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ABSTRACT 

 

 

A ball screw mechanism is a mechanical actuator that is widely used in various high 

precision automated industries. Though it is highly efficient, the ball screw mechanism 

often exhibits non-linear behaviours due to various forms of external noises, frictions, 

unforeseen disturbances and parameters uncertainties. Such behaviours often cause 

instability, large steady-state error and poor transient performance in the mechanism. To 

overcome these problems, a Disturbance Observer with PD Controller (PDDO) is proposed. 

A PDDO is made up of nominal plant, low pass filter and a PD controller. Compare to 

classical controllers, the proposed controller has low sensitivity towards non-linearity of 

the mechanism. In this project, the plant model was modelled using non-linear least square 

method (NLLS). The nominal plant was designed based on the Ackermann’s formula. The 

cutoff frequency was taken as half of the cut-off frequency of the plant model. The PD 

controller was constructed through manual tuning method. The performance of PDDO was 

examined experimentally in tracking motion with sinusoidal inputs of different frequencies 

and amplitudes. A manually tuned PID controller was designed in order to compare with 

the proposed controller. The robustness towards mass variation of the controllers were 

examined. Overall, the experimental result has proved that PDDO has demonstrated better 

tracking performance and higher adaptability to the change of input’s amplitudes and 

frequencies. It was also found that PDDO is robust towards mass variation as compared to 

the PID controller.  
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ABSTRAK 

 

 

Mekanisme skru bola merupakan sebuah penggerak mekanikal yang sering digunakan 

dalam industry automasi yang mementingkan ketepatan dalam pengukuran. Walaupun 

mekanisme ini mempunyai kecekapan yang tinggi, namun ciri-ciri tidak linear akibat 

gangguan luaran, geseran dan ketidaktepatan parameter dalam model mekanisme ini telah 

dilaporkan. Ciri-ciri ini dikatakan akan menyebabkan ketidakstabilan dan ralat yang besar 

dalam pergerakan mekanisme skru bola. Bagi mengatasi kekurangan mekanisme ini, 

sebuah pengawal pemerhati gangguan dengan pengawal PD(PDDO) telah dicadangkan. 

Berbanding dengan pengawal klasik, PDDO mempunyai sensitivti yang lebih rendah 

terhadap fenomena tidak linear yang berlaku dalam mekanisme ini. Pengawal pemerhati 

gangguan (DOB) mampu menganggar dan menolak perubahan dalam sistem, manakala 

pengawal PD mengawal pergerakan transien sistem ini. Dalam projek ini, PDDO telah 

menunjukkan prestasi pergerakan yang lebih mantap berbanding dengan pengawal PID. 

Dalam eksperimen penukaran beban, pengawal PDDO menunjukkan prestasi pergerakan 

yang lebih baik berbanding dengan pengawal PID.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 A ball screw mechanism is a mechanical actuator that translates rotary motion of 

the driver motor into linear displacement [1]. It is widely used in various automated 

industries such as aerospace industries, semiconductor industries and CNC machineries 

due to its high precision and efficiency [2]. Unlike lead screw, a ball screw contains ball 

bearing along the screw shaft and experiences less friction than a lead screw. However, it 

was discovered that the ball screw mechanism exhibits non-linear behaviours such as 

backlash, frictions, load variation and high frequency sensor noise [3], [4]. Based on [5], 

such behaviours are sometimes known as disturbances in the mechanism.   

Figure 1.1: Difference between ball screw and lead screw [6] 

 

 To ensure the ball screw mechanism achieves high precision performance under 

these conditions, positioning control is vital and necessary to be applied in the mechanism. 

According to [7], positioning control can be performed by applying a controller and/or  
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with the use of advance sensors. However, most industries opt for controller design as 

these sensors are relatively expensive. Among these industries, a conventional PID is still 

widely used due to its simplicity and ease of application. However, a PID controller has to 

be tuned frequently due to the non-linear characteristics in the mechanism. To overcome 

the limitation of classical PID controller, many advance controllers like H-infinity 

controllers (H-∞) [8-9], discrete time sliding mode controller [10], Fuzzy Logic Controller 

(FLC) [11], Fuzzy PID controller [12] were designed to achieve high performance and 

robustness.  

 Unlike these advance and complicated controllers, a disturbance observer (DOB) 

appears to be simpler and easier to use. A DOB does not compensate the system directly 

[13]. Instead, DOB estimates the disturbances arise from frictions, vibrations and/or 

parameters variations that occurs in a plant and feeds the error negatively back to perform 

compensation. Such compensation is usually done with controllers like H-infinity [14] and 

conventional PD or PID [5,13].  

This project aims at designing a DOB with the use of PD controller for the ball 

screw mechanism. The DOB rejects the disturbances while the PD controller compensates 

the system so that it achieves desired positioning and tracking performance. The controller 

performance will be validated and the robustness of the controller will be examined with 

change of load mass.   

  

 

1.1 Project Motivation 

 

Precision performance in ball screw mechanism has always been the major 

consideration in industries. Different controllers were designed and built to improve the 

transient responses of the system. However, it is observed that under normal conditions, 

the transfer function model of the mechanism is difficult to be built accurately due to 

surrounding disturbances, as well as the uncertainty of parameters of the model itself. 

Taking conventional PID as an example, it demonstrates instability when the mechanism 

experiences sudden disturbances and parameter variations. To avoid these issues, a 
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disturbance observer is proposed to minimize the effect of such disturbances and 

unforeseen changes of parameters. 

 

 

1.2 Problem Statement 

 

Conventional PID is widely used in different industries to improve transient 

performance of ball screw mechanism due to its ease of use and implementation. However, 

it is noticed that this controller has low adaptability to parameters variation and has to be 

tuned frequently to maintain its optimum performance. This procedure is troublesome and 

not effective as the transfer function has to be determined again whenever there’s a change 

in the parameters involved. Due to the limitation of PID, many advance controllers such as 

the H∞ controller and NCTF were designed. These controllers had proven their robustness 

under parameters uncertainties, mostly due to disturbances and load change. Though these 

controllers are robust, it is observed that these controllers require one to have a high level 

of relevant understanding before designing it. Compare to these controllers, a DOB is 

simpler and does not require an exact model of the plant. It rejects sudden disturbances 

while adapting itself to variation of parameters in the model. As DOB only performs 

disturbance rejection, thus an external PD controller is proposed to improve the positioning 

performance of the ball screw mechanism. 

 

 

1.3 Objectives 

 

The main objectives of this project are: 

i. To construct a second order mathematical model of the ball screw mechanism; 

ii. To propose a Disturbance Observer with PD controller (PDDO) for the ball screw 

mechanism; 

iii. To validate the positioning performance and robustness against mass variation of 

the PDDO in tracking motion in comparison to PID controller; 
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1.4 Scope of Work 

 

In order to complete this project, the limitations are presented as follow: 

i. The maximum working range of the ball screw mechanism is set as 160mm; 

ii. The range of input voltage used in the experiments is 0 to ±10V; 

iii. The resolution of the linear encoder is given as 0.5µm/pulse; 

 

 

1.5 Report Outline 

 

This report presents the positioning control of a ball screw mechanism using 

disturbance observer. Chapter 2 summarizes the background of different controllers 

applied on ball screw mechanism. PDDO is discussed in details on its structure together 

with the different applications applied. Chapter 3 begins with demonstration of the steps to 

model the ball screw mechanism and follow by the design procedures of PDDO and PID 

controller. Steps for performance and robustness evaluation for the controllers are 

presented as well. The results from conducted experiments are presented in Chapter 4 with 

the analysis and discussions. Lastly, this project is concluded in Chapter 5 and 

recommendations are given for future works and improvement. This report is ended with 

the reference list and the appendices of the related works.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction  

 

In most automated industries, precise positioning control is no longer an unfamiliar 

term. According to A. Kato and K. Ohnishi, positioning control is one of the examples of 

basic components in motion control technology [15]. This technology aims at ensuring the 

controlled target achieves desired positioning performance despite occurrence of unwanted 

noise signals, disturbances or force deviations [16].  Based on a F. Yakub and R. 

Akmeliawati, positioning control can be further classified into two subcategories: point-to-

point positioning control (PTP) and continuous path tracking control [17]. S. Chong and K. 

Sato stated that controllers of simple structures, rapid response and non significant 

overshoot are highly demanded in any of the automated industries and high-end 

mechanisms [18]. C. Tsui added that such controllers should also exhibit low sensitivity, 

i.e. robustness towards model parameters uncertainties and sudden disturbances[19].  

 

 

2.2 Previous Works on Positioning Control of a Ball Screw Mechanism 

 

  Ball screw mechanisms are used in different applications such as CNC machineries, 

airplane wing flap release mechanism and automobile power steering that seek for high 

precision, stiffness and efficiency.  However, past studies indicated that ball screw 

mechanisms exhibit nonlinear behaviour in micro movement [20]. Chen, Jang and Lin also 
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pointed out that such microdynamic behaviours are caused by hysteresis, Stribeck effect 

and the preload of the ball bearings in the mechanism [21]. In another similar research, 

Dong and Tang added that a ball screw mechanism has varying natural frequencies along 

its screw shaft [22]. Due to these phenomena, many works were performed to identify the 

model of a ball screw mechanism while considering the macrodynamics and 

microdynamics of the system.  

 In [22], Dong and Tang proposed a hybrid modeling that characterize the axial, 

torsional and flexural vibration dynamics of the ball screw mechanism. In this model, the 

screw shaft characters, including the Young’s modulus and Poisson’s Modulus are 

considered. It was concluded that this hybrid model is capable of demonstrating the 

structure dynamics accurately. In another similar research, Liu, Zhao and Zhang introduced 

a hybrid modeling that presents the high frequency behaviours of the ball screw 

mechanism [23]. The screw shaft dynamics is demonstrated in longitudinal and torsional 

dimension. In this work, the authors only consider a low order model with two inertias: one 

from motor while another is from the table.  

 From these researches, it can be seen that it is relatively complicated to model a 

ball screw mechanism while considering all the microdynamic parameters. Besides that,  G. 

J. Maeda and K. Sato also pointed out that it is relatively difficult to model the 

microdynamic model as these parameters change over time and position [24]. In order to 

ease the procedure, it is common to lump the parameters in the system. This approach is 

also known as macrodynamic modelling. In [4], Sepasi, Nagamune and Sassani lumped the 

equivalent inertia and damping coefficient of a ball screw mechanism as a second order 

model. The same approach was adopted by another research as shown in [25]. For this 

method, Lin and Chen explained that since the ball screw frictional torque dominates the 

system, thus the model can be reduced where the parameters are lumped together [11]. 

Though this method proves to be easier, a controller is highly necessary to adapt to the 

possible mismatch or parameter variations in the macrodynamic model. 

Over the years, classical PID controller is widely applied due to its practical and 

simple applications. A PID controller includes three terms: Proportional, Integral and 

Derivative [26]. Based on [18], a PID controller is an effective and reliable controller 

provided that it is properly tuned. However, this controller meets its limitation should 

higher precision performance and system robustness are demanded. To improve this 

controller, different advance controllers were designed based on the characteristics of 
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classical PID. In [27], Chen had demonstrated the ability of PID with Fuzzy Logic 

Controller in achieving high speed response with high precision positioning despite 

varying frictions in linear DC motors. In this thesis, Chen had designed a two stage 

controller that included a Hybrid Reduced Rule Fuzzy PID controller (PIDFLC) and a 

relay-tuned PID controller. Based on his observations, a PID controller has limited 

positioning performance due to the parameters uncertainties in the DC motor model 

whereas a PIDFLC is capable in achieving the desired performance under similar condition. 

In a similar research, T. Ting designed a Fuzzy PID controller to perform positioning 

control on a ball screw mechanism [12]. Unlike PID controller that requires frequent 

tuning, this paper concluded that a Fuzzy PID works with different input. A Fuzzy PID has 

a larger stability range while possesses a higher adaptability towards parameters variations. 

However, T. Ting also pointed out that a Fuzzy PID controller has a slower response time 

compared to conventional PID. 

 In year 2004,  a H∞ framework was designed to achieve robust, fast and precise 

positioning control of a ball screw system [8]. In this research, two vibrations mode were 

considered: the low stiffness between motor and table, as well as the oscillatory 

disturbance force of load to table. A 2 DOF feed-forward compensator was designed using 

coprime factorization approach to improve the transient response of ball screw mechanism. 

On the other hand, H∞ framework was designed by selecting the appropriate weighting 

function to achieve robustness over servo bandwidth expansion as suggested in [28]. This 

research had proven that H∞ framework is capable of achieving system robust stability over 

different vibration modes and increased response speed towards expansion of servo 

bandwidth. In [9], a H∞ controller was proposed to compensate friction and improve the 

reference tracking performance. The loop shaping approach used in the research was 

originally proposed by D. Mcfarlane and K. Glover to achieve system robustness while 

improving performance and stability [29]. In [9], a suitable dynamic frequency shaping 

function was selected based on the frequency region where frictions occur. Differ from 

[28], this research improves controlled performance by multiplying the specified weight 

function to front and rear of the open loop transfer function.  

In recent years, positioning control with NCTF controller  is proposed on different 

applications including one mass rotary system  [7], vibration control in two mass rotary 

system [30] and ball screw mechanisms [17,31]. According to A. Sabanovic and K. 

Ohnishi, it was pointed out that an exact mathematical model of the plant can never be 
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modeled since uncertainties of model parameters may present due to noise and surrounding 

disturbances [32]. With this issue taken into consideration, the NCTF controller was 

designed such that the exact parameters are not necessary in the process [17]. In [31], NCT 

controller was proposed to preserve the robustness of a ball screw mechanism despite 

variation of mass. Another similar research demonstrated in [33] proved that a continuous-

motion NCTF (CM NCTF) is capable of reducing vibration in the ball screw mechanism 

and improves motion accuracy.  

 In [34], C. Lu and M.-C. Shih proposed fuzzy sliding mode control method to 

perform positioning control in the ball screw mechanism driven by pneumatic servomotor. 

Initially researched by Mamdani and his colleagues [35], this paper uses triangular 

membership function and Mamdani rules to perform fuzzyfication and fuzzy reasoning. 

From the experimental results, [34] proved the robustness of the controller when non-linear 

compressed air is supplied into the ball screw mechanism.  

Another common controller used to perform positioning control is the disturbance 

observer (DOB). DOB was first proposed by K.Ohnishi in 1983 to perform torque-speed 

regulation in DC motor [36]. In later years, DOB was widely applied in different 

mechanisms such as magnetic hard drive servo system and ball screw mechanism [13], 

[37]. A DOB is capable of estimating the disturbance torque due to non-linear 

characteristics and subsequently rejects such disturbances and compensates model 

uncertainties [38]. In another research, DOB was designed to control vibrations occurred in 

the plant [5]. Since a DOB only works on disturbance rejections, thus it is necessary to 

include an external controller to perform positioning control [13]. In [13], a DOB was 

proposed to compensate a ball screw servo system with the aid of a PD controller. This 

research has also pointed out that a PID controller could not be used with the observer as it 

produces large overshoot and major oscillations. This statement was supported by P. I. Ro 

et.al. stating that a PID exhibits severe transient oscillations that may lead to positioning 

error [39]. Taking step and sinusoidal disturbance into consideration, PDDO showed 

robustness though parameter variations and non-linear frictions existed in the ball screw 

mechanism [13]. In another research, P. I. Ro et.al. proposed a PDDO controller for sub 

micrometer positioning control [39]. From this research, it was found that a PDDO 

produces consistent and desired positioning and tracking response despite existence of 

non-linear frictions.  
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From the controllers mentioned earlier, a PDDO is proposed to perform positioning 

control on a ball screw mechanism. Compared to H∞, the PDDO controller has a much 

simpler design procedure [40]. It also has a less complex structure compare to Fuzzy PID 

controller [17]. A DOB has the ability to estimate disturbances and rejects them from the 

system as well as compensate parameters uncertainties due to nonlinear behaviour [5,38]. 

In [38], it is also stated that a DOB is capable of shaping the plant to behave as the nominal 

plant model at low frequencies.  

 

 

2.3 Disturbance Observer with PD Controller (PDDO) 

 

 The PDDO is made up of three important elements: a nominal plant, Pn(s), low pass 

filter, Q(s), and a PD controller, C(s). The general structure of a PDDO is presented in 

Figure 2.1 while the symbols are presented in Table 2.1. 

 

 

Figure 2.1: General Structure of PDDO [3] 
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Table 2.1: Model parameters for PDDO 

Symbol Model / Parameters 

C(s) PD controller 

R(s) Reference input 

P(s) Plant model 

Pn(s) Nominal plant 

Q(s) Low pass filter 

X(s) Output of the plant 

U(s) Controlled input to plant 

d Disturbance torque 

   Estimated disturbance torque 

n High frequency noise 

  

In designing a PDDO, the nominal plant is usually designed different from the real 

plant as the system follows the behavior of the nominal plant at low frequencies [41]. 

However, H. Kobayashi, S. Katsura and K. Ohnishi pointed out that if the nominal plant is 

very different from the real plant, the system tends to be unstable [42] It is ideal to design 

the nominal plant as simple as possible to reduce the order of the low pass filter, Q(s). The 

order of low pass filter is the same as the relative order of Pn(s) to ensure that the block, 

QPn
-1

(s)
 
is valid with the order of numerator larger than denominator [43]. A low pass filter 

that is higher than the first order will have higher sensitivity but less robustness [44].    
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

In this chapter, the system modelling and controller design procedures will be 

discussed. These procedures are divided accordingly to achieve the objectives as listed in 

Section 1.4. In Section 3.1, the experimental setup, mathematical model and modelling 

procedure will be demonstrated. In Section 3.2, the design steps of a PDDO controller will 

be presented. The identification of nominal plant, low pass filter design and the PD 

controller design will be discussed.   

 

 

3.1 System Modelling of Ball Screw Mechanism 

 

The ball screw mechanism to be used in the project is setup as shown in Figure 3.1. 

The ball screw mechanism is driven by a DC motor. The working range of this mechanism 

is given as 160mm. A linear encoder with resolution of 0.5µm/count is attached to the ball 

nut with its track placed side-by-side. This contactless linear encoder measures the 

incremental displacement with 2 channels: Channel A and Channel B with a phase shift of 

90° between them. The close up view of the ball screw mechanism is presented in Figure 

3.2. The procedures are then continued with the mathematical modelling of the ball screw 

mechanism.  

' ?
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Figure 3.1: Experimental setup of ball screw mechanism 

 

 

Figure 3.2: Close up view of the ball screw mechanism with labelled parts 

 

To construct the second order mathematical model of the ball screw mechanism, the block 

diagram as shown in Figure 3.3 is considered.  

 

Figure 3.3: Second order model of the ball screw mechanism [45] 
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Table 3.1 Model parameters 

Symbol Parameters 

Kt Motor Constant 

Kb Back emf Constant 

Ka Amplifier Gain Constant 

J Effective Inertia of Ball Screw, Motor and Load 

B Effective Damping Coefficient of Ball Screw, Motor and Load 

Td Disturbance Torque 

 

In macrodynamic modelling, the inertia and damping coefficient of the ball screw, 

load and motor are lumped into single parameters of J and B. The equation of motion of 

the ball screw mechanism is given as 

                                                                                                                        

where x(t) is the output linear displacement of the ball screw mechanism when it has 

voltage supply, U(s). By taking Kb and Ka into consideration, an open loop block diagram 

for the ball screw mechanism is presented as shown in Figure 3.4.   

 

 

Figure 3.4: Block diagram for ball screw mechanism 

 

Using block diagram reduction approach, the transfer function of the open loop ball 

screw mechanism, G(s) is given as 

                     
    

    
  

  

              
                                   

where disturbance torque, Td is assumed to be zero. 

T,
v' s' fC V i 1

t \

K « Js+ B 3
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To determine the values of the parameters, system identification was performed. By 

using a band-limited random white noise as an input, the plot for open loop input voltage 

and output displacement in the ball screw mechanism is presented in Figure 3.5.   

 

Figure 3.5: Input voltage with output displacement. 

 

 Through the data collected, the frequency response (FR) of the ball screw 

mechanism is plotted. Non-linear Least Square (NLLS) method is adopted to estimate a 

second order system as presented in equation (3.2). The estimated model and experiment 

frequency responses are plotted in Figure 3.6.  

It is observed that there are still differences between the estimated frequency 

response and the experimental results. This difference is due to the unconsidered 

microscopic behaviour of the mechanism. Since the estimation is performed based on a 

lumped model, thus phenomena such as hysteresis, friction due to ball bearing and 

plasticity of ball screw might be overlooked. 
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Figure 3.6: Frequency response (FR) from white noise and estimation with NLLS method  

 

Through system identification with NLLS method, the transfer function is given as 

                     
    

    
  

    

         
                                   

with a bandwidth of 29.1 rad/sec taken at -3dB of the simulation FR plot.  

 

 

3.2 Design of Disturbance Observer with PD Controller (PDDO) 

 

In order to design the nominal plant, the transient parameters are set where the 

overshoot percentage is 2% while the settling time is taken as 0.5 seconds. Using the 

general transfer function of a second order system: 

      
  

 

          
 
                                                                                                 

By using the above said transient parameters, G(s) is obtained as 
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where the desired poles are                

 

 

Figure 3.7: Structure of PDDO in state space representation [46] 

 

To design the disturbance observer, the observer poles is made 5 times faster that 

the controller poles where poles = [-40,-40]. Representing G(s) in observer canonical form, 

the state space model is given as 

                                                                                                                     

                                                                                                                                  

    
  
    

    
        

 
                                                                           

                                                                                                                          

The general observer form as presented in Figure 3.7 is given as 

                                                                                                                 

                                                                                                                                 

This form can be rewritten as 

( I P( s)
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Using Ackermann’s function, the observer gain, L and feedback gain, K is obtained as  

    
    
  

   and         . 

Therefore, the nominal plant is modelled as 

       
        

           
                                                                                    

To design a low pass filter for the DOB, the cutoff frequency is determined from 

frequency of the estimated plant model.  At -3dB, the cutoff frequency of the plant, P(s) is 

given as 29.1 rad/s or 4.63Hz. The cut off frequency for the low pass filter is set at about 

half of the cutoff frequency where ωc = 14 rad/sec. The low pass filter, Q(s) is designed as 

      
  

    
                                                                                                      

In the design of PD controller, fine tuning method is adopted. The proportional gain, 

Kp is increased until the system begins to be unstable, i.e. starting to oscillate. The value is 

reduced to half and a derivative gain, Kd is added into the system. Kd is tuned to reduce the 

settling time and percent overshoot. Since PD controller is capable of picking up the 

measurement noise in the system, a low pass filter with time constant, Td = 0.0714 is added 

to the derivative part. The equation of the PD controller is now given as  

         
   

     
                                                                                           

where Kp = 10 and Kd = 0.5.  

In order to simplify the structure of DOB, the block diagram shown in Figure 2.1 is 

reduced through the block reduction method. The flow of the block reduction process is 

shown in Figure 3.8.  

In order to compare PDDO with PID controller, PID controller is designed by fine 

tuning method. The equation of PID controller is given as 

          
  

 
 

   

     
                                                                           

where Kp = 5, Kd = 0.05, Ki = 12 and Td = 0.0714. 
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Figure 3.8: Block reduction process for PDDO 

 

 

3.3 Performance Evaluation 

 

 In this project, the positioning performance of PDDO is examined and compared 

experimentally with PID controller in tracking motion. The experiments are run with 

sinusoidal inputs with frequency = 0.1Hz, 1Hz and 3Hz. The amplitudes of the inputs are 

set as 0.1mm, 1mm and 5mm. With the same experimental setup, the robustness of PDDO 

and PID against load mass variations is tested.  
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CHAPTER 4 

 

 

RESULTS AND ANALYSIS 

 

 

4.1 Uncompensated System Response 

 

Before going into the PDDO controller design, it is important to observe the 

uncompensated system beforehand. By referring to Figure 4.2 to Figure 4.5, it is observed 

that the ball screw mechanism has difficulties moving in small displacement due to the 

large friction occurred along the ball screw shaft. On top of that, this system also has large 

tracking error when it is moving in higher velocity, i.e. higher frequency input. Thus, it is 

desired that the designed PDDO is able to improve the tracking performance and reduce 

the tracking error in the system.  

 

Figure 4.1: Uncompensated response with frequency = 0.1Hz and amplitude = 0.1mm 
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Figure 4.2: Uncompensated response with frequency = 3Hz and amplitude = 0.1mm 

 

Figure 4.3: Uncompensated response with frequency = 3Hz and amplitude = 5mm. 
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4.2 Performance Evaluation of Tracking Motion 

 

To examine the performance of the mechanism, tracking tests are performed. 

Frequencies of 0.1Hz, 1Hz and 3Hz are considered to examine the performance of PDDO 

as compared to PID controller. These frequencies are tested with different amplitude of 

0.1mm, 1mm and 5mm. Each set of experiments is run for 10 times to examine the 

adaptability of the said controllers in tracking motion. The system responses of the PDDO 

and PID are presented in Figure 4.5 to Figure 4.13. The average error and standard 

deviation of 10 repeated tests for each experiment set are tabulated in Table 4.1.  

When the reference input is set to 0.1.mm, the tracking error of PDDO increases 

with increment of frequency. However, when the input amplitude is set as 5mm, PDDO 

shows improvement of tracking error when the frequency is increased. It can be seen 

clearly that the tracking performance of PDDO controlled system is much better compared 

to the PID controlled system. In the repeatability tests, PDDO shows lower standard 

deviations than PID controller.  

 

Figure 4.4: Output with reference input of frequency = 0.1Hz and amplitude = 0.1mm 
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Figure 4.5: Output with reference input of frequency = 0.1Hz and amplitude = 1mm 

 

Figure 4.6:  Output with reference input of frequency = 0.1Hz and amplitude = 5mm  
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Figure 4.7: Output with reference input of frequency = 1Hz and amplitude = 0.1mm  

 

Figure 4.8: Output with reference input of frequency = 1Hz and amplitude = 1mm 
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Figure 4.9: Output with reference input of frequency = 1Hz and amplitude = 5mm 

 

 

Figure 4.10: Output with reference input of frequency = 3Hz and amplitude = 0.1mm 
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Figure 4.11: Output with reference input of frequency = 3Hz and amplitude = 1mm 

 

Figure 4.12:  Output with reference input of frequency = 3Hz and amplitude = 5mm 
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Table 4.1: Average error and standard deviation for 10 repeated experiments 

Controller PDDO PID 

Frequency 

(Hz) 

Displacement 

(mm) 

Average 

Error (µm) 

Standard 

Deviation 

(μm) 

Average 

Error (μm) 

Standard 

Deviation 

(μm) 

0.1 

0.1 19.82 6.94 55.57 9.61 

1 89.72 8.59 156.67 12.75 

5 399.77 4.55 163.56 19.94 

1 

0.1 38.37 3.59 121.72 9.96 

1 60.55 4.95 228.37 9.58 

5 295.38 3.62 391.41 13.97 

3 

0.1 50.07 5.46 105.57 9.62 

1 79.33 2.44 342.58 16.76 

5 129.28 8.46 874.02 6.72 

  

When input frequency is set as 0.1Hz, PID control system is still able to track the 

motion of the reference input though exhibiting large tracking error. As the frequency 

increases, the performance of PID controller deteriorates. This observation is explained 

through the existence of viscous friction in the system. Since PID controller is very 

sensitive towards the parameter variations in the plant, thus it is not able to adapt to the 

changes of velocity that affects the viscous friction in the system. At frequency = 3Hz, 

hysteresis of movement occurred in the PID controlled system. 

Unlike PID controller, PDDO is capable of estimating such disturbances and 

therefore corrects the trajectory of the mechanism. When all the experiments are repeated 

for 10 times, the ball screw shaft and ball bearings are subjected to wear and tear. This 

condition will alter the dynamics of the mechanism in long term. The PID controller 

cannot adapt itself to these changes and therefore has larger standard deviations. Differ 

from PID controller; the PDDO has higher consistency in its tracking performance as it is 

less sensitive towards such conditions. Thus, PDDO is said to have higher adaptability than 

the PID controller.  

Based on the outputs, it is seen that the controlled systems experience glitches 

when the mechanism changes direction of motion. This phenomenon is caused by the 

stiffness of the mechanism that resists the changes of direction.  
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4.3 Robustness on Mass Variation 

  

 In this project, loads are added to the ball screw mechanism to observe the system 

robustness under mass variation. Mass loads of 1kg, 3kg and 5kg are added to the ball 

screw mechanism respectively. The tracking performance of the PDDO and PID control 

system are validated with sinusoidal input of frequency = 0.1Hz, 1Hz and 3Hz and 

amplitude of 0.1mm, 1mm and 5mm. The average error of the 27 experiments is presented 

in Table 4.2 while Table 4.3 shows the standard deviation of the controllers with the 3 load 

mass considered. By referring to Table 4.2 and Table 4.3, it can be seen that a PDDO has 

smaller tracking error compare to PID. On top of that, PDDO has higher capability of 

following the trajectory of the input despite changes of load. The complete system 

responses with mass variations are shown in Figure 4.14 to Figure 4.41. 

 

 

Figure 4.13: Output with frequency = 0.1Hz, amplitude = 0.1mm and load = 1kg
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Figure 4.14: Output with frequency = 0.1Hz, amplitude = 1mm and load = 1kg 

 

 

Figure 4.15: Output with frequency = 0.1Hz, amplitude = 5mm and load = 1kg 
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Figure 4.16: Output with frequency = 1Hz, amplitude = 0.1mm and load = 1kg 

 

 

Figure 4.17: Output with frequency = 1Hz, amplitude = 1mm and load = 1kg 
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Figure 4.18: Output with frequency = 1Hz, amplitude = 5mm and load = 1kg 

 

Figure 4.19: Output with frequency = 3Hz, amplitude = 0.1mm and load = 1kg 
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Figure 4.20: Output with frequency = 3Hz, amplitude = 1mm and load = 1kg 

 

Figure 4.21: Output with frequency = 3Hz, amplitude = 5mm and load = 1kg 
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Figure 4.22: Output with frequency = 0.1Hz, amplitude = 0.1mm and load = 3kg 

 

 

Figure 4.23: Output with frequency = 0.1Hz, amplitude = 1mm and load = 3kg 
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Figure 4.24: Output with frequency = 0.1Hz, amplitude = 5mm and load = 3kg 

 

Figure 4.25: Output with frequency = 1Hz, amplitude = 0.1mm and load = 3kg 
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Figure 4.26: Output with frequency = 1Hz, amplitude = 1mm and load = 3kg 

 

Figure 4.27: Output with frequency = 1Hz, amplitude = 5mm and load = 3kg 
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Figure 4.28: Output with frequency = 3Hz, amplitude = 0.1mm and load = 3kg 

 

Figure 4.29: Output with frequency = 3Hz, amplitude = 1mm and load = 3kg 
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Figure 4.30: Output with frequency = 3Hz, amplitude = 5mm and load = 3kg 

 

Figure 4.31: Output with frequency = 0.1Hz, amplitude = 0.1mm and load = 5kg 
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Figure 4.32: Output with frequency = 0.1Hz, amplitude = 1mm and load = 5kg 

 

Figure 4.33: Output with frequency = 0.1Hz, amplitude = 5mm and load = 5kg 
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Figure 4.34: Output with frequency = 1Hz, amplitude = 0.1mm and load = 5kg 

 

Figure 4.35: Output with frequency = 1Hz, amplitude = 1mm and load = 5kg 
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Figure 4.36: Output with frequency = 1Hz, amplitude = 5mm and load = 5kg 

 

 

Figure 4.37: Output with frequency = 3Hz, amplitude = 0.1mm and load = 5kg 
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Figure 4.38: Output with frequency = 3Hz, amplitude = 1mm and load = 5kg 

 

 

Figure 4.39: Output with frequency = 3Hz, amplitude = 5mm and load = 5kg
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Table 4.2: Average error in each experiment set with mass variations in different 

frequencies and amplitudes 

Controller PDDO PID 

Mass  

(kg) 

Frequency 

(Hz) 

Displacement 

(mm) 

Average Error in last 5 cycles 

(µm) 

1 

0.1 

0.1 9.93 64.38 

1 82.39 98.14 

5 390.91 180.16 

1 

0.1 41.40 99.96 

1 56.17 206.78 

5 275.23 436.93 

3 

0.1 54.76 99.93 

1 92.94 322.24 

5 191.81 971.22 

3 

0.1 

0.1 9.80 69.55 

1 80.17 118.10 

5 392.52 158.99 

1 

0.1 51.39 100.00 

1 53.22 230.72 

5 276.02 442.76 

3 

0.1 61.75 97.49 

1 92.27 362.78 

5 122.59 1031.30 

5 

0.1 

0.1 14.50 92.34 

1 79.55 146.20 

5 390.87 196.46 

1 

0.1 55.19 98.54 

1 48.43 275.59 

5 260.60 467.81 

3 

0.1 73.52 99.99 

1 116.34 418.94 

5 9250.70 1090.00 

 

Table 4.3: Standard deviation of PDDO and PID with change of load 

Controller PDDO PID 

Displacement (mm) 0.1 1 5 0.1 1 5 

Frequency (Hz) Standard Deviation (μm) 

0.1 2.67 1.49 0.94 14.87 0.83 18.79 

1 7.12 3.91 8.68 0.83 34.93 16.41 

3 9.48 13.71 5250.25 1.42 48.56 59.39 

1$

4
M . 1
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By comparing Table 4.1 and Table 4.2, it can be seen that the differences of 

tracking error for PDDO at different mass are much smaller than the PID controller. It can 

also be seen from Table 4.3 that despite the increment of load mass, the tracking error of 

PDDO does not deviate much though the errors are still considerably large. The PID 

controller, on the other hand, has large error variations when the load in the mechanism is 

increased. From these observations, the PDDO is said to be robust against variation of 

mass as it is insensitive towards such changes in the system. 

It is observed from Figure 4.41 that the PDDO controlled system becomes unstable 

when the mass is increased to 5kg. This condition might arise due to the large difference of 

nominal plant and real plant model since the mass changes is too large as mentioned in 

Section 2.3. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 In conclusion, the second order model transfer function of the ball screw 

mechanism is obtained using non-linear least square (NLLS) method. The PDDO was 

designed and its performances were evaluated through tracking test and robustness test. 

Based on the experiments, the characteristics of PDDO are summarized as follow: 

1. PDDO has higher tracking performances as compared to PID controller. Since a 

PID controller has to be tuned frequently due to changes of input, thus PID exhibits 

higher tracking error than PDDO. 

2. PDDO is proven to have higher adaptability than the PID controller. A PDDO is 

capable of estimating the possible disturbances arise from wear and tear of the 

mechanism and corrects its trajectory to follow the path of reference input.  

3. Though PDDO has higher tracking performance, the tracking error is still 

significantly large. To improve this flaw, a feedforward controller, Zero Phase 

Error Tracking Controller (ZPETC) is suggested to be included in the system. 

ZPETC is capable of eliminating the phase error that arises from the system zero 

that cannot be cancelled.  

4. In robustness test, PDDO proved to be robust towards varying mass in the system 

in comparisons with PID controller. When the load is increased, the tracking errors 

do not differ much. However, the system becomes unstable when it is subjected to 

high frequency and large movement with large load. To improve this condition, the 

bandwidth of the low pass filter, Q(s) is suggested to be increased. Increasing the 

filter bandwidth will allow the system to work in a larger frequency range, but 

exposed to high frequency noise as well. The bandwidth, however, should not 

exceed the bandwidth of the plant. 
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In future work, a feedforward controller, ZPETC should be included to eliminate 

the tracking error. To reduce the effect of wear and tear, the ball screw mechanism must be 

lubricated frequently especially at the screw shaft. The robustness of the PDDO can be 

further tested with other parameter variations such as variation of disturbance signals or 

frictional torque.  
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APPENDIX A 

 

 

TRACKING ERROR OF PDDO CONTROLLER 

 

 

Frequency 

(Hz) 

Displacement 

(mm) 

Number 

of Test 

Absolute 

Peak Error 

(µm) 

Average 

Peak 

Error(µm) 

Standard 

Deviation 

(µm) 

0.1 

0.1 

1 26.30 

19.82 6.9423 

2 33.50 

3 24.70 

4 19.30 

5 23.70 

6 14.70 

7 13.70 

8 15.40 

9 12.70 

10 14.20 

1 

1 99.20 

89.72 8.5949 

2 88.90 

3 84.90 

4 83.10 

5 88.40 

6 85.60 

7 109.60 

8 88.20 

9 89.10 

10 80.20 

5 

1 395.90 

399.77 4.5463 

2 406.40 

3 406.00 

4 398.80 

5 397.90 

6 395.70 

7 400.40 

8 393.80 

fr.& &£
£
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9 397.80 

10 405.00 

1 

0.1 

1 44.40 

38.37 3.5881 

2 40.20 

3 40.70 

4 39.04 

5 37.93 

6 34.31 

7 34.64 

8 33.19 

9 37.42 

10 41.82 

1 

1 55.24 

60.55 4.9519 

2 67.10 

3 65.00 

4 56.06 

5 58.01 

6 60.00 

7 64.86 

8 67.03 

9 55.00 

10 57.16 

5 

1 295.00 

295.38 3.6226 

2 295.00 

3 290.00 

4 295.00 

5 295.00 

6 302.83 

7 300.00 

8 292.98 

9 295.00 

10 292.98 

3 

0.1 

1 46.72 

50.07 5.4583 

2 63.18 

3 45.29 

4 51.26 

5 44.10 

6 52.57 

7 51.26 

8 48.80 

9 46.26 

10 51.26 

1 
1 83.66 

79.33 2.4428 
2 82.71 

fr.
&
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3 76.47 

4 79.01 

5 79.40 

6 77.47 

7 75.98 

8 79.82 

9 79.82 

10 79.01 

5 

1 135.86 

129.28 8.4647 

2 131.33 

3 119.86 

4 143.84 

5 126.33 

6 120.14 

7 119.86 

8 126.33 

9 129.61 

10 139.61 
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APPENDIX B 

 

 

TRACKING ERROR OF PID CONTROLLER 

 

 

Frequency 

(Hz) 

Displacement 

(mm) 

Number 

of Test 

Absolute 

Peak Error 

(µm) 

Average 

Peak 

Error(µm) 

Standard 

Deviation 

(µm) 

0.1 

0.1 

1 43.00 

55.57 9.610763642 

2 66.70 

3 71.30 

4 48.20 

5 48.60 

6 45.20 

7 59.80 

8 61.40 

9 60.20 

10 51.30 

1 

1 150.90 

156.67 12.74833758 

2 165.00 

3 124.90 

4 163.60 

5 159.50 

6 158.80 

7 152.70 

8 155.90 

9 171.60 

10 163.80 

5 

1 169.80 

163.56 19.94499102 

2 133.30 

3 171.40 

4 164.70 

5 134.00 

6 147.80 

7 165.30 

fe-& &$
£

"in

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



53 

 

8 195.70 

9 182.00 

10 171.60 

1 

0.1 

1 132.99 

121.72463 9.958853159 

2 134.87 

3 135.00 

4 122.02 

5 120.11 

6 107.16 

7 113.75 

8 121.24 

9 110.10 

10 120.00 

1 

1 237.94 

228.37408 9.58275778 

2 233.41 

3 223.99 

4 228.41 

5 228.99 

6 229.67 

7 231.35 

8 228.41 

9 237.58 

10 203.99 

5 

1 402.97 

391.40974 13.97164294 

2 382.94 

3 378.03 

4 387.97 

5 417.14 

6 393.03 

7 376.55 

8 385.87 

9 409.32 

10 380.28 

3 
0.1 

1 114.79 

105.57381 9.620298614 

2 111.24 

3 114.40 

4 115.66 

5 87.90 

6 92.90 

7 101.01 

8 101.52 

9 105.66 

10 110.66 

1 1 367.88   
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2 352.88  

 

 

 

 

 

342.58184 

 

 

 

 

 

 

16.7599807 

3 344.30 

4 319.30 

5 334.30 

6 314.30 

7 351.39 

8 342.88 

9 359.30 

10 339.30 

5 

1 873.08 

874.0247 6.717243244 

2 868.03 

3 874.13 

4 888.03 

5 873.03 

6 871.88 

7 871.88 

8 878.03 

9 879.13 

10 863.03 
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