

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HOME SECURITY WITH GAS AND FIRE DETECTOR

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Industrial Electronics) (Hons.)

by

SITI FATIMAH BINTI MOHD AMIN B071210223 910129-10-5536

FACULTY OF ENGINEERING TECHNOLOGY 2015

IINII\/EDCITI TEVNIIVAI MAAI AVCIA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: HOME SECURITY WITH GAS AND FIRE DETECTOR

SESI PENGAJIAN: 2015/16 Semester 1

Saya SITI FATIMAH BINTI MOHD AMIN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TIDAK TERHA	D Disahkan oleh:
(TANDATANGAN PEN	(TANDATANGAN PENYELIA)
Alamat Tetap:	
154 Jalan Parit Omar	Cop Rasmi:
Kg. Bukit Kuching	
45800 Jeram, Selangor	

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI TEKNOLOGI KEJURUTERAAN

Tel: +606 234 6623 | Faks: +606 23406526

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref) :

28 JAN 2016

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA TEKNOLOGI KEJURUTERAAN PEMBUATAN (ELEKTRONIK INDUSTRI) : SITI FATIMAH BINTI MOHD AMIN

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "Home Security with Gas and Fire Detector" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh <u>LIMA</u> (5) tahun dari tarikh surat ini.

2. Hal ini adalah kerana <u>IANYA MERUPAKAN PROJEK YANG DITAJA</u> OLEH SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT.

Sekian dimaklumkan. Terima kasih.

Yang benar,

Tandatangan dan Cop Penyelia

* Potong yang tidak berkenaan

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. <u>JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD</u>, MAKA BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

DECLARATION

I hereby, declared this report entitled "Home Security with Gas and Fire Detector" is the results of my own research except as cited in references.

Signature	••••••••
Name	:
Data	•

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Engineering Technology (Industrial Electronics) (Hons.). The member of the supervisory is as follow:

(Project Supervisor)

ABSTRACT

Nowadays, so many alarm system and security systems are emerging in our markets using high-tech techniques, but in this design use implementing a home automation and security systems using GSM, GSM is one of the latest mobile technology using smart MODEM which can easily interfaced to embedded microcontrollers. Now everything is going to be automated using this technology, using this technology can access the devices remotely. The common problem is always happened in the house are the incident such as Gas Leak, Fire and Intruders. In any, of the above three cases any one met while user are out of their home than the device sends SMS to user's phone. When gas leak it detected by gas sensor, for fire detected by flame sensor and intruders detected by PIR sensor. I produce this project "Smart Home Plan". This project is aimed at developing the security. This project uses three circuits, namely, PIC16F877A, MAX 232 and power supply.

ABSTRAK

Pada masa kini, banyak sistem penggera dan keselamatan sistem yang baru muncul dalam pasaran kita menggunakan teknik berteknologi tinggi, tetapi dalam reka bentuk ini, saya melaksanakan automasi rumah dan sistem keselamatan menggunakan GSM, GSM adalah salah satu teknologi mudah alih terkini dengan menggunakan MODEM pintar yang boleh dengan mudah saling berkait bagi pengawal mikro terbenam. Kini semuanya akan automatik menggunakan teknologi ini, menggunakan teknologi ini kita boleh mengakses peranti dari jauh. Masalah biasa yang selalu berlaku di dalam rumah adalah kejadian seperti gas bocor, kebakaran dan penceroboh. Dalam mana-mana, satu daripada tiga kes di atas mana-mana satu bertemu ketika pengguna berada di luar rumah mereka, daripada peranti menghantar SMS ke telefon pengguna. Apabila gas bocor itu dikesan oleh sensor gas, kebakaran dikesan oleh sensor api dan penceroboh dikesan oleh sensor PIR. Saya menghasilkan projek "Pelan Pintar Rumah". Projek ini bertujuan untuk membangunkan keselamatan. Projek ini menggunakan tiga litar iaitu PIC16F877A, MAX 232 dan kuasa bekalan.

DEDICATIONS

Firstly, thanked to Allah for let me to finish this proposal. I thanked to my beloved parents and friend for help and give a support and idea to do this project. This dedication also give to my supervisor Mr Tengku Mohd Faisal Bin Tengku Wook for guide from the first draft until presentation first in this subject.

ACKNOWLEDGMENTS

Firstly, we thanked to Allah for let us to finish our final project. We thanked to our parents and friend for help and give a support and idea to us to do this project. This appreciation also we give to our supervisor Mr. Tengku Mohd Faisal Bin Tengku Wook for giving the guidance and support by sharing his expertise and knowledge also some new idea in my project. I am very thankful for his advices and guidance until the successfulness of the project. Lastly, not forget thanked to all those time, concern and supports were given by my parents and friends during the process of completing this report. I am thankful to everyone who always inspires me directly and indirectly during the milestone of completing my final project.

TABLE OF CONTENTS

DECLA	ARATION	V
APPRO	OVAL	vi
ABSTF	RACT	vii
ABSTF	RAK	viii
DEDIC	ATIONS	ix
ACKN	OWLEDGMENTS	X
TABLE	E OF CONTENTS	xi
LIST O	F FIGURES	xiv
LIST O	F TABLE	xvi
LIST O	F SYMBOLS AND ABBREVIATIONS	xviii
CHAPT	TER 1 : INTRODUCTION	1
1.0	Introduction to Project	1
1.1	Background	2
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope	4
1.5	Conclusion	4
CHAP	TER 2 : LITERATURE REVIEW	5
2.0	Introduction	5
2.1	Related Theory	6

2.2	Literati	ure Theory	7
2.3	Softwa	re Design Info	8
2.4	Basic S	System Interfacing	10
2.5	How to	Program PIC Microcontroller	11
2.6	Data Sl	heet of the Components	13
	2.6.1	The MAX232 & MAX232A	13
	2.6.2	Alternatives	16
		2.6.2.1 Data Cables	16
	2.6.3	Comparison Wireless Transmission Media	19
	2.6.4	LM35 Sensor Datasheet and Circuit Schematic Overview	19
	2.6.5	Push Technology	21
	2.6.6	General Use	21
		2.6.6.1 AT Command Supporting GSM Mobile Phone	22
		2.6.6.2 AT Command Set	24
	2.6.7	Smoke Detector	24
2.7	Conclu	sion	26
СНАРТ	ΓER 3 : N	METHODOLOGY	27
3.0	System	Operation Flow Diagram	27
		3.0.1.1 Explanation of the Block Diagram	27
3.1	Block l	Diagram	28
	3.1.1	Description	28
3.2	System	Flow Chart	30
3 3	Conclu	sion	30

CHAPT	TER 4 : RESULT &	DISCUSSION	ON	31
4.0	Software Develop	ment		31
4.1	Hyper Terminal			31
	4.1.1.1	Testing GS	SM Modem with Hyper Terminal	33
	4.1.1.2	Testing Vi	rtual Basic with Program and GSM Modem	31
	4.1.1.3	Testing the	e Basic Program with the Circuit	43
		4.1.1.3.1	Programming Testing	43
		4.1.1.4	Testing and Result the Full Programming	44
4.2	Result			46
4.3	Discussion			46
4.4	Conclusion			47
СНАРТ	TER 5 : CONCLUS	ION & FUT	URE WORK	48
5.0	Conclusion			48
5.1	Future Work			49
APPEN	IDIX A			51
REFER	ENCES			75

LIST OF FIGURES

Figure 2.1: Differences between the project	6
Figure 2.2: Design of the PIC Microcontroller	7
Figure 2.3: Flowchart of the Basic Concept for Interfacing between GSM and PIC	10
Figure 2.4: How to detect PIC	11
Figure 2.5: How to Select Baseline Flash Device	11
Figure 2.6: How to Import Hex File	12
Figure 2.7: Programming Successful Status	12
Figure 2.8: Programming Error Status	13
Figure 2.9: A MAX232 Integrated Circuit	13
Figure 2.10: MAX232(A) DIP Package Pin Layout	15
Figure 2.11: Model of GSM 2000	17
Figure 2.12: LM35 Sensor	20
Figure 2.13: LM35 Sensor Pin Outs and Packaging	21
Figure 2.14: Diagram Optical Smoke Detector	25
Figure 3.1: System Operation Flow Diagram	27
Figure 3.2: System Block Diagram	28
Figure 3.3: System Flowchart	30
Figure 4.1: 'AT Command'	31
Figure 4.2: Software Testing	32
Figure 4.3: Sim Card put inside the GSM Modem	33
Figure 4.4: Connect the GSM Modem to the Laptop	33
Figure 4.5: Setting the Port of GSM Modem	33
Figure 4.6: Setting the Baud Rate of GSM Modem	34
Figure 4.7: Hyper Terminal and AT Command	34
Figure 4.8: PIC 16F877A	36
Figure 4.9: Crystal 20MHz	36
Figure 4.10: Capacitor	37
Figure 4.11: Max 232	
Figure 4.12: Design of the PIC16F877A Microcontroller Circuit	38
Figure 4.13: Design of the MAX232 Interface Circuit	
Figure 4.14: Design of the Power Supply Circuit	
Figure 4.15: Data Transmission	
Figure 4.16: Data Receiver	
Figure 4.17: Flame Sensor Signal	
Figure 4.18: Signal Detect from Sensor	

Figure 4.19: Feedback from Phone	43
Figure 4.20: Build Project File	43
Figure 4.21: Build Failed because the Error in Command	44
Figure 4.22: Build Successful	44
Figure 4.23: GSM Modem with Full Hardware Circuit	45
Figure 4.24: Data Flow Path in Hardware Testing	45
Figure 4.25: Data Flow Path in Software Testing	45
Figure 4.26: The Mobile Phone Receive the SMS when GSM Connected	46
Figure 4.27: The Mobile Phone Receive SMS when a Motion Detected	46
Figure 4.28: The Mobile Phone Receive the SMS when Gas Detected	46
Figure 4 29. The Mobile Phone Receive the SMS when Fire Detected	46

LIST OF TABLE

Table 2.1: Differences Between Programmer Language	8
Table 2.2: Features of pin MAX232	15
Table 2.3: MAX232(A) External Capacitor	16
Table 2.4: Comparison between GSM, Bluetooth and Wi - Fi	19
Table 2.5: Description of AT Command	24
Table 4.1: AT Command and Explanation	35
Table 4.2: SMS Command	47
Table 4.3: SMS Feedback	47
Table 4.4: Summary of Objectives	48

LIST OF SYMBOLS AND ABBREVIATIONS

PIC = Programmable Integrated Circuit

GSM = Global System for Mobile Communications

SMS = Short Message Service

DSM = Defect Shape Matching

CHAPTER 1

INTRODUCTION

1.0 Introduction to Project

"Home Security with Gas and Fire Detector" implements the emerging applications of the GSM technology. Using GSM networks, a control system has been proposed that will act as an embedded system which can monitor and control appliances and other devices locally using built-in input and output peripherals. Remotely the system allows the user to effectively monitor and control the house/office appliances and equipment via the mobile phone set by sending commands in the form of SMS messages and receiving the appliances status.

The main concept behind the project is receiving the sent SMS and processing it further as required to perform several operations. The type of the operation to be performed depends on the nature of the SMS sent. The principle in which the project is based is fairly simple. First, the sent SMS is stored and polled from the receiver mobile station and then the required control signal is generated and sent to the intermediate hardware that have designed according to the command received in form of the sent message. I have selected a particular Nokia mobile set for this project. The messages are sent from the mobile set that contain commands in written form which are then processed accordingly to perform the required task. A microcontroller based system has been proposed for this project.

There are several terminologies that are used extensively throughout this project report GSM (Global System for Mobile Communications): It is a cellular communication standard. SMS (Short Message Service): It is a service available on most digital mobile phones that permit the sending of short messages (also known as text messaging service).

1.1 Background

The new age of technology has redefined communication. Most people nowadays have access to mobile phones and thus the world indeed has become a global village. At any given moment, any particular individual can be contacted with the mobile phone. But the application of mobile phone cannot just be restricted to sending SMS or starting conversations. New innovations and ideas can be generated from it that can further enhance its capabilities. Technologies such as Infra-red, Bluetooth, etc. which has developed in recent years goes to show the very fact that improvements are in fact possible and these improvements have eased our life and the way we live.

Remote management of several home and office appliances is a subject of growing interest and in recent years we have seen many systems providing such controls. These days, apart from supporting voice calls a mobile phone can be used to send text messages as well as multimedia messages (that may contain pictures, graphics, animations, etc.). Sending written text messages is very popular among mobile phone users. Instant messaging, as it is also known, allows quick transmission of short messages that allow an individual to share ideas, opinions and other relevant information. We have used the very concept to design a system that acts a platform to receive messages which in fact are commands sent to control different appliances and devices connected to the platform. We have designed a control system which is based on the GSM technology that effectively allows control from a remote area to the desired location. The application of suggested system is immense in the ever changing technological world. It allows a greater degree of freedom to an individual whether it is controlling the household appliances or office equipment. The need to be physically present in order to control appliances of a certain location is eliminated with the use of the system.

1.2 Problem Statement

Technology has advanced so much in the last decade or two that it has made life more efficient and comfortable. The comfort of being able to take control of devices from one particular location has become imperative as it saves a lot of time and effort. Therefore there arises a need to do so in a systematic manner which I have tried to implement with this system. The system I have proposed is an extended approach to automating a control system. With the advancement and breakthroughs in technology over the years, the lives of people have become more complicated and thus they have become busier than before. With the adoption of this system, can gain control over certain things that required constant attention. The application of the system comes in handy when people who forget to do simple things such as turn ON or OFF devices at their home or in their office, they can now do so without their presence by the transmission of a simple text message from their mobile phone. This development, I believe, will ultimately save a lot of time especially when people don't have to come back for simple things such as to turn ON/OFF switches at their home or at their office once they set out for their respective work.

The objective of this project is to develop a device that allows for a user to remotely control and monitor multiple home/office appliances using a cellular phone. This system will be a powerful and flexible tool that will offer this service at any time, and from anywhere with the constraints of the technologies being applied. Possible target appliances include (but are not limited to) climate control system, security systems, lights; anything with an electrical interface. The proposed approach for designing this system is to implement a microcontroller-based control module that receives its instructions and command from a cellular phone over the GSM network. The microcontroller then will carry out the issued commands and then communicate the status of a given appliance or device back to the cellular phone.

1.3 Objectives

- To detect the gas and fire.
- To detect intruders.
- To build a system that rely on mobile phone system.

1.4 Scope

Nowadays, this project can be used for main systems at the house. It also can be used in the office, private room and etc. To show this technology to the user so their will get the advantages. Other than that, this project is produce to show the modernization of the country is comparable to other countries.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

Literature review and research is done prior to undertaking the project. This will critically provide as much information as needed on the current technologies available in the market. Besides, a proper methodology is also can be planned in reference to the other research's counter parts performed on the related topics.

This chapter presents background information of the project that have been studied, observed and analysed. For this project, a study on the GSM communication is being done in order to find the suitable way to develop for the purpose of the projects. Besides that, a study on developing the circuit of the microcontroller and gas sensor has been also studied in looking for the best result. On the other hand, a study on the software such as programming is not left behind in order to achieve the purpose of the project.

2.1 Related Theory

Smart Home Plan	Inform Gas Leak & Fire Detector
 To detect the gas and fire. To detect intruders. To build a system that rely on mobile phone system. 	 Report the incident using the SMS service to the keeper laboratory. Increase the security features of the existing laboratory by adding a gas detector circuit. Displaying the temperature of the gas content in the environment using LCD display.

Figure 2.1: Differences between the Projects.

2.2 Literature Theory

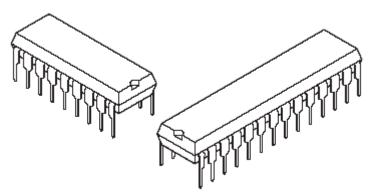


Figure 2.2: Design of the PIC Microcontroller.

A microcontroller is a single integrated circuit (IC) which is small enough but containing all the integrated circuits such as CPU, EPROM program memory, RAM memory and an Input / Output interfaces. All of these functions are included within one single package, making them cost effective and easy to use. PIC Microcontroller is a programmable microcontroller ICs manufactured by MICROCHIP.

2.2.1 Programming language:

High Level language:

- C language, C++
- Basic, QBasic

Low Level Language:

Assembly

Software tools to write program:

- MPLAB IDE (can be download from microchip website)
 Burning Software
- PICkit2 software

2.3 Software Design Info

- a) MPLAB software can be download from www.microchip.com
 - Use to write microcontroller coding
- b) Programming language
 - Assembly
 - Also known as low level language
 - The Instruction code comprise of a short form of words (e.g. move mov)
 - High Level Language
 - Just like human language
 - Easy to understand by non-technical person

Why use assembly language for this project?

Table 2.1: Differences between Programmer Languages.

Assembly	Others (High Level Language)
Built in assembler in MPLAB	Proof working compiler – need to buy
software	(too expensive)
MPLAB can be download	Using freeware compiler – Limited
without any prices	function and need to confirm the
	functionality
Documentation to refer - Only	Limited references and sample code to
Datasheet	study
So many references - Note,	Need to study the compiler
Sample, Instruction code	documentation.
details, datasheet and etc.	
Reduce development time	Increase development time