Conclusions

	CHAPTER 6
	CONCLUSIONS

	REFERENCES
	APPENDICES

