

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF CUSTOMIZED DRINKING BOTTLE FOR SME

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor's Degree in Manufacturing Engineering Technology (BETD) (Hons.)

by

NAS MUSTAQIM WALAD BIN AHMAD B071210376 930110055151

FACULTY OF ENGINEERING TECHNOLOGY 2015

DECLARATION

I hereby, declared this report entitled "Design and Development of Customized Drinking Bottle for SME" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Nas Mustaqim Walad Bin Ahmad
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the Bachelor's Degree in Manufacturing Engineering Technology (Product Design) With Honours. The member of the supervisory is as follow:

.....

(Project Supervisor)

ABSTRAK

Pada masa kini, pengeluaran botol minuman bukanlah sesuatu yang baru dalam industri pembuatan. Ia melibatkan proses reka bentuk dan membuat prototaip acuan menggunakan Rapid Prototyping. Tetapi dalam kes-kes tertentu, mereka menggunakan mesin CNC untuk membuat acuan. Dalam projek ini, proses ini adalah untuk mereka bentuk dan menghasilkan satu botol minuman peribadi untuk PKS. PKS adalah Perusahaan Kecil dan Sederhana yang membantu ahli perniagaan atau orang untuk memulakan perniagaan dalam perusahaan kecil dan sederhana. Objektif utama projek ini adalah kaedah 'Reverse Engineering' dilakukan pada botol dan acuan yang sedia ada untuk membuat reka bentuk yang baru dan untuk mereka bentuk dan menghasilkan botol minuman berdasarkan keperluan pelanggan. Ini kerana, beberapa syarikat PKS tidak mempunyai alat reka bentuk yang sesuai untuk mereka bentuk botol dan tidak mempunyai reka bentuk botol mereka sendiri, jadi, mereka perlu membeli botol daripada syarikat lain. Dengan perisian CAD, 'SOLIDWORKS', reka bentuk yang dibuat berdasarkan keperluan pelanggan didapati daripada pertemuan dengan pengurus pengeluaran syarikat. Reka bentuk botol yang direka akan digunakan untuk menghasilkan prototaip dengan menggunakan mesin 'Prototyping Rapid'.

ABSTRACT

Nowadays, drinking bottle production is not something new in the manufacturing industry. It involves the design process and making a mold using Rapid Prototyping and makes the prototype. But in certain cases, they used the CNC machine to make the mold. In this project, the process is to design and develop a custom drinking bottle for SME's. SME is a Small and Medium Enterprises that provides the businessman or people to start the business in small or medium enterprises. The main objective of this project are reverse engineering method apply on the existing bottle and mold to make a new design and to design and develop the drinking bottle based on the customer requirement. This is because, some of the SME company do not have the appropriate design tools to make the bottle design and do not have their own bottle design, so, they need to buy the bottle from another company. Using 3D CAD software, the design are made based on the customer requirement from the meeting with the production manager. The prototypes of the bottle design are fabricated by using the Rapid Prototyping.

DEDICATION

Special dedication, To my beloved parents Mr. Ahmad Bin Abu Mrs. Puziah Binti Tasi

To my beloved sibling Nadia Izwannie Binti Ahmad Nor Fatir Atila Binti Ahmad Nuhizammil Fitri Bin Ahmad Naufal Hazwan Bin Ahmad

To my friends, lecturers, assistant engineers, my supervisor, Eng. Hassan Bin Attan and who had contributed to this project until it success.

ACKNOWLEDGEMENT

Alhamdulillah. Firstly, thanks to Allah because give me a opportunity to complete this project. And also special thanks to my kind supervisor, Eng. Hassan Bin Attan because guide and helping me to make this project successfully. With his help, I can finish this project at the right track. Moreover, the progress I had now will be uncertain without his assistance. Besides, I would like to thank the assistant engineers, Mr. Muhammad Zuhri Bin Shari and Mr. Zulkifli Bin Jantan in helping me to fabricated the prototype using 3D Printing machine and give me so many knowledge about the Rapid Prototyping. Last but not least, I would like to thanks to my family especially my parents for their support and understanding and to my friend that contributed in this project. Assalamualaikum.

TABLE OF CONTENT

Abstr	ak		i
Abstr	act		ii
Dedic	ation		iii
Ackn	owledge	ement	iv
Table	of Cont	tent	V
List o	f Tables	3	Х
List o	f Figure	S	xi
List A	bbrevia	tions, Symbols and Nomenclatures	XV
CHA	PTER 1	I: INTRODUCTION	1
1.1	Backgr	round	1
1.2	Scope	of Project	2
1.3	Problem	m Statement	3
1.4	Object	ive of Project	3
CHA	PTER 2	2: LITERTURE REVIEW	4
2.1	Introd	uction	4
2.2	2 Plastic Bottle		4
	2.2.1	Material Used In Plastic Bottle	5
	2.2.2	Patent Research	7
		2.2.2.1 Bottle with Top Loading Resistance	8
		2.2.2.2 Standard Bottle	8
2.3	Produ	ct Design and Development (PDD)	9
	2.3.1	Objective	10

	2.3.2	Product Development Process	10
	2.3.3	Application of Product Design and Development Process	12
2.4	Rever	se Engineering (RE)	13
	2.4.1	Process Chain of Reverse Engineering	14
	2.4.2	Reverse Engineering Methods	15
		2.4.2.1 Contact Method	16
		2.4.2.2 Non-Contact Method	17
2.5	Rapid	Prototyping (RP)	19
	2.5.1	Rapid Prototyping Process Chain from CAD to Prototype	20
	2.5.2	The Benefits of the Rapid Prototyping	21
	2.5.3	Rapid Prototyping Techniques	22
	2.5.4	The Application of Rapid Prototyping	25
2.6	Comp	uter Aided Design (CAD)	27
	2.6.1	Principles of CAD	27
	2.6.2	The Uses and Benefit of CAD	29
	2.6.3	CAD within Product Development	30
	2.6.4	Application of CAD	32
	2.6.5	CAD Software	32
2.7	High l	Density Polyethylene (HDPE)	33
	2.7.1	Properties of HDPE	34
	2.7.2	Application of HDPE	36
		2.7.2.1 HDPE Container	36

		2.7.2.2 HDPE Pipe	37
2.8	Blow	Mold	37
	2.8.1	Blow Molding Process	38
	2.8.2	Types of Blow Molding	39
		2.8.2.1 Extrusion Blow Molding	39
		2.8.2.2 Injection Blow Molding	40
		2.8.2.3 Stretch Blow Molding	41
	2.8.3	Injection Blow Molding Versus Extrusion Blow Molding	43
	2.8.4	Blow Mold Parts	43
2.9	Interview		46
	2.9.1	Types of Interview	46
	2.9.2	Advantages and Disadvantages of Interview	47
CHAI	PTER 3	3: METHODOLOGY	48
3.1	Introduction		48
3.2	Flow	Chart	48
	3.2.1	Product Planning	49
	3.2.2	Reverse Engineering Methods	50
	3.2.3	Meeting and Interview	53
	3.2.4	Concept Development	55
	3.2.5	Generate 3D CAD Drawing	57
		3.2.5.1 Procedure of 3D CAD Drawing	58

		3.2.5.2 Bottle 3D CAD Drawing	59	
	3.2.6	Mold Design	64	
		3.2.6.1 Mold 3D CAD Drawing	65	
	3.2.7	Prototype (RP Machine)	70	
		3.2.7.1 Procedures Rapid Prototyping	70	
CHA	PTER 4	: RESULT AND DISCUSSION	75	
4.1	Introd	uction	75	
4.2	Comp	pany Specification 7.		
4.3	Main	Concept 70		
4.4	3D CA	D CAD Design		
	4.4.1	Bottle Design	79	
	4.4.2	Mold Design	82	
	4.4.3	Final Design	88	
4.5	Final	Product	90	
4.6	Discu	ssion	94	
	4.6.1	Designing Stage	94	
	4.6.2	Fabrication Stage	94	

CHAPTER 5: CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	96
5.2	Recommendation	97

REFERENCES

APPENDICES

А	Gantt chart	103

B CAD Drawing 105

LIST OF TABLE

16
19
22
35
35
41
43
47
54
56
77
79

LIST OF FIGURES

2.1	First Glass Bottle	5
2.2	Bottle with Top Loading Resistance	8
2.3	Standard Bottle	9
2.4	Generic Product Development Process	11
2.5	The Design Phase	12
2.6	Process Chain of Reverse Engineering	15
2.7	Contact method	16
2.8	Non-contact Method	18
2.9	The Problem in Non-Contact Method	18
2.10	The Rapid Prototype Chain Process	21
2.11	Stereo Lithography Apparatus	23
2.12	Laser Sintering	23
2.13	Fused Deposition Modelling	24
2.14	Rapid Prototyping Process	25
2.15	Medical Application	26
2.16	Rapid Prototyping Application	26
2.17	Part Requires For Surface Modelling	28
2.18	Example Of Solid Modelling	29
2.19	Analysis of the average product development time and of the product	
	useful time for various industrial products.	30
2.20	Example of the Development Product	31
2.21	Example Product (a) Pharmaceutical Bottle, (b) Oil Container, (c) Spray	
	Bottle	36
2.22	The HDPE Pipe Application	37
2.23	The blow molding Process	38
2.24	Process Flow of Extrusion Blow Molding	39
2.25	Injection Blow Molding Process	41
2.26	Stretch Blow Molding Process	42

2.27	Parts of Blow Mold (a)	45
2.28	Parts of Blow Mold (b)	45
3.1	Flow Chart of the Project	48
3.2	Example of Patent (a) Patent of standard bottle design (b) Patent	
	Of Bottle with Top Loading Resistance	49
3.3	Tools for the Reverse Engineering	50
3.4	Measure the Size of the Bottle	51
3.5	Measure the Diameter of the Bottle	51
3.6	Blow mold At Plastic Laboratory	52
3.7	Measure the Diameter	52
3.8	Meeting with Production Manager of Ramaju Sdn. Bhd.	
	Mr. Ng Thian Heng	54
3.9	Example bottle from Ramaju Sdn. Bhd.	54
3.10	Example of 3D CAD drawing	58
3.11	Display Panel	59
3.12	Create New Document	59
3.13	Sketch Hexagon Shape	60
3.14	Solid Body Using Extruded Boss Command	61
3.15	Sweep Boss Command	61
3.16	Fillet Command	62
3.17	Circular Pattern Command	62
3.18	Loft Command	63
3.19	Wrap Command	63
3.20	Revolved Boss Command	64
3.21	Planar Surface Command	66
3.22	Extruded Surface Command	66
3.23	Combine Feature	67
3.24	Split Feature	67
3.25	Sketch Round Shape	68
3.26	Make a Hole	68
3.27	Round Shape Sketching	68
3.28	Hole Wizard Command	69

3.29	Extruded Cut	69
3.30	Example of the Rapid Prototyping Process	71
3.31	Select Save As	71
3.33	STL File Format	72
3.33	Save the Data	72
3.34	Drag the Part	73
3.35	Scale Down and Rotate the Part	73
3.36	Print Preview	74
3.37	Weight and Time Appeared	74
4.1	The forth concept (Hexagon Bottle)	77
4.2	Hexagon Bottle Design	79
4.3	Command Use for the Bottle Design	80
4.4	Grip Feature	80
4.5	Company's Logo	81
4.6	Spilt the Mold Base	82
4.7	Command For The Mold Design	82
4.8	Right Mold Base	83
4.9	Command For Right Mold Base	83
4.10	Left Mold Base	84
4.11	Command for Left Mold Base	84
4.12	Right Bottom Insert	85
4.13	Left bottom Insert	85
4.14	Commands for Left and Right Bottom Insert	86
4.15	Right Top Insert	86
4.16	Left Top Insert	87
4.17	Commands for Right and Left Top Insert	87
4.18	Full Assembly Cad Data	88
4.19	Exploited View	89
4.20	Exploited view (Rendering)	89
4.21	Bottle Prototype Process	90
4.22	Bottle Prototype	91
4.23	Insert of Mold Prototype Process	91

4.24	Insert of Mold Prototype	92
4.25	Mold Base Prototype Process	92
4.26	Mold Base Prototype	93

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

SME	-	Small-Medium Enterprises
CAD	-	Computer Aided Design
RP	-	Rapid Prototyping
RE	-	Reverse Engineering
HDPE	-	High Density Polyethylene
PET	-	Polyethylene Terephthalate
LDPE	-	Low Density Polyethylene
РР	-	Polypropylene
PS	-	Polystyrene
PVC	-	Polyvinyl Chloride
STL	-	Standard Triangulation Language
lbf/g	-	Pound mass per gram
mm	-	Millimetre
L/g	-	Litre per gram
BOM	-	Bills of Material
CAM	-	Casio Camera
CMM	-	Coordinate Measuring Machine
CCD	-	Charge-Coupled Device
CAI	-	Computer-Aided Inspection
LS	-	Laser Sintering
SLA	-	Stereo Lithography Apparatus
СТ	-	computed tomography
CRT	-	Cathode Ray Tube
DFM	-	Design for Manufacturability
DFA	-	Design for Assembly
FDA	-	Food and Drug Administration

NSF	-	National Science Foundation
USDA	-	United State Department of Agriculture
°C	-	Celsius

CHAPTER 1 INTRODUCTION

This project is about to design and develop customized drinking bottle for smallmedium enterprises (SME). In this project, design and fabricated of the bottle used the CAD software and the manufacturing machines in our facilities. There are some methods that used to complete this project where it involves the research about the bottle design, study about the mechanism and structure of blow mold and the materials will be used and also this project used the Reverse Engineering technology to the existed mold in our facilities. Based on the existed mold, a new design bottle used CAD software based on the customer need are made and produce a prototype used the Rapid Prototyping to give customer or company to make a valuation. If there are no problems, the mold design and the mold prototype used the Rapid Prototyping are made. As conclusion, this project is used the machines in our facilities and the CAD software that provide in our facilities.

1.1 Background

Drinking bottle production is not something new in the manufacturing industry. It involves the design process and making a mold using Rapid Prototyping machines and makes the prototype. In this project, the process is to design and develop a custom drinking bottle for SME's. SME is a Small and Medium Enterprises that provides the businessman or people to start the business in small or medium enterprises. Material used for the drinking bottle is plastics such as HDPE, PET, LDPE, PP, and PS. Besides that, the design of the bottle nowadays too many and have their own identity. Some of the company use the RP machine to make the prototype to know the customer needs and some just use 3D CAD data to show to the customer. The type of mold is used in bottle production is blow molding. The blow mold is a process used to produce hollow objects from thermoplastic. The basic blow moulding process has two fundamental phases. First, a parison (or a preform) of hot plastic resin in a tubular shape is created. Second, compressed air is used to expand the hot preform and press it against mould cavities. The pressure is held until the plastic cools. The material that suitable for this mold is aluminium, and alloys. But the aluminium is preferred to use because the durability and can conduct heat.

1.2 Scope of Project

In this project, the existed bottle and mold was used as a reference and make a new design of drinking bottle. By using reverse engineering process, a new design using CAD was created based on the existing bottle. The CAD data can also be used to make prototype using RP machine by converted the file to STL file. Then, the CAD software is use to make the mold of the bottle and the file was converted to the STL file where it was been used to the RP machine for make the prototype. The product from RP machine will produce same as actual product.

1.3 Problem Statement

Based on the project, the problem statements are:

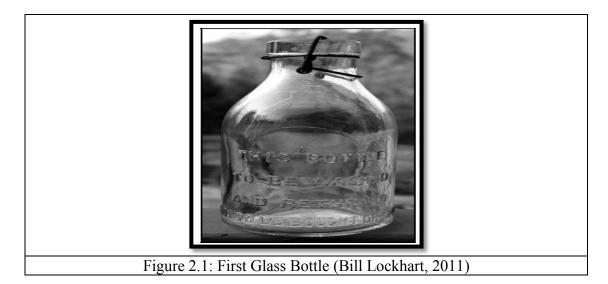
- 1. The researched company do not have the appropriate design tools to make the bottle design.
- 2. The researched company do not have their own bottle design and they need to buy the bottle from another company.

1.4 Objective of Project

The objectives of this project are:

- 1. To reverse engineering to the existing bottle and mold, then make a new design of the bottle design for SME.
- 2. To design and develop the prototype of the drinking bottle.
- 3. To design and develop the prototype of the mold of the drinking bottle.
- 4. To design and develop prototype of the drinking bottle based on the costumer requirement.

CHAPTER 2 LITERATURE REVIEW


2.1 Introduction

In this chapter, the literature review of this project will be discussed. All the literature review such as the material, the machine, and the method that will be used in this project is described in this chapter. The research about the material, machine and method is been made and there are some important point that show in literature review. The research is making based on the books, article, journal and the internet source to complete the literature review.

2.2 Plastic Bottle

Plastic is material that use in many products around us including plastic bag, car component, hand phone case, furniture etc. Based on the SKS Bottle and Packaging, Inc, Leonardo Da Vinci is a first person that produced a substance that same as plastic where he created a combination of animal glue, vegetables glue, and the organic fibre and dried it. Then, Alexander Parkes introduced the man made plastic in 1862 at the Great International Exhibition in London. At that time the cost raw materials of plastic is expensive. So, it's not been commercialize to the public. After that, Leo Baekland invented a 'Baletite' where it's function to control heat and pressure and combined with his other invention 'Bakelizer', he able to control the reaction of chemical. With this invention, the resin is form where have same molecular as plastic. The invention of the Balelite leads the way for other additions to the world of plastics including rayon, cellophane, nylon, PVC, saran, Teflon, and polyethylene. Before plastic bottle is use, people is used the glass for keep their water or milk. In January 29, 1878, Lester Milk Jar was patented (Bill Lockhart,

2011). At that time, milk is one of the important businesses where everyone drinks milk at earlier morning. So, the company that runs milk business use the glass bottle to deliver to the people. In 1947, the plastic bottle is uses commercially but because of the cost is still expensive, plastic bottle is not popular among the people that time. After the high density polyethylene is introduced in 1953, people start to use the plastic to replaces the glass as container because to their lightweight nature and relatively low production and resistance to breakage compared with glass bottles.

2.2.1 Material Used In Plastic Bottle

Plastic bottle is made using blow molding where plastic pallet from plastic factory is heated and blow by the air from the blow molding machine. The plastics pallet will follow shape of the mold after the blow and the plastic bottle is produced follow the shape of the mold. There are several material is used in plastic bottle production. Based on the American Chemical Council and *ebottle.com*, the materials are:

i. Polyethylene Terephthalate (PET, PETE) - PET is tough, clear surface and has good gas and moisture barrier properties. Excellent barrier to oxygen, water, and carbon dioxide. High impact capability and shatter resistance. Excellent resistance to most solvents. Capability for hot- filling (maximum temperature 160°F). PET provides very good alcohol and essential oil barrier