

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HANDGRIP PRESSURE AND HAND MOVEMENT ANALYSIS WHILE DRIVING ON PERODUA'S CAR STEERING WHEEL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Engineering Technology Manufacturing (product design) (Hons.)

by

AHMAD AIMAN BIN CHE ZAKERIA B071210073 920628 - 03 - 5535

FACULTY OF ENGINEERING TECHNOLOGY 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Handgrip Pressure and Hand Movement Analysis While Driving on Perodua's car Steering Wheel

SESI PENGAJIAN: 2015/16 Semester 1

Saya AHMAD AIMAN BIN CHE ZAKERIA

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap: W1 / 581 JALAN PASIR PEKAN,

TIDAK TERHAD

Cop Rasmi:

17000 PASIR MAS,

KELANTAN

Tarikh:

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

C) Universiti Teknikal Malaysia Melaka-

DECLARATION

I hereby, declared this report entitled "Handgrip Pressure and Hand Movement Analysis While Driving on Perodua"s car Steering Wheel" is the results of my own research except as cited in references.

Signature	:	
Author"s Name	:	AHMAD AIMAN BIN CHE ZAKERIA
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Engineering Technology (Product Design) (Hons.). The member of the supervisory is as follow:

.....

(Project Supervisor)

ABSTRAK

Keletihan boleh menyebabkan ketidakselesaan kepada pemandu semasa memandu kereta. Ini kerana pemandu mengenggam stereng dengan kuat. Daya genggaman yang tinggi boleh menyebabkan kesakitan dan ketidakselesaan kepada pemandu. Memandu dalam masa yang lama boleh menyebabkan sindrom terowongan/lorong karpall kepada pemandu. Tujuan projek ini adalah untuk menganalisis daya cengkaman tangan dan pergerakan tangan pada Perodua stereng. Eksperimen ini akan dilakukan ke atas dua buah kereta Perodua iaitu Perodua Myvi dan Perodua Alza. Sistem cengkaman Tekscan digunakan untuk mengambil data genggaman pemandu semasa memandu. Kemudian, peranti disambungkan ke tangan pemandu dan ukuran akan diambil. Eksperimen ini akan dilakukan di Lebuhraya Utara Selatan iaitu dari Ayer Keroh ke Tangkak. Pemandu perlu untuk memandu kereta di jalan raya dengan mengekalkan kelajuan pada 80km / j. Jarak lebuh raya adalah kira-kira 30 kilometer yang mana ianya akan mengambil masa kira-kira 20 minit untuk sampai ke destinasi. Sukarelawan perlu memegang stereng di posisi 9 dan 3 pada kedudukan jam yang merupakan kedudukan yang paling selamat bagi memegang stereng. Hasil daya cengkaman tangan akan dibandingkan antara dua buah kereta dan hasil daripada daya cengkaman akan dikaitkan dengan pergerakan tangan semasa memandu.

ABSTRACT

Fatigue can cause discomfort to the driver while driving a car. This is because the driver grips the steering wheel hardly. The high handgrip force can cause a pain and discomfort to the driver. Driving in a long time can cause carpal tunnel syndrome to the driver. The purpose of this project is to analyze the handgrip force and hand movement on Perodua steering wheel. This experiment will be done on two Perodua cars which are Perodua Myvi and Perodua Alza. A Tekscan Grip System is used to take the handgrip data of the driver while driving. Then, the device is connected to the driver's hand and the measurement is taken. This experiment will be done at North South Highway which is from Ayer keroh to Tangkak. The driver needs to drive the car in the highway with maintain speed which is 80km/h. The distance of the highway is about 30km which is it will take about 20 minutes to reach the destination. The volunteer needs to hold the steering wheel in 9 and 3 o'clock position which is the safest position of holding the steering wheel. The result of the handgrip force will be compared between two cars and the result of the grip force will be related to hand movement while driving.

DEDICATION

To my beloved parents, Mr. Che Zakeria Bin Che Omar and Mrs. Fauziah Bt Abu Bakar thank you so much for your lifelong encouragement from the early of the project until the end of the project. Your encouragement made me more motivation to complete this project with full of diligence and patience. To my fellow friends, Hadi, Hakim, Izhar, Ikram, Adeera, Adibah, Ezzy, Ameerah and also Atiqah, thanks for all your support during this project. Not forgotten to my fellow classmates which contribute a lot of idea. Lastly, my special thanks to my supervisor, Sir Mohd Fa''iz Bin Wahid for his dull of patience in teaching me and guiding me from the early of the project until the end of the project.

ACKNOWLEDGEMENT

First, I would like to express my greatest gratitude to Almighty Allah for giving me a chance to complete my project with all His blessings. I would like to acknowledge my project supervisor, Mr. Mohd Fa"iz Bin Wahid. The fundamental idea of this project is from him and he gave a lot source of information about this project. I am very thankful that he supervised my work and provided me with the much needed assistance in understanding the project. Without his guidance and support, I may not be able to achieve the goals of this project. To all my lecturers, who had thought me this far, very special thanks to them and for everybody gave their support on construct my project. I also would like to thanks to my friends and to all respondents who have participate to make this project success. I also would like to thanks to my beloved parents, Mr. Che Zakeria Bin Che Omar and Mrs. Fauziah Bt Abu Bakar for their lifelong encouragement.

TABLE OF CONTENT

Declaration	i
Approval	ii
Abstrak	iii
Abstract	iv
Dedication	v
Acknowledgement	vi
Table of Content	vii
List of Tables	xi
List of Figures	xii

CHAPTER

PAGES

CHA	APTER 1 : INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	2
1.4	Title	3
1.5	Scope	3
CHA	APTER 2 : LITERATURE REVIEW	
2.1	Introduction	4
2.2	Ergonomics	4
	2.2.1 The Importance of An Ergonomics	5
2.3	Musculoskeletal Disorders (MSD)	6
	2.3.1 Carpal Tunnel Syndrome (CTs)	8
	2.3.2 Low Back Pain (LBP)	9
2.4	Steering Wheel	11
	2.4.1 History of Steering Wheel	11
	2.4.2 Hand Position of Steering Wheel	12
2.5	Tekscan Grip Systems	14
	2.5.1 The Grip System	14
	2.5.2 The Applications of Tekscan Grip System	15

	2.5.3 The Evaluation of Grip Force	15
	2.5.4 Software Features	17
2.6	Road Conditions	18
2.7	Hand Movement	19
2.8	Handgrip and Vibrations	19
СНА	APTER 3 : METHODOLOGY	23
3.1	Identifying The Steering Wheel	24
3.2	Identifying The Steering Wheel Position	25
3.3	Execute Grip Force Measurement	27
3.4	Road Selection	28
3.5	Participants	28
3.6	Survey/Questionnaire	29
3.7	Results	29
	3.7.1 Force versus Time Graph	29
	3.7.2 Comparison	
СНА	APTER 4 : RESULT AND DISCUSSION	
4.1	Pressure against Time Result	30
	4.1.1 Male Results	30
	(a) First Respondent	30
	(i) Perodua Myvi	30
	(ii) Perodua Alza	34
	(iii) Comparisons of Perodua Myvi and	35
	Perodua Alza	
	(b) Second Respondent	36
	(i) Perodua Myvi	36
	(ii) Perodua Alza	39
	(iii) Comparisons of Perodua Myvi and	41
	Perodua Alza	
	(c) Third Respondent	42
	(i) Perodua Myvi	42
	(ii) Perodua Alza	44
	(iii) Comparisons of Perodua Myvi and	45

Perodua Alza

	(d) Fourth Respondent	46
	(i) Perodua Myvi	46
	(ii) Perodua Alza	48
	(iii) Comparisons of Perodua Myvi and	49
	Perodua Alza	
	(e) Fifth Respondent	50
	(i) Perodua Myvi	50
	(ii) Perodua Alza	53
	(iii) Comparisons of Perodua Myvi and	54
	Perodua Alza	
4.1.2	Female Results	55
	(a) First Respondent	55
	(i) Perodua Myvi	55
	(ii) Perodua Alza	57
	(iii) Comparisons of Perodua Myvi and	58
	Perodua Alza	
	(b) Second Respondent	59
	(i) Perodua Myvi	59
	(ii) Perodua Alza	61
	(iii) Comparisons of Perodua Myvi and	62
	Perodua Alza	
	(c) Third Respondent	63
	(i) Perodua Myvi	63
	(ii) Perodua Alza	65
	(iii) Comparisons of Perodua Myvi and	66
	Perodua Alza	
	(d) Fourth Respondent	67
	(i) Perodua Myvi	67
	(ii) Perodua Alza	69
	(iii) Comparisons of Perodua Myvi and	70
	Perodua Alza	
	(e) Fifth Respondent	71

(i) Perodua Myvi	71
(ii) Perodua Alza	73
(iii) Comparisons of Perodua Myvi and	74
Perodua Alza	
4.2 Ergonomics Risk Factors	75
4.3 Questionnaire Results	76
4.3.1 First Question	76
4.3.2 Second Question	77
4.3.3 Third Question	78
4.3.4 Fourth Question	79
4.3.5 Fifth Question	80
4.3.6 Sixth Question	81
4.3.7 Seventh Question	82
4.3.8 Eighth Question	83
4.3.9 Ninth Question	84
4.3.10 Tenth Question	85
CHAPTER 5 : CONCLUSION AND	
RECOMMENDATIONS	86
5.1 Conclusion	88
5.2 Recommendations	
REFERENCE	89
APPENDIX	95

LIST OF TABLES

TABLE	TABLE TITLE	PAGE
2.1	Examples of Musculoskeletal Disorders	7
4.1	Average Pressure Comparison of Perodua Myvi and Perodua	35
	Aiza for first male respondent	
4.2	Average Pressure Comparison of Perodua Myvi and Perodua	41
	Alza for second male respondent	
4.3	Average Pressure Comparison of Perodua Myvi and Perodua	45
	Alza for third male respondent	
4.4	Average Pressure Comparison of Perodua Myvi and Perodua	49
	Alza for fourth male respondent	
4.5	Average Pressure Comparison of Perodua Myvi and Perodua	54
	Alza for fifth male respondent	
4.6	Average Pressure Comparison of Perodua Myvi and Perodua	58
	Alza for first female respondent	
4.7	Average Pressure Comparison of Perodua Myvi and Perodua	62
	Alza for second female respondent	
4.8	Average Pressure Comparison of Perodua Myvi and Perodua	66
	Alza for third female respondent	
4.9	Average Pressure Comparison of Perodua Myvi and Perodua	70
	Alza for fourth female respondent	
4.10	Average Pressure Comparison of Perodua Myvi and Perodua	74
	Alza for fifth female respondent	

LIST OF FIGURES

FIGURE	FIGURE TITLE	PAGE
2.1	Carpal Tunnel Syndrome	8
2.2	Body Positions when driving	9
2.3	10 and 2 of clock position	13
2.4	9 and 3 of clock position	13
2.5	Comparison between 10 and 2 o'clock position with 9 and 3	14
	o"clock position	
2.6	Sensor for one cuff	16
2.7	Sensor for both hand	16
2.8	Grip sensors that contain 18 active regions	17
2.9	Result of area of force and the graph	18
3.1	Flow Chart of the Methodology	22
3.2	Perodua Myvi steering wheel	23
3.3	Perodua Alza steering wheel	24
3.4	Hands positions on steering wheel during driving	24
3.5	The eighteen sensors are attach to the glove	25
3.6	Tethered model	26
3.7	Tethered system	27
3.8	The roads selection for driving test	28
3.9	The graph of force versus time for the test drive by using	29
	Perodua Kenari	
<i>A</i> 1	Graph of pressure against time of Perodua Mayi for first	21
Τ.1	male respondent	JI

4.2 The car was steered to the left at the early of the highway 32

4.3	The car was steered to the left at the end of the highway	32
4.4	Graph of pressure against time of Perodua Alza for first male	34
	respondent	
4.5	The driver attempt to overtake the lorry	35
4.6	Graph of pressure against time of Perodua Myvi for second	36
	male respondent	
4.7	The driver attempt to overtake the lorry	37
4.8	The car was crossed the road-bridge boarder	37
4.9	Graph of pressure against time of Perodua Alza for second	39
	male respondent	
4.10	The car was steered to the left at the early of the highway	40
4.11	The car was crossed the road-bridge boarder	40
4.12	Graph of pressure against time of Perodua Myvi for third	42
	male respondent	
4.13	The handgrip become stronger due to heavy rain	43
4.14	Graph of pressure against time of Perodua Alza for third	44
	male respondent	
4.15	The car was steered to the left at the end of the highway	45
4.16	Graph of pressure against time of Perodua Myvi for fourth	46
	male respondent	
4.17	The car was crossed the road-bridge boarder	47
4.18	Graph of pressure against time of Perodua Alza for fourth	48
	male respondent	
4.19	The car in bumpy road condition	49
4.20	Graph of pressure against time of Perodua Myvi for fifth	50
	male respondent	
4.21	The car was steered to the left at the early of the highway	51
4.22	The car was steered to the left at the end of the highway	51
4.23	Graph of pressure against time of Perodua Alza for fifth	53
	male respondent	
4.24	The car was crossed the road-bridge boarder	54
4.25	Graph of pressure against time of Perodua Myvi for first	55
	female respondent	

4.26	The road condition was quite bumpy	56
4.27	Graph of pressure against time of Perodua Alza for first	57
	female respondent	
4.28	The road condition was bumpy and not stable	58
4.29	Graph of pressure against time of Perodua Myvi for second	59
	female respondent	
4.30	The car avoiding the trailer that stop on the side walk	60
4.31	Graph of pressure against time of Perodua Alza for second	61
	female respondent	
4.32	The car was steered to the left at the end of the highway	62
4.33	Graph of pressure against time of Perodua Myvi for third	63
	female respondent	
4.34	A lot of lorry speeding in right plane	64
4.35	The construction near to left lane side	64
4.36	Graph of pressure against time of Perodua Alza for third	65
	female respondent	
4.37	The driver attempt to overtake the lorry	66
4.38	Graph of pressure against time of Perodua Myvi for fourth	67
	female respondent	
4.39	The driver attempt to overtake the oil truck	68
4.40	Graph of pressure against time of Perodua Alza for fourth	69
	female respondent	
4.41	The driver was being overtake by the trailer which carry	70
	accidents car	
4.42	Graph of pressure against time of Perodua Myvi for fifth	71
	female respondent	
4.43	The car was crossed the road-bridge boarder	72
4.44	Graph of pressure against time of Perodua Alza for fifth	73
	female respondent	
4.45	The car was steered to the left at the early of the highway	74
4.46	Have you drive a car for a long journey	76
4.47	What types of car do you prefer for a long journey	77
4.48	Which road do you prefer when drive a car for a long	78

journey

4.49	Have you face any fatigue problems when you drive a car in	79
	a long journey	
4.50	Have you drive a car for more than 3 hours	80
4.51	Do you know that we cannot drive a car for more than 4.5	81
	hours continuously without resting	
4.52	How long the duration of driving until you tired	82
4.53	Is your sit position while driving is correct	83
4.54	On average, how do you hold the steering wheel of your car	84
	when driving	
4.55	What is your hand position while driving	85
	······································	00

CHAPTER 1 INTRODUCTION

1.1 Background

Steering wheel, known as driving wheel or a hand wheels are commonly used to steer control in vehicles in most type of vehicles including ships and boats. Steering wheel have been used in decade until to the most modern land vehicles including all mass production automobile such as tractors, buses, light and heavy trucks. Currently, there are lot of steering wheel designs with their own functions but not for the comfort level of the driver while using it. This project will study about ergonomics design and analysis of the hand grip forces on specific Perodua's steering wheel models. The comfortable for driver during driving is very important especially for long journey. Any inconvenience during driving can cause dangerous situation to the driver and also to the others on the road. Driving can expose driver to the Musculoskeletal Disorders (MSDs) especially when driving for a long journey. One of the MSDs common examples is Carpal Tunnel Syndrome (CTS). CTS can happen when the drivers make the same hand and wrist motion over and over. Besides, Low Back Pain (LBP) also is one of the examples for MSDs. LBP can affect the health of the driver due to the back body posture during driving. Besides, the road conditions itself also can cause problems to the driver during a long journey.

Driving as a profession involves routine muscular effort such as holding steering wheel, awkward sitting postures, high body contact, and exposure to whole-body vibration. This project will analyze the hand grip pressures and hand movements on two different Perodua^{**}s car. High hand grip pressure and vibration can cause fatigue towards our hand muscles and can cause musculoskeletal disorders to the hand. Moreover, the drivers can be exposed to carpal tunnel syndrome (CTS) due to longer time of handling. In this project, a comparison on analysis will be made based on currently steering wheels and ergonomics steering wheels.

1.2 Problem Statement

Based on users" experiences driving Perodua"s Myvi, they have problem related to the steering wheel of the car. Drivers feel uncomfortable after long driving due to high hand grip force. Due to high hand grip force after a long time driving, there are a lot of vibrations which can cause carpal tunnel syndrome due to longer time of handling. In additions, inappropriate posture while driving can cause Musculoskeletal Disorders (MSDs) to driver"s hand. Until today, there are no official data or studies for hand grip pressure involving Perodua"s steering wheel. Besides, there are no data that state the relationship between hand movements during driving with hand grip pressure.

1.3 Objectives

The main objectives of this project are:-

- To determine the measurement data of gripping pressure when handling a steering wheel
- > To find the ergonomics limitations of Perodua's steering wheel.
- > To find the ergonomics risk factor of long term driving
- To find the relationship between hand movement during driving with hand grip pressure

1.4 Title

Handgrip Pressure and Hand Movement Analysis while Driving on Perodua's Car Steering Wheel.

1.5 Scope

The scope of this project will focus on the data from hand grip pressure and hand movement during driving analysis of Perodua''s car steering. Two models which are Perodua Myvi Car and Perodua Alza will be used as a comparison. The equipment that will be used for this project is Tekscan Hand grip Pressure Measurement System with a laptop. The roads that will be used are North South Highway which is from Ayer Keroh to Tangkak in maintains speed which is 80km/h. The length from Ayer Keroh to Tangkak is about 35km which is it will take about 20 minutes for the drivers to complete the roads. In this case study, drivers need to handle the steering in 9 and 3 o'clock position from the start of the analysis until the end. Driver is allowed to change the radio for a while in order to make the drivers drive like normal. There will be 10 volunteer consists of 5 males and 5 females. The volunteer will drive the car in North South Highway from Ayeh Keroh to Tangkak in maintain speed which is 80km/h.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This research is related with the steering wheel, Tekscan Hand Grip System, ergonomics, Musculoskeletal Disorder System (MSDs), hand movements, and road conditions. The reference for literature review is taken from journals, books, articles and also from websites. The purpose of this chapter is to get more information about research study.

2.2 Ergonomics

Ergonomics can be defined simply as the study of work. More specifically, ergonomics is the science of designing the job to fit the worker, rather than physically forcing the worker's body to fit the job. Adapting tasks, work stations, tools, and equipment to fit the worker can help reduce physical stress on a worker's body and eliminate many potentially serious; disabling work related Musculoskeletal Disorders (MSD) [1]. Ergonomics draws on a number of scientific disciplines, including physiology, biomechanics, psychology, anthropometry, industrial hygiene, and kinesiology. These factors especially if coupled with poor machine design, tool, and workplace design or the use of improper tools create physical stress on workers bodies, which can lead to injury. A dramatic increase in MSD began in the1970s when these disorders increasingly appeared on company injury and illness logs. Occupational Safety and Health Administration (OSHA) cited companies for hazardous workplace conditions that caused problems such as tendinitis, carpal tunnel syndrome, and back injuries [2]. The Bureau of Labor Statistics, an agency of the U.S. Department of Labor, recognizes

MSD as a serious workplace health hazard. These injuries now account for more than one third of all lost workday.

2.2.1 The Importance of Ergonomics

Industries increasingly require higher production rates and advances in technology to remain competitive and stay in business. As a result, jobs today can involve frequent lifting, carrying, and pushing or pulling loads without help from other workers or devices, increasing specialization that requires the worker to perform only one function or movement for a long period of time or day after day, working more than 8 hours a day, working at a quicker pace of work, such as faster assembly line speeds, and having tighter grips when using tools. If work tasks and equipment do not include ergonomic principles in their design, workers may have exposure to undue physical stress, strain, and overexertion, including vibration, awkward postures, forceful exertions, repetitive motion, and heavy lifting. Recognizing ergonomic risk factors in the workplace is an essential first step in correcting hazards and improving worker protection.

Ergonomists, industrial engineers, occupational safety and health professionals, and other trained individuals believe that reducing physical stress in the workplace could eliminate up to half of the serious injuries each year. Employers can learn to anticipate what might go wrong and alter tools and the work environment to make tasks safer for their workers. Expose to multiple risk factors that can cause or exacerbate the disorders, not from a single event or trauma such as a fall, collision, or entanglement. MSD can cause a number of conditions, including pain, numbness, tingling, stiff joints, difficulty moving, muscle loss, and sometimes paralysis. Frequently, workers must lose time from work to recover; some never regain full health. These disorders include carpal tunnel syndrome, tendinitis, sciatica, herniated discs, and low back pain. MSD does not include injuries resulting from slips, trips, falls, or similar accidents.

2.3 Musculoskeletal Disorders (MSDs)

Musculoskeletal Disorders (MSDs) are consideration of health and safety issues for which challenges and opportunities that are exist for better understand of causes and effects, economics impacts, and effective strategies to avoid and cure these complicated disorders. Musculoskeletal disorders (MSDs) are injuries of the soft tissues, muscles, tendons, ligaments, joints, supporting structure of the upper and lower limbs, neck and lower back [3]. All this injuries are caused by sudden exertion or prolonged exposure to physical factors such as awkward posture, force, vibration or repetition. These disorders have a variety of names from Occupational Safety and Health Administration (OSHA), including cumulative trauma disorders, repetitive stress injuries, occupational overexertion syndrome and repeated trauma. All this injuries generally develop gradually over a weeks, months and might take until years. Musculoskeletal Disorders (MSDs) commonly caused by excessive vibration which is from vibrating tools such as drill or jack hammer can decrease blood flow, contribute to muscle fatigue and also damage nerves. Driving truck or operating subways can cause a whole body vibration. It can affect the skeletal muscles and can cause low back pain and working in a cold condition can affect the performance of the workers during performing a task given. High gripping force can cause pain and discomfort. The risk factor that are thought to be associated with MSDs, are repetitive, heavy lifting, long driving time, seat discomfort, bending and twisting, uncomfortable working position, exerting too much force, working too long without break, adverse working environment such as hot or cold, and also psychosocial factor such as high job demands, lack of control and time pressures [4 - 11]. The table 2.1 shows the examples of Musculoskeletal Disorders.

Body Parts Affected	Symptoms	Possible Causes	Workers Affected	Disease Name
Thumbs	Pain at the base of the thumbs	Twisting and gripping	Butchers, housekeepers, packers, seamstresses, cutters	De Quervain"s Disease
Fingers	Difficulty moving finger; snapping and jerking movements	Repeatedly using the index fingers	Meatpackers, poultry workers, carpenters, electronic assemblers	Trigger Finger
Shoulders	Pain, stiffness	Working with the hands above the head	Power stress operators, welders, painters, assembly line workers	Rotator Cuff Tendinitis
Hands, wrists	Pain, swelling	Repetitive or forceful hand and wrist motions	Core making poultry processing, meatpacking	Tenosynovitis
Fingers, hands	Numbness, tingling; ashen skin; loss of feeling and control	Exposure to vibration	Chain saw, pneumatic hammer, and gasoline- powered tool operators	Raynaud"s Syndorme (white finger)
Fingers, wrist	Tingling, numb- ness, severe pain; loss of strength, sensation in the thumbs, index, or middle or half of the ring fingers	Repetitive and forceful manual tasks without time to recover	Meat and poultry and garment workers, upholsterers, assemblers, VDT operators, cashiers	Carpal Tunnel Syndrome
Back	Low back pain, shooting pain or numbness in the upper legs	Whole body vibration	Truck and bus drivers, tractor and subway operators; warehouse workers; nurses aides; grocery cashiers; baggage handlers	Back Disability

(Source: Ergonomics Study of Works, 2000)