EFFECT OF GELCOAT THICKNESS ON LAMINATE COMPOSITE STRUCTURE AND STRENGTH

GOH CHUN HSIEN B051110136

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

B051110136 BACHELOR OF MANUFACTURING ENGINEERING (ENGINEERING MATERIAL) (HONS.) 2015 UTeM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECT OF GELCOAT THICKNESS ON LAMINATE COMPOSITE STRUCTURE AND STRENGTH

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

GOH CHUN HSIEN B051110136 910505-07-5343

FACULTY OF MANUFACTURING ENGINEERING 2015

DECLARATION

I hereby, declared this report entitled 'Effect of Gelcoat Thickness on Laminate Composite Structure and Strength' is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	GOH CHUN HSIEN
Date	:	24 th JUNE 2015

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the Degree of Manufacturing Engineering (Engineering Materials) (Hons.). The member of the supervisory committee is as follow:

.....

(Supervisor)

(MOHD YUHAZRI BIN YAAKOB)

ABSTRAK

Tujuan kajian ini adalah untuk menilai kesan ketebalan gelcoat berbeza pada struktur lamina komposit dan kekuatan. Gelcoat ini disediakan dengan kaedah bengkalai tangan dan terus dengan gentian kaca komposit bertetulang di atas gelcoat dengan proses pembalut vakum. Sifat-sifat mekanikal dan kekuatan antara pelbagai tebal gelcoat pada lamina komposit telah diuji dengan menggunakan tiga mata ujian lenturan dan ujian tegangan. Perbandingan lanjut telah dibuat atas kekuatan mekanikal yang berbeza ketebalan gelcoat lamina komposit. Sebab kegagalan di antara ketebalan gelcoat yang berbeza akan dimantau di bawah mikroskop elektron imbasan untuk menentukan jenis kegagalan yang berlaku selepas ujian mekanikal. Dari ujian dua hala lenturan dengan meletakkan sampel di mana lapisan gelcoat menghala atas dan bawah menunjukkan bahawa 0.30 mm adalah kekuatan mekanikal yang paling tinggi. Lapisan *gelcoat* menghadap atas yang ditekan beban mampatan telah menunjukkan penurunan 54.39 % dan adalah sama dengan lapisan gelcoat menghadapi bawah telah mengurangkan 45.07 % apabila mencapai 0.40 mm. Ia adalah disebabkan oleh ketebalan gelcoat yang lebih tinggi telah meningkatkan kerapuhan komposit lamina yang patah secara tiba-tiba berlaku sementara menghadapi beban. Ujian tegangan adalah intensif untuk menyiasat ikatan muka di antara gelcoat dan lamina komposit telah membayangkan 0.40 mm adalah yang tertinggi mengekalkan daya menarik dan membanding kekuatan ikatan antara muka untuk lamina komposit tanpa gelcoat telah meningkat 37.94 %. Punca kegagalan berlaku disebabkan oleh *delamination* matriks antara lapisan di mana *gelcoat* masih kuat terikat dengan lamina komposit. Walaupun tidak ada ketebalan gelcoat yang dinyatakan dalam kajian sebelum ini, menambah ketebalan gelcoat tidak bermaksud lebih baik kekuatan mekanikal manakala ketebalan sesuai amat diperlukan sebagai reka bentuk bagi perlindungan paling luar.

ABSTRACT

The aim of this study was to evaluate the effect of different gelcoat thickness on laminate composite structure and strength. The gelcoat is prepared by hand lay-up method and continue by fabricate the glass fibers reinforced composites on top of the gelcoat with vacuum bagging process. The mechanical properties and interfacial bonding of the various gelcoat thickness on laminate composite were tested by using three-point flexural test and tensile test. A further comparison was made with the corresponding mechanical strength of different gelcoat thickness laminate composite. The fracture behaviour of different gelcoat thickness is monitor under the scanning electron microscope to determine the type failure occur after the mechanical test. From two-way flexural test in mean by placing the samples where gelcoat layer on facing top and bottom position had shown that 0.30 mm was the highest mechanical strength. The gelcoat layer facing top which was facing the compression load had shown decrease 54.39 % and was similar to gelcoat layer facing bottom had decrease 45.07 % when reach 0.40 mm. It was due to higher the gelcoat thickness had increased the brittleness of the laminate composite that sudden fracture occur in facing load. Tensile test was intensive to investigate the interfacial bonding in between gelcoat and laminate composite had indicated 0.40 mm is the highest in sustain the pulling force and compare interfacial bonding strength to clean laminate composite without gelcoat, it had increased 37.94 %. The failure behaviour occur were caused by the delamination of matrix between the plies where the gelcoat still strongly bonded with laminate composite. Despite there are no significant gelcoat thickness specified in previous study, it was not highest the gelcoat thickness better the mechanical strength while suitable thickness is required as design for outermost protection.

DEDICATION

Dedicated to

my beloved father, Goh Eng Hock my appreciated mother, Wong Sew Yeng and my adored sister and brother, Goh Chee Wei and Goh Hooi Lee for giving me moral support, cooperation, encouragement and also understandings.

ACKNOWLEDGEMENT

First of all, I would like to show my deepest appreciation to my beloved supervisor, Dr. Mohd Yuhazri Bin Yaakob. He contributes greatly in terms of time and effort as well as motivates, concerns, advises, guides, support us throughout the project and complete the subject Final Year Project on time and fulfil the requirements.

I also would like to special thanks to my classmates Lai Yan Ten, Loh Yen Ching and Norhafira Nadia Binti Cm Hatta because always provide me cheers, comments, and cooperation.

Lastly, I also would like to send my thankfulness to my family for their moral support and understandings and encouragement.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of contents	v
List of Tables	viii
List of Figures	ix
List of Abbreviations	xi
List of Symbols	xii

CHAPTER 1: INTRODUCTION

1.1.	Background	1
1.2.	Problem Statement	3
1.3.	Objectives	4
1.4.	Scope of the Research	5
1.5.	Rational of the Research	6
1.6.	Research Methodology	7
1.7.	Thesis Organization	8

CHAPTER 2: LITERATURE REVIEW

2.1	Gelco	at	9
2.2	Gelco	at Thickness	11
2.3	Gelco	ating Process	12
	2.3.1	Brush and roller application	12
	2.3.2	Spray application	13
	2.3.3	Comparison of brush roller and spray application	14
2.4	Influe	nce Factor of MEKP Catalyst in Gelcoat	15
2.5	Curing	р Э	16

2.6	Gelcoat Defect 17		17
	2.6.1	Defects characterization	18
2.7	Gelcoa	t Thickness Measurement	20
	2.7.1	Wet film thickness gauge	20
	2.7.2	Ultrasonic coating thickness gauge	21
2.8	Lamin	ated Structures	22
	2.8.1	Lamination process	22
	2.8.2	Ply-orientation and thickness of laminate	24
2.9	Mecha	nical Tests	26
	2.9.1	Flexural test	26
	2.9.2	Tensile test	28
2.10	Interfa	ce/ Interphase	29
2.11	Performances of Laminated Composite Cover by Gelcoat 32		32
2.12	Research Gap and Summary 34		

CHAPTER 3: METHODODOLOGY

3.1	Overview 3		
3.2	Raw Material Preparation	38	
	3.2.1 Gelcoat material	38	
	3.2.2 Matrix resin	39	
	3.2.3 Catalyst	40	
3.3	Design of Laminated Composite	41	
	3.3.1 Laminate size	42	
	3.3.2 Number of sample	42	
3.4	Sample Fabrication Process	43	
	3.4.1 Gel-coating process	42	
	3.4.2 Spray-up process	44	
	3.4.3 Hand lay-up process	45	
3.5	Vacuum Bagging Process for Lamination Fabrication	45	
3.6	Gelcoat Thickness Measurement	47	
3.7	Testing	48	
	3.7.1 Tensile test	48	
	3.7.2 Three-point flexural test	50	

	3.7.3	Scanning electron microscope	51
CHA	APTER	A 4: RESULTS AND DISCUSSIONS	
4.1	Overv	view	52
	4.1.1	Three point flexural test	54
	4.1.2	Tensile test	55
4.2	Three	Point Flexural Test	56
	4.2.1	Concave	56
	4.2.2	Convex	62
	4.2.3	Maximum stress sustained	66
	4.2.4	Brittleness	68
4.3	Tensil	le Analysis	71
	4.3.1	Interfacial bonding	71
4.4	Overa	ll Review	75

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	5.1 Conclusions	
5.2	5.2 Recommendations	
REI	FERENCES	80
PUE	BLICATION	91
PSN	M 1 Gantt Chart	101
PSM 2 Gantt Chart		102

LIST OF TABLES

2.1	Coverage, cure times, application suggestions	10
2.2	Variation of gelcoat thickness in previous research	12
2.3	Polyester resin, catalyst, cross linking agent, determination	
	Method	17
2.4	Defect detected, possibility causes, suggested solutions	19
2.5	Ply orientation and ply thickness have agreement with the	
	literature	26
2.6	Overview study on the literature review	35
3.1	Technical data of polycor GP-H gelcoat	39
3.2	Technical data of polyester resin	39
3.3	Technical data of epoxy using slow hardener	40
3.4	Catalyst concentration chart	41
3.5	Gelcoat thickness with four plies	43
3.6	Expecting data from tensile test	49
4.1	Different gelcoat thickness	53
4.2	Deflection and failure behavior of gelcoat under concave face	57
4.3	Deflection and failure behavior of gelcoat under convex face	63
4.4	Average maximum stress sustain of both gelcoat position	66
4.5	Average pulling force sustain by different gelcoat thickness	
	sample	72

LIST OF FIGURES

1.1	Flow chart of framework	7
2.1	Brush and roller Application	13
2.2	Cup gun spray gun	13
2.3	Thickness gauge	21
2.4	Ultrasonic coating thickness gauge	21
2.5	Spray-up lamination process	23
2.6	Hand lay-up process	24
2.7	Warp clock	24
2.8	Three-point bending tester	27
2.9	Four-point bending tester	28
2.10	Tensile testing specimen	28
2.11	Schematic representation of fiber/matrix interface	29
2.12	Polymer dog bone fiber fracture testing and result of	
	fragmentation testing	30
2.13	Typical force-displacement curve	31
2.14	The samples thermally spiked at higher temperatures, matrix	
	tends to stick to fibers due to increased viscous flow of polymer	
	matrix	32
3.1	Flow chart of methodology	37
3.2	The preparation of gelcoat	38
3.3	Example of laminated orientation with four plies	42
3.4	Cup-gun spray process	44
3.5	Example of gelcoat hand lay-up process	45
3.6	Process of vacuum bagging flow chart	46
3.7	Vacuum bagging process	47

3.8	Example of wet film thickness gauge	48
3.9	Geometry of tensile specimen according to ASTM D3039	49
3.10	External force apply from top of gelcoat and top of	
	reinforcement	50
3.11	Three point bending flexural test (ASTM D790)	50
3.12	Scanning electron microscope	51
4.1	Gelcoated laminate composite	53
4.2(a)	Gelcoat Facing bottom	54
4.2(b)	Gelcoat facing top	54
4.3	SEM on cross section of gelcoat laminated composite	55
4.4	Concave and convex face	56
4.5	Failure found in the sample with 0.25 mm gelcoat thickness	59
4.6	Fracture occur at sample of 0.50 mm gelcoat thickness	60
4.7	Surface crack of the 0.50 mm gelcoat thickness	61
4.8	Tiny void found at the interface between gelcoat layer	
	and laminates	61
4.9(a)	Crack pattern in the gelcoat layer	65
4.9(b)	Branch cracking at gelcoat surface	65
4.9(c)	Matrix failure of laminates	65
4.10	Average maximum value of stress sustained by position	
	of gelcoat facing bottom and top	67
4.11	Graph by position of gelcoat facing bottom	69
4.12	Graph plotted by position of gelcoat facing top	70
4.13	Chevron marking of the gelcoat layer	71
4.14	Graph of average maximum force sustained by different	
	gelcoat thickness specimens	73
4.15	Void discover at the interface between gelcoat and laminates.	74
4.16	Delamination occur at the 4-plies laminates	75

LIST OF ABBREVIATIONS

UV	-	Ultra-violet
SEM	-	Scanning electron microscope
FRP	-	Fiber reinforced panel
PMC	-	Polymer matrix composite
MMC	-	Metal matrix composite
CMC	-	Ceramic matrix composite
FRPC	-	Fiber reinforced polymer composite
CFRP	-	Carbon-fiber reinforced polymer
GFRP	-	Glass-fiber reinforced polymer
MEKP	-	Methyl ethyl ketone peroxide
ASTM	-	American society of testing and materials
ISO	-	International standards organization
T25P	-	Polyester based gelcoat thickness with 25 mm thickness
T30P	-	Polyester based gelcoat thickness with 30 mm thickness
T35P	-	Polyester based gelcoat thickness with 35 mm thickness
T40P	-	Polyester based gelcoat thickness with 40 mm thickness
T45P	-	Polyester based gelcoat thickness with 45 mm thickness
T50P	-	Polyester based gelcoat thickness with 50 mm thickness
T25E	-	Epoxy based gelcoat thickness with 25 mm thickness
T30E	-	Epoxy based gelcoat thickness with 30 mm thickness
T35E	-	Epoxy based gelcoat thickness with 35 mm thickness
T40E	-	Epoxy based gelcoat thickness with 40 mm thickness
T45E	-	Epoxy based gelcoat thickness with 45 mm thickness
T50E	-	Epoxy based gelcoat thickness with 50 mm thickness

LIST OF SYMBOLS

Е	-	Tensile modulus
F	-	Force applied
L	-	Length
F _{max}	-	Maximum force
Ν	-	Newton
°C	-	Degree Celsius
RM	-	Ringgit Malaysia
mm	-	Millimeter
μm	-	Micrometer
%	-	Percentage
GPa	-	Giga Pascal
In/min	-	Inches per minute
MPa	-	Mega Pascal
N/m^2	-	Newton per meter
HV	-	Hardness Vickers
Kg/m^3	-	Kilogram per meter cube
Mm/ min	-	Millimeter per minute

CHAPTER 1 INTRODUCTION

1.1 Research Background

A composite material is a macroscopic blending of two or more distinctive materials which having a conspicuous interface between them. In composite material, the strong adhesion between the fiber and the matrix will prompt to transverse failure of the fiber opposed to failure of the matrix or the interface and interphase region. In addition, the mechanisms and formation of interface and interphase between fibers and resins are needed in the manufacture should have superior performance composite material. According to Shirazi (2012), by consolidating essential material, composites can be intended to provide structural properties and also as additional fundamental materials that have exceptional properties for electrical, thermal, tribological, environmental, and biomedical application. The main advantages of composite materials are their high strength and stiffness, combined with low density considering for weight diminishment in the finished part (Campbell, 2010).

For an instance, Gantayet (2014) expressed the mixture of epoxy and hardener is known as gelcoat that is applied on the mould with a brush. The mixture ought to be applied on mould as fast as it can because generally the mixture may solidify. The quantity of epoxy utilized should be approximately equivalent to the weight of the glass fiber sheets while the quantity of hardener is approximately 8 % to 10 % of the weight of glass fiber sheets. The gelcoat applied is to guarantee a smooth external surface and for the assurance of fibers from immediate exposure to

the environment. The procedure proceeds with the subsequent stacking with layers of reinforcement by the application of gelcoat.

Moreover, Karapappas et al. (2011) indicated gelcoat is a material used to provide a high-quality finish on the visible surface of a fiber-reinforced composite material. The most widely recognized gelcoat is focused on epoxy or unsaturated polyester resin with thoughtfulness regarding to Scholz et al. (2014), Keegan et al. (2013), Yardimcia et al. (2013). Gelcoat is a modified resin which applied on mould in the liquid state. They are cured to form cross linked polymers and are subsequently backed with composite polymer matrices. Furthermore, Washer and Schmidt (2014) asserted that gelcoat is a thick resin layer on the exterior surface of the laminate which can be applied through spraying or rolling application. The gelcoat also enhances fire protection of the beam and provides an additional barrier against moisture. Research done by Mouritz and Gibson (2007) demonstrates a further issue is that numerous coatings, particularly those that are extremely good insulators but are extravagant. The cost of utilizing the coatings is increased further because they need to be bonded to the composite structure. Many composite applications oblige a gel-coated surface for cosmetic or durability reasons. The most common method of preparation is to paint or spray the mould tool, allow the coating to gel before laminating on the tacky surface. A layer of gelcoat is then sprayed on to the mould to form the outermost surface of the products. The gelcoat is allowed to cure for several hours however remains tacky so subsequent resin layers adhere better. Alternate layers of catalyzed polyester resin and reinforcement material are applied. Each reinforcement layer is wetted out with resin, and then rolled out to uproot air pockets. The procedure proceeds until the desired thickness is attained as highlighted by Dong (2009).

Many current researchers like Gombos and Summerscales (2014), Landowski *et al.* (2014), Salit (2014) and Raghavendra *et al.* (2013) are more to use different gel-coating process or preparation method to fabricate low defect gelcoat in the mould. The main focus is on the performance of gelcoat on their outlined product especially particularly with respect to service period against harsh environment. The best author's knowledge stated that there still no experimental research done about the effect of gelcoat thickness on laminate structure and strength. Thus, this is a very

exceptionally topic to be explored in detail to gain deep understanding on roles of different gelcoat thickness affect laminated structure and strength.

1.2 Problem Statement

One of the improvement required for composite properties is by enhancing in gelcoat performance. For example, to get ideal fire retardancy out of laminate, it is imperative that post curing at elevated temperature takes place. The process of post curing diminishes the amount of residual styrene in a laminate. This has shown that previous studies, for example like Sanjay *et al.* (2014) and Nguyen *et al.* (2013) have started alter the substance of gelcoat to reach desired properties.

Sockalingam and Nilakantan (2012) specified chemical reaction occurred in between the first layer of the laminate which is applied to gelcoat that has not completely cured. The two layers were eventually cured together by a chemical bond in between them. In the presence of interface, it should be noted that the fiber sizing region sometimes is referred to the interface while the sizing matrix region is referred to interphase in view of the chemical reactions occurred between the sizing and the resin during consolidation and curing. It is undeniable that brittle gelcoat layer is due to excess of catalyst that cracks with little provocation, while under cure is resulting from excessively little catalyst that produce a flexible gelcoat (Lacovara, 2010). However, more flexible gelcoat is not inclined to cracking, it is slanted toward premature color degradation, loss of gloss, chalking or chemical attack. This is as explored by Mouritz and Gibson (2007) that the filler particles blended into the liquid resin and consistently scattered to guarantee consistent flame retardant properties throughout the polymer. Most polymers require a high stacking of filler to show an appreciable improvement to their flammability resistance. The fillers have different deleterious effects on the properties, including an increase to the viscosity and reduction of gel time for the polymer melt which makes processing more difficult. Numerous filler materials continuously break-down when exposed to moisture by hydrolysis, and this degrades their flame retardant activity.

Capela *et al.* (2013) claimed that there were influence existed of the gelcoat surface layer on fatigue and impact loading performances. The composites coated

with gelcoat layer are tested under compression loading exhibit critical higher bending stiffness, static and fatigue strength. The impact response showed a slight variation of the peak load and the elastic recuperation where a significant increased on maximum displacement and absorbed energy with the increasing of incident impact energy. Both energy recovery in rate of the incident impact energy and residual bending strength have shown the linear decreasing with increase of the impact energy for all loading conditions. While the absorbed energy increased with the incident impact energy have reached about 80 % of impact energy for the highest impact energies. In addition, Jones (2007) stated that the interface and interphase in between the gelcoat and laminate composite is similarly imperative in deciding the mechanical performance of the composite. Eventually, the effective advancement of a composite material is characterized by the quality of interface. The interface controls the reintroduction of stress into either component at a damage site.

Based on the research above, the previous studies have generally concentrate on the performance of gelcoat as the protective layer for laminate composite while by adjusting the mixing ratio of catalyst and resin to control the curing of gelcoat. However, there are only few studies are mentioned on the gelcoat thickness used, but not specified on it for optimal purpose. Thus, this research is focusing on gelcoat thickness in order to optimize the performance of laminated composite.

1.3 Objectives

The objectives are as follows:

- (a) To study the effect of gelcoat and thickness on the laminate composite strength.
- (b) To investigate the interface between the gelcoat and laminated composite after mechanical testing.
- (c) To propose the optimum thickness of gelcoat on laminated composite.

1.4 Scopes of the Research

The scopes of research are as follows:

- (a) Research on the effects of gelcoat thickness on laminated composite based on the mechanical and physical properties or and related issues.
 In this research more focus on utilizing distinctive thickness of gelcoat which resulting in term of strength.
- (b) Study the potential of using spray up or hand lay-up method on gelcoat application for the purpose of better thickness control, reduce material waste that also can clean the equipment easily. Curing of remaining gelcoat at nozzle is hard to be clean.
- (c) Design the different thickness of gelcoat layer on the four plies and 0/90 degree orientation. From testing, result can clearly state the differences in strength and also including the interphase interface between gelcoats and laminated composite.
- (d) Identify the appropriate amount of catalyst added into the gelcoat to control the curing behaviour in considering the performance of gelcoat, environment effect to human and surrounding which gelcoat contain hazardous styrene.
- (e) Evaluate thickness of gelcoat after each spraying and spraying process to maintain the gelcoat spread evenly on the mould with the use of wet film thickness gauge to measure and control the thickness of gelcoat.
- (f) Conduct the comprehensive analysis on experiment data by understanding the interaction between the interface interphase of

gelcoat and laminated composite in order to identify the knowledge contribution to sector of gelcoat application.

(g) Propose the optimum thickness of gelcoat thickness on laminated composite with include consideration on the aspect of structure and strength. The performance of the gelcoat is an important role for entire material or product.

1.5 Rational of Research

The rational of research as follows:

- (a) Composite product might achieve their highest strength when the bonds between layers of fiberglass are mechanical or primary bonds as opposed stress transferring in between two layers before facing failure. This research is developed to study the mechanical bond in between gelcoat and laminated composite.
- (b) Generate scientific information and deep understanding on the role of catalyst in the curing behavior and performance of gelcoat. Gather the useful information on technical data of gelcoat performance after run the experiment approach.
- (c) To gain new knowledge behind the experimental research by improve the laminated composite quality and bring the engineering field to higher level especially boat manufacture industry. Develop a new idea by control the gelcoat thickness to enhance composite product with using standard amount of catalyst to design a better product.
- (d) Reduce the dependency to use less corrosive catalyst material that suitable to environment and enhance the performance of gelcoat on laminated composite strength such as polyether ether ketone, acetyl-

acetone peroxide, vinyl polymerization peroxide, benzoyl peroxide that are commonly used in the gelcoat.

(e) Compare the different thickness of gel-coated laminated composite with other laminated composite design such as different ply number and orientation. Create a new solution to improve the performance of composite by controlling the gelcoat thickness.

1.6 Research Methodology

Figure 1.1: Flow chart of framework

The entire research embodies five main parts which are Part 1 is material selection, Part 2 is application of gelcoat on laminated composite, Part 3 is different