

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CARBON FILLED GLASS CERAMIC: FROM WASTE TO WEALTH

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

NUR FASHIHA BINTI SAPARI B051110201 920102-03-6170

FACULTY OF MANUFACTURING ENGINEERING 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: CARBON FILLED GLASS CERAMIC: FROM WASTE TO WEALTH
SESI PENGAJIAN: 2014/15 Semester 2
Saya NUR FASHIHA BINTI SAPARI
mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√)
SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)TERHAD(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)✓TIDAK TERHADLutDisahkan oleh:
Alamat Tetap: Cop Rasmi: 22A, Jalan Kampung Gual Bunut, 17200 Rantau Panjang,
Kelantan.
Tarikh: Tarikh:
** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Carbon Filled Glass Ceramic: From Waste to Wealth" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NUR FASHIHA BINTI SAPARI
Date	:	2 July 2015

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) (Hons.). The member of the supervisory is as follow:

.....

(Dr. Zaleha Bt Mustafa)

ABSTRAK

Kajian ini dijalankan untuk mengkaji kesan kandungan karbon yang dipenuhi seramik kaca: dari sisa kepada bahan yang berguna untuk menghasilkan jubin yang lebih poros dan ringan. Dalam kajian ini, sifat fizikal, mekanikal dan haba dikaji dengan kandungan karbon yang berbeza daripada 6 juzuk kumpulan muatan, iaitu 85:0:15, 84:1:15, 80:5:15, 75:10:15, 65:20:15 dan 55:30:15 (SLS kaca: karbon: tanah liat). Campuran serbuk SLS kaca, karbon dan bola tanah liat telah ditekan menggunakan mendesak ekapaksi dan disinter pada 850 ° C dengan kadar pemanasan dan penyejukan selama 2 °C/min dan 1 jam masa rendaman. Peratusan keliangan, serapan air dan ketumpatan pukal diukur menggunakan ASTM C373. Sifat kekerasan telah ditentukan mengikut ASTM E384 dan dilakukan dengan menggunakan pelet silinder berukuran 13 mm. Di samping itu, kekuatan lenturan telah ditentukan mengikut ASTM C1161 dengan ketebalan 5 mm. Sampel yang berbentuk segi empat tepat dengan ukuran 65 mm x 15 mm x 5 mm dihasilkan untuk menguji kekuatan lenturan dan sifat haba. Pengembangan pekali haba dilakukan mengikut ASTM E228 dan diukur menggunakan dilatometer (DIL 402 C, Netzsch, Jerman). Fasa morfologi masing-masing telah dan analisis dijalankan menggunakan X-Ray Diffractometer (XRD) dan Mikroskop Imbasan Elektron (SEM). Analisis fizikal menunjukkan bahawa dengan peningkatan kandungan karbon 0-30 wt.%, berlakunya peningkatan dalam penyerapan keliangan dan air. Sifat kekerasan berkurangan dan CTE meningkat dengan peningkatan kandungan karbon. Morfologi menunjukkan liang meningkat dari segi saiz dan bilangan dengan peningkatan kandungan karbon. Analisis fasa mendedahkan kehadiran fasa kristal cristobalite dan silikon dioksida dalam sampel.

ABSTRACT

This investigation is carried out to study effect of carbon filled glass ceramic: from waste to wealth in order to produce more porous and lightweight tiles. In this study, physical, mechanical, and thermal properties were studied with six different carbon contents which are 85:0:15, 84:1:15, 80:5:15, 75:10:15, 65:20:15, and 55:30:15 (SLS glass: carbon: ball clay). The powder mixtures of SLS glass, carbon and ball clay was pressed using uniaxial pressing and sintered at 850°C with heating and cooling rate of 2 °C/min and 1 hour soaking time. The apparent porosity, water absorption, and bulk density were measured using ASTM C373. The Vickers microhardness test was determined according to ASTM E384 and carried out using cylindrical pellet with 13 mm dimension. In addition, flexural strength was determined according to the ASTM C1161 with thickness of 5 mm. Rectangular samples with dimension of 65 mm x 15 mm x 5 mm were produced in order to test the flexural strength and thermal properties. Thermal coefficient expansion it performed according to ASTM E228 and measured using dilatometer (DIL 402 C, Netzsch, Germany). The phase and morphology analysis were carried out using the X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) respectively. Physical analysis showed that with increase of carbon content from 0 to 30 wt.%, increased the porosity and water absorption. Hardness properties decreases and CTE increased with increase of carbon content. Morphology shows the present of pores increase in size and number with increase of carbon content. The phase analysis revealed the present of cristobalite and silicon dioxide crystalline phases in the samples.

DEDICATION

I dedicate this thesis to my parents for their love and support. I hope this achievement will complete the dream that you had for me all those many years ago when you chose to give me the best education you could. Not to mention, my all friend who have been very helpful to me all along.

ACKNOWLEDGEMENTS

Alhamdulillah, thank to Allah S.W.T because of his blessing and truth, I finally finish my project and report successfully. I would like to thanks to those who have been very kind and helpful to me in conducting this research.

First and foremost, I am deeply indebted to my supervisor, Dr Zaleha Bt Mustafa whose stimulating motivation and valuable ideas help me to complete this project. Then, thanks also because providing most of the knowledge that I have never thought off before. I would like to thank all the FKP lecturers and technicians who had provided technical help and assistance throughout the project.

My appreciation also goes to my beloved parents and family for giving endless encouragement, guidance, advice and emotional support that they had given to me along my way to finish this research.

Last but not least, I would like to express my sincerity gratitude to my colleagues for their cooperation especially for their helping during the time in need and always beside me all along the years.

THANK YOU

TABLE OF CONTENTS

ABSTRAK	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	V
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES	xiii
CHAPTER 1: INTRODUCTION	1
11 Overview	1

1.1	Overview	1
1.2	Problem statement	2
1.3	Objectives	3
1.4	Project scope	3

CHAPTER 2: LITERATURE REVIEW		5	
2.1	Introduction		5
2.2	Recycling gl	ass	6
	2.2.1 Soda	lime silica (SLS) glass	6
	2.2.2 Com	position and properties of SLS glass	7
2.3	Glass cerami	c	8

	2.3.1	Properties of glass ceramic	9
2.4	Carbo	n (wood charcoal)	9
2.5	Ball c	lay	11
	2.5.1	Characteristic of ball clay	12
	2.5.2	Composition of ball clay	12
2.6	Powde	er preparation	13
	2.6.1	Characteristics of powder	15
2.7	Formi	ng	16
	2.7.1	Powder pressing	17
2.8	Sinter	ing	18
2.9	Morphological study 2		20
2.10	Glass	composite products and applications	22
	2.10.1	Food and beverage	22
	2.10.2	Construction and application	22
	2.10.3	Industrial application	23
CHAI	PTER 3	: METHODOLOGY	24
3.1	Mater	ials	25
	3.1.1	Soda lime silica (SLS) glass	25
	3.1.2	Charcoal	26
	3.1.3	Ball clay	26
3.2	Metho	ods-Powder preparation	27

3.3	Metho	Methods-Glass composite preparation		
3.4	Metho	ods-Sample testing	33	
	3.4.1	Percentage of firing shrinkage	33	
	3.4.2	Physical Analysis-Porosity, water absorption and bulk density	33	
	3.4.3	Particle Size Analysis (PSA)	35	
	3.4.4	Vickers Microhardness testing	35	
	3.4.5	Flexural testing	36	
	3.4.6	Thermal testing	37	
	3.4.7	Statistical analysis	39	
	3.4.8	X-ray Diffraction test	39	
	3.4.9	Scanning Electron Microscopy	40	
СНА	APTER 4	4: RESULT AND DISCUSSION	41	
4.1	Result-XRD Phase Analysis		41	
4.2	Result	t-Physical properties	43	
	4.2.1	Percentage of Firing Shrinkage	43	
	4.2.2	Water absorption	44	
	4.2.3	Apparent porosity	45	
	4.2.4	Bulk density	46	
4.3	Result	t-Mechanical properties	47	
	4.3.1	Vickers microhardness	47	
	4.3.2	Flexural strength	48	

4.4	Result-Coefficient of thermal expansion (CTE)	49
4.5	Result-Statistical analysis	51
4.6	Result-Morphological study	52
4.7	Discussion-Effect of carbon content on physical and mechanical	60
	properties of glass ceramic	
4.8	Discussion-Effect of carbon content on thermal properties	61
CHA	PTER 5: CONCLUSION AND RECOMMENDATION	63
5.1	Conclusion	63
5.2	Recommendations	64
5.3	Project potential	64

REFERENCES

65

APPENDICES

LIST OF TABLES

2.1:	Chemical compositions of soda lime silicate (SLS) waste glass	7
	and bottom slag (BS)	
2.2:	Main properties of soda lime silicate glass	8
2.3:	Physical properties of carbon	10
2.4:	Chemical properties of carbon	11
2.5:	Common Powder Preparation Methods for Ceramics	14
2.6:	Desirable Powder Characteristics for Advanced Ceramic	15
3.1:	The loading formulation method	29
4.1:	The crystalline phases in SLS glass ceramic	41
4.2:	The carbon content and crystallite size	43
4.3:	The t-test result	51

LIST OF FIGURES

2.1:	Solid waste composition	5
2.2:	Basic flowchart for the production of polycrystalline ceramics	16
	by sintering of consolidated powders	
2.3:	Schematic representation of the steps in uniaxial powder pressing	17
2.4:	Diffusion process	18
2.5:	Vickers hardness values of the glass-ceramic specimens	19
2.6	Variation in flexural strength with temperature	20
2.7	SEM micrograph cross section of BS waste loading	21
3.1:	The recycle SLS glass	25
3.2:	Wood charcoal	26
3.3:	Ball clay	27
3.4:	SLS glass and charcoal (crushed)	27
3.5:	Planetary Ball Miling Machine	28
3.6:	Vibratory Sieve Shaker Analysette 3	28
3.7:	Variable Speed Rotor Mill Pulverisette 14	29
3.8:	The 13 mm evacuable pellet dies	30
3.9:	The rectangular mould of 65 mm x 15 mm x 5 mm	30
3.10:	The Uniaxial Pressing Model	31

x C Universiti Teknikal Malaysia Melaka

3.11:	The Carbolite 1300 Furnace	32
3.12:	The sintering profile	32
3.13:	Particle Size Analyser Mastersizer 2000 Malvern Instruments Ltd	35
3.14:	The Vickers Microhardness Tester	36
3.15:	Instron Universal Testing Machine (UTM)	37
3.16:	3-point bending test	37
3.17:	DIL 402 C, Netzsch, Germany	38
3.18:	The PANalytical X'PERT PRO MPD Model PW 3060/60 Machine	39
3.19:	The Scanning Electron Microscopy	40
4.1:	The XRD result of the sample of SLS glass composite with various	42
	carbon wt.% content	
4.2:	The shrinkage of the sample, (a) green body (b) sintered specimen	44
4.3:	Percentage of firing shrinkage	44
4.4:	Result of the percentage of the water absorption of SLS glass	45
	composite with various carbon wt.% content	
4.5:	Result of the percentage of apparent porosity of SLS glass	46
	composite with various carbon wt.% content	
4.6:	Result of the bulk density of SLS glass composite with various	47
	carbon wt.% content	
4.7:	The result of microhardness testing of the sample of SLS glass	48
	composite with various carbon wt.% content	
4.8:	The result of flexural strength of the sample of SLS glass	49

composite with various carbon wt.% content

4.9):	The result of thermal expansion of the sample of SLS glass	50
		composite with various carbon wt.% content	
4.1	0:	SEM image for fracture surface of the sample 84:1:15 at 500X	52
		magnification (A) Dense surface (B) Open pore (C) Closed pore	
4.1	1:	The micrograph of fracture surface of unfilled SLS glass	54
		composite (a) – (b), top and bottom view of $25X$ (c) – (d), $100X$	
		(e) - (f), 500X	
4.1	2:	The micrograph of fracture surface of SLS glass composite filled	55
		with 1 wt.% carbon (a) – (b), top and bottom view of $25X$	
		(c) $-$ (d), 100X (e) $-$ (f), 500X	
4.1	3:	The micrograph of fracture surface of SLS glass composite filled	56
		with 5 wt.% carbon (a) – (b), top and bottom view of $25X$	
		(c) - (d),100X (e) - (f), 500X	
4.1	4:	The micrograph of fracture surface of SLS glass composite filled	57
		with 10 wt.% carbon (a) – (b), top and bottom view of $25X$	
		(c) - (d),100X (e) - (f), 500X	
4.1	5:	The micrograph of fracture surface of SLS glass composite filled	58
		with 20 wt.% carbon (a) – (b), top and bottom view of $25X$	
		(c) - (d),100X (e) - (f),500X	
4.1	6:	The micrograph of fracture surface of SLS glass composite filled	59
		with 30 wt.% carbon (a) – (b), top and bottom view of $25X$	

(c) - (d),100X (e) - (f), 500X

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

SLS	-	Soda lime silicate
SiO_2	-	Silicon dioxide
Na ₂ O	-	Sodium oxide
CaO	-	Calcium oxide
Wt.%	-	Weight percentage
GCM	-	Glass composite material
MSW	-	Municipal Solid Waste
K^+	-	Potassium ions
Na ⁺	-	Sodium ions
Ca ²⁺	-	Calcium ions
Al ₂ O ₃	-	Aluminium oxide
С	-	Carbon
CO ₂	-	Carbon dioxide
СО	-	Carbon monoxide
Cu	-	Copper
MgO	-	Magnesium oxide
ZnO	-	Zinc oxide
Li ₂ O	-	Lithium oxide
BS	-	Bottom slag

MOR	-	Modulus of rupture
IBM	-	International Business Machine
HDPE	-	High density polyethylene
PSA	-	Particle size analyser
Rpm	-	Revolution per minute
UTM	-	Universal Testing Machine
CTE	-	Coefficient of thermal expansion
ASTM	-	American Standard Testing Material
XRD	-	X-Ray Diffraction
SEM	-	Scanning electron microscope
GPa	-	Giga Pascal
MPa	-	Mega Pascal
Gm	-	Grams
Н	-	Hours
Min	-	Minutes

CHAPTER 1 INTRODUCTION

1.1 Overview

Glass is an amorphous solid. It used in plenty of applications such as in packaging, tableware, housing and building, electronic, industry and etc. Glasses can be categorized as brittle and typically transparent. Nowadays, the amount of waste glass is increasing due to increase in glass based products. Most of the waste is dumped into landfill and contribute waste management and lead to environmental problems. One of the efforts to overcome this problem is through recycling. Glass waste can be recycling into another product, which at the same time not only can reduce the municipal waste but reduce the cost of the product as the price as new product can be process at lower temperature. The most common type of glass is soda lime silicate (SLS), compose around 60-75% of silicon dioxide (SiO₂), 12-18% of sodium oxide (Na₂O) and 5-12% of lime (CaO).

Charcoal is used in this project as fillers. The main elements in charcoal are carbon and hydrogen. There are also other element which consists of hydrogen compounds, sulphur, oxygen, and nitrogen. The special properties of charcoal is mainly has good thermal conductivity which has an ability to conduct heat. At the same time, carbon also being use as pores agent to produce porous product. Previous study used similar waste from SLS glass with different filler such as coal fly ash, incinerator fly ash and steel fly ash in order to save and protect the environment. However, glass-ceramics obtained from industrial wastes have several desirable properties to fulfil many applications such as wall-covering panels, floors and roofs in industrial and public buildings, interior facing of containers for the chemical industry and as a road surfacing. GCM that produced from industrial waste is one of the low investments. Therefore, this study will focus on characterization of glass composite filled with carbon with effect of different filler loading.

1.2 Problem statement

The handling and management of the domestic municipal solid waste in most developing countries is fairly limited (Aguilar-Virgen *et al.*, 2010). The increasing in population contributed to the increasing production of waste daily. Thus, the need to utilize this waste is very important in order to meet the demand of source of material in the future. The failure to manage the domestic waste production brings a major impact towards the demanding of raw material and also to the financial of the citizen. In the states of the developing nations, the handling costs of the domestic waste involve almost half of the local government expenditures (Emmanuel et al., 2013). Glass is one of the major contributors to the domestic waste as it is the raw material for much of the consumer products such as beverages packaging, household equipment and also in structural application. According to Wollongong City Council, in 2008, the second largest consumption of residential waste was found to be glass accounting to 37.5% composition by weight percentage of the 240 L residential recycling bin. In Malaysia, most of the wastes are being thrown away in the disposal land and this practice is no longer promising as the land is limiting due to increasing population of the nation (Manaf et al., 2009). Thus, the need to bring awareness among people on recycling the waste materials are essential especially the glass.

Glass waste can be recycled in order to protect the environment as well as providing an opportunity to produce new material. According to Nour *et al.*, (2008), industrial wastes and by products recycled is becoming a high demand by the ecological law to achieve a green environment without any hazard to the living human, organisms; animals and plants. The SLS glass is obtained from urban waste such as glass bottle and household glass container. Through recycling glass, the problem about environment and economical can be reduced. However, glass ceramic that obtained from industrial waste can be used in many applications such as wall covering panels, floors and roofs. Then, it also can be used in industrial and public buildings, interior facing of containers for the chemical industry and as road surfacing.

After that, technique that used to produce glass ceramic materials is traditional glass forming that beginning with melt the glass and then controlled by nucleation and crystallization heat treatment processes (Erol *et al.*, 2009). So, the addition of filler towards the recycled glass can increase the properties of the material in analytical manner. Therefore, the characteristics of recycled glass produced with the addition of the carbon can be analysed physically, mechanically and thermally.

1.3 Objectives

The main objectives of this project are:

- 1. The effect of the carbon content on the physical properties of the recycled glass composite
- The effect of carbon content on mechanical properties of the recycled glass composite
- 3. The effect carbon content on the thermal properties of the glass composite

1.4 Project Scope

The scope of this study is to utilize the abundant waste of SLS glass and make it into useful glass ceramic products. The main raw material that used in this project is soda

lime silicate glass that acquired from waste glass like bottles and food containers. After that, the other material used is charcoal. It is very important in this project as filler. The ball clay also used in this project as a binder to the glass ceramic. The standard or reference sample consists of 85:00:15 wt% of SLS glass mixed with carbon and ball clay. In this project, ball clay acts as a fixed variable which is 15 wt%. The batch formulation with the addition of carbon was varied 1%, 5%, 10%, 20% and 30% of weight percentage of carbon and the remaining is from SLS glass. The loading was made in weight percentage of the samples and weighted as 100 gm. The samples were analysed in term of its physical, mechanical and thermal properties of the products.

The samples were shaped by using uniaxial pressing and sintered to allow the densification of the green body of the ceramics at temperature of 850 °C. The heating rate and soaking time that used are 2 °C min⁻¹ and 1 hour, respectively.

The porosity, water absorption and bulk density were performed according to the American Society of Testing Material (ASTM) standards. The mechanical testing involved hardness and flexural strength in order to investigate the strength of the ceramic sample produced. The thermal properties test was done by using dilatometer (DIL 402 C, Netzsch, Germany) which is to investigate the change in sample size per degree change in temperature at a constant pressure. Morphological study that involved in this project is SEM.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Waste can be defined as unwanted or unusable materials by the human. As reported to the Basel Convention (2009), stated that wastes can be defined as substances or objects that are intended to be disposed including municipal solid waste (MSW), hazardous waste, waste water, radioactive waste, and others.

Rapid rise in municipal waste generation occurred, according to the urbanization and economic growth. In 2012, the World Bank projected state that municipal solid waste will grow from 1.3 billion tonnes in 2010 to 2.2 billion tonnes by 2025. Increasing in quantity and changing in composition leading to the municipal waste in many cities while the financial resources to manage waste remain flat. The solid waste composition that produced for the global is shown in Figure 2.1.

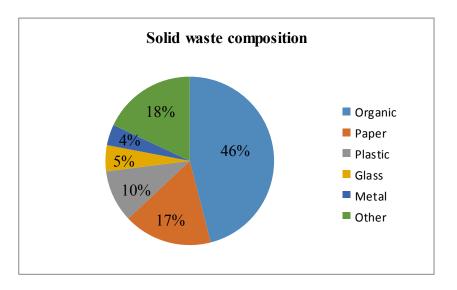


Figure 2.1: Solid waste composition (redrawn from "What a Waste: A Global Review of Solid Waste Management", 2012)

2.2 Recycling glass

Waste glass can be recycled in order to overcome the problems which involved the large amount of glass product with people nowadays. When recycle the glass, it provides several advantages such as can save energy as it needs lower energy to recycle glass than manufacturing a new one. Besides that, it will also reduce the emission as there are no by product produced. By recycling industrial waste, it can protect the environment and reduce consumption of glass as well as reported by Erol *et al.*, (2009).

Recycling glass provide several advantages such that the preservation of raw material sources such as sand, soda ash and limestone. The process also save more energy as it needs lower energy to recycle glass than manufacturing a new one. Instead, there is also no reduction of emission as there are no by product produced.

2.2.1 Soda lime silica (SLS) glass

SLS glass can be used in many applications such as windowpanes, and glass container for beverages, food, and agricultural. SLS is made up of silicate sand, which gives the glass its texture; it is known as the glass former or SiO_2 network former. Soda is used as a melting agent to lower the melting temperature of the silica and as a fining agent to homogenise the melting mixture and to eliminate bubbles. For soda-lime glass, it is not really expensive, reasonable hard, stable in chemically and extremely workable. Then, it is also very suitable for glass recycling because it has ability of being re-softened and re-softened and then re-melted for many times.