CHARACTERIZATION OF SILICON ON INSULATOR (SOI) MOSFET USING TCAD TOOLS

MUHAMMAD NAZIRUL IFWAT BIN ABD AZIZ

This report is submitted in partial fulfilment of the requirements for the Bachelor of Electronic Engineering (Computer Engineering) with Honors

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2014

		JTeN	UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
and a state			
UNIVER	SITI TEKNIKA	I MALAYSIA MELA	BORANG PENGESAHAN STATUS LAPORAN
			PROJEK SARJANA MUDA II
	Tajuk Pro	DE	ARACTERIZATION OF SILICON ON INSULATOR(SOI) MOSFET VICE USING TCAD TOOLS
	Sesi Peng	gajian : 1	1 3 / 1 4
Sa	79	MUHA	MMAD NAZIRUL IFWAT BIN ABD AZIZ
		*****	(HURUF BESAR)
me sy:	ngaku men mat keguna	nbenarkan Lap 1an seperti ben	ooran Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat ikut
1.	Laporan	adal ah hakmi l	lik Universiti Teknikal Malaysia Melaka.
2	Perpusta	kaan dibenark	kan membuat sali nan untuk tujuan pengajian sahaja
3.	Perpusta	kaan dibenark	kan membuat salinan lapuran ini sebagai bahan pertukaran antara inst
	pengajia		
4	Silatand	akan(v)	
		SULIT [#]	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
		TERHAD**	**(Mengandung maklumatterhadyangtelah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	\checkmark	TIDAK TERHAD	
		anti	DR. FAUZIYAH BINTI SALEHUDDIN Di Steinstenabilkattian Fakulti Kejuruteraan Elektronik dan Kejuruteraan Kamputer Univerniti Tenkkai Minayso kelake (UTEM) Hang Tuan Jaya, 76100 Durran Tunggal, Melaka
		TANDADANGAN	PENULIS) (COP DAN TANDATANGAN PENYELIA)

I

DECLARATION

I declare that this thesis entitle "Characterization of Silicon on Insulator (SOI) using TCAD tools" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

	and m-
Signature	· QVY
Name	Muhammad Nazirul Ifwat Bin Abd Aziz
Date	. 6 June 2013

11

DECLARATION

I declare that this thesis entitle "Characterization of Silicon on Insulator (SOI) using TCAD tools" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	and -
Name	Muhammad Nazirul Ifwat Bin Abd Aziz
Date	6 June 2013

SUPERVISOR VERIFICATION

I hereby declare that I have read this report and in my opinion this report is sufficient in

termsof scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) with Honours. DR. FAUZIYAH BINTI SALEHUDDIN Pengarah Kanan Fakuhr Buttersan Electronic transformer Signature Signature Hang Tuah Jaya. 76100 Durian Tunega, Melaka Supervisor's Name : DR. FAUZIYAH BINTI SALEHUDDIN

Date

6/6/2014 :

Ш

Dedicated to my beloved family especially my parents, supervisor, lecturers, all my friends.

IV

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful, all praises to Allah for the strengths and His blessing in completing this thesis.

First and foremost, I wish to express my sincere appreciation to my supervisor, Dr. Fauziyah Binti Salehuddin, for encouragement, guidance, advices and suggestions throughout the experimental and thesis works have contributed to the success of this project.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is impossible to list all of them in this limited space.

Finally, i would like to thank my family for their unconditional love and support during completing this project. I would not have been able to complete this thesis without their continuous love and encouragement.

V

ABSTRACT

Thisproject present the result of process and device semulation using silvaco TCAD tools to develop Silicon on insulator (SOI) MOSFET. The aim for this project is to analyze the electrical characteristic of SOI MOSFET and the effect of Buried oxide layer (BOX) with the variation of thickness. The result obtained show that as the electrical characteristic of SOI MOSFET greatly increase with the presence of BOX layer. This SOI MOSFET has higher Drive current (ION), lower Leakage current and lower Subthreshold Swing (Ss). With this increasing perfomance, the switching speed for this MOSET device increase and it has lower power consumption as the ratio of ION/IOFF is larger. For information, the larger the ratio, the lower the power consumption. This project also analyze the effect of oxide layer thickness toward the electrical characteristic and the result shown that the thickness of oxide layer increase will decrease the perfomance of device. The best thickness is 100nm thickness layer but if its to thick then the Finfet technology need to be used as prevention because when the thickness become too smal it will also decrease the perfomance.Finfet refer as one of the types of multigate transistor. The term FinFET is to describe a nonplanar, double-gate transistor built on an SOI substrate.

ABSTRAK

Projek ini membentangkan hasil daripada proses dan peranti semulation menggunakan alat-alat silvaco TCAD untuk membangunkan Silikon pada penebat (SOI) MOSFET . Tujuan projek ini adalah untuk menganalisis ciri elektrik MOSFET SOI dan kesan dikebumikan lapisan oksida (BOX) dengan perubahan ketebalan . Keputusan yang diperolehi menunjukkan bahawa ciri elektrik SOI MOSFET sangat meningkatkan dengan kehadiran lapisan BOX. Ini MOSFET SOI mempunyai arus yang lebih tinggi Drive (ION), lebih rendah Kebocoran Swing Subthreshold semasa dan lebih rendah (SS) . Dengan Prestasi ini yang semakin meningkat, kelajuan pensuisan untuk ini peningkatan peranti MOSET dan ia mempunyai penggunaan kuasa lebih rendah sebagai nisbah ION / IOFF adalah lebih besar . Untuk pengetahuan, lebih besar nisbah , lebih rendah penggunaan kuasa. Projek ini juga menganalisis kesan oksida ketebalan lapisan ke arah ciri elektrik dan hasilnya menunjukkan bahawa ketebalan oksida lapisan peningkatan akan mengurangkan Prestasi peranti . Ketebalan terbaik adalah 100nm lapisan tebal tetapi jika untuk tebal maka teknologi Finfet yang perlu digunakan sebagai pencegahan kerana apabila ketebalan menjadi terlalu smal ia juga akan mengurangkan perfomance.Finfet rujuk sebagai salah satu jenis transistor multigate . FinFET adalah untuk menggambarkan tak satah, dua pintu transistor dibina di atas substrat SOI.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
REPORT STATUS FORM	ii
DECLARATION	iii
SUPERVISORVERIFICATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vī
ABSTRACT	vii
ABSTRAK	viii
TABLEOFCONTENT	ix
LISTOFTABLES	xii
LISTOFFIGURES	xiii
LISTOFABBREVIATIONS	xv

1 INTRODUCTION

1.1	Introduction	1
1.2	Objectives of the project	4
1.3	Problem Statement	4
1.4	Scope of the project	4
1.5	Project outline	3

VIII

LITERATURE REVIEW

2.1		MOSI	FET (Metal-Oxide-Semiconductor Field Effect		
		Trans	istor)	6	
		2.1.1	Electrical characteristic of MOSFET	7	
	2.2	Silico	n-On-Insulator(SOI) MOSFET Design.	8	
	2.3	Short-	Channel effect	9	
		2.3.1	Off-state Leakage Current (IOFF)	10	
		2.3.2	V _{TH} Roll-Off	10	
		2.3.3	Drain induced barrier lowering (DIBL)	11	
	2.4	Floati	ng body charge on SOI	12	
	2.5	Kink l	Effect	13	
	2.6	Impro	ved sub threshold characteristic.	14	
	2.7	SOI fa	brication material	14	
		2.7.1	Separation by Implantation of Oxygen (SIMOX)	15	
		2.7.2	Zone melting Recrystallization (ZMR)	15	
		2.7.3	Full isolation by Porous Oxidized Silicon	16	
		2.7.4	Wafer Bonding (WB)	16	
		2.7.5	Silicon On Sapphire (SOS)		
			& Silicon On Zirconia (SOZ)	17	
	2.8	Fully-	Depleted SOI MOSFET and Partially-Depleted SOI		
		MOSE	ET	18	
	2.9	Drain	Breakdown Mechanism in Ultra-thin-Film SOI		
		MOSE	FET	19	
	2.10	lon Im	plantation	20	
		2.10.1	Halo Implantation	22	
		2.10.2	Source Drain implants	23	
	2.11	Proces	s parameter Variantions	24	
		2.11.1	Taguchi Method	25	
		2.11.2	Orthogonal array	25	
		2.11.3	Experiment Design strategy	25	

C Universiti Teknikal Malaysia Melaka

2.11.4 Signal-to-Boise (S/N) ratio	26
2.11.5 Analysis of variance	28

х

3 METHODOLOGY

3.1 Introduction 29 3.2 Basic flowchart of NMOS transistor 29 3.3 Fabrication and Design of 100n Silicon on Insulator(SOI) MOSFET. 31 Mesh Initialization 3.3.1 32 3.3.2 Well Oxidation 32 3.3.3 Box formation 33 3.3.4 Mask Nitride Deposition 34 3.3.5 Photoresist Layer Ethcing 35 3.3.6 Setup a Silicon Trench Machine 36 3.3.7 Trench Sidewall Passivation 37 Chemical Mechanical Polishing (CMP) 3.3.8 38 3.3.9 Sacrificial Oxidation 39 3.3.10 Gate Oxide Growth 40 3.3.11 Threshold Voltage Adjustment Implantation 41 3.3.12 Polysilicon Gate Deposition 42 3.3.13 Halo Implantation 43 3.3.14 Sidewall Spacer 44 3.3.15 Source/Drain Implantation 45 3.3.16 Silicide Growth 46 3.3.17 PECVD&BPSG Oxide Deposition 47 3.318 Pattern Source/Drain Contact and Compress Implantation 48 3.3.19 Aluminium Metallization 49 3.3.20 Aluminium Ethcing 50

C Universiti Teknikal Malaysia Melaka

3.3.21 Mirror SOI MOSFET Structure and Define

Electrode	51	
Optimization Approach	53	
Taguchi Method Approach	55	
Identification of Process Parameter and their level	55	
Selection of Orthogonal Array	56	
	Optimization Approach Taguchi Method Approach Identification of Process Parameter and their level	Optimization Approach53Taguchi Method Approach55Identification of Process Parameter and their level55

4

RESULTS AND DISCUSSION

4.1	Bulk MOSFET	57	
4.2	Silicon on insulator (SOI) MOSFET	60	
4.3	Comparison between Bulk MOSFET and 100nm		
	SOI MOSFET	64	
4.4	200nm SOI MOSFET	64	
4.5	300nm SOI MOSFET	67	
4.6	Comparison between different thickness of Buried Oxide		
	Layer (BOX)	70	
4.7	Optimization of V _{TH} , I _{OFF} , I _{ON} and S _S using L9		
	Taguchi Design	71	
4.8	L9 array Design Taguchi Method	72	
4.9	V _{TH} , I _{OFF} , I _{ON} and S _S Values Acquisition	73	
4.10	Taguchi Method Analysis Response, V_{TH} , I_{OFF} , I_{ON} and S_S	75	
	4.10.1 Signal to Noise Analysis	76	
	4.10.2 Prediction S/N ratio	78	

5

CONCLUSION AND RECOMMENDATION

5.1	Conclusion	85
5.2	Recommendation and Future Developement	86
REF	REFERENCES	
APPENDIX A		64

LIST OF TABLES

NO. TITLE

PAGES

2.1	L9 Experiments with two levels of Noise Factor	26
3.1	Process parameters variation of 100n SOI MOSFET	56
3,2	L9 Orthogonal array layout	56
4.1	Comparison between SOI MOSFET and Conventionak Bulk	
	MOSFET	64
4.2	Comparison of electrical characteristic between different BOX thickness	71
4.3	Process parameters and their levels	72
4.4	Noise factor and thier levels	72
4.5	Taguchi Experimental Layout using L9 Orthogonal array	72
4.6	V _{TH} Values for 100nm SOI MOSFET Device	73
4.7	IoN Values for 100nm SOI MOSFET Device	74
4.8	IOFF Values of 100n SOI MOSFET Device	74
4.9	S ₈ Values for 100n SOI MOSFET Device	75
4.10	Mean, variance and S/N ratio for VTH	76
4.11	S/N ratio for Leakage current IOFF	77
4.12	S/N ratio for Subthreshold swing, SS	77
4.13	S/N ratio for Drive current, ION	78
4.14	Prediction S/N ratio for nominal-the-best of VTH	82
4.15	S/N ratio for optimize leakage current	82

4.16	Prediction S/N ratio for smaller-the-best of IOFF	83	
4.17	S/N ratio for Subthreshold swing	83	
4.18	Prediction S/N ratio for smaller-the-best of Ss	84	
4.19	S/N ratio for Drive current	84	
4.20	Prediction S/N ratio for Larger-the-best of ION	82	

XIII

LIST OF FIGURES

NO.	TITLE	PAGES	
1.1	The basic structure of the MOSFET device	2	
2.1	Basic structure of MOSFET	6	
2.2	MOSFET operating modes.	7	
2,3	Physical structure of basic SOI devices	9	
2.4	Direct Carrier Injection.	11	
2.5	Example of a Drain-Induced Barrier-Lowering	12	
2.6	Fabrication of SIMOX Wafers	15	
2.7	Unibond fabrication process	17	
2.8	Bulk type (a) Cross section of a partially depleted (b) and a Fully depleted (c) long channel SOI MOSFET	18	
2.9	Localized Implantation of Boron Atoms	21	
2.10	Dopant Profile after implantation.	21	
2.11	Halo implant - only two quarters of total dose for two rotations.	23	
3.1	Basic NMOS Process Simulation Flowchart	30	
3.2	Flowchart of SOI MOSFET Design	28	
3.3	P-type Substrate Doping Concentration	32	
3.4	MOSFET Structure after Oxide Deposition	33	
3.5	Box Formation of SOI MOSFET	34	

XIV

3.6	MOSFET Structure after Nitiride Deposition and Photoresist	35
3.7	MOSFET Structure after Photoresist Etching	36
3.8	MOSFET Structure after Nitride Etching and Photoresist removal	
3.9	MOSFET structure after New Oxide Layer Deposition	38
3.10	MOSFET Structure after CMP	39
3.11	MOSFET Structure after sacrificial Oxidation	40
3.12	MOSFET structure after gate oxide Growth	41
3.13	MOSFET Structure after Threshold Voltage Adjusment Implantati	
3.14	MOSFET Structure after Polysilicon Gate Deposition	43
3.15	MOSFET Structure before and after Halo Implantation	44
3.16	MOSFET Structure after Depositing and Etching Nitride	45
3.17	MOSFET Structure after Source/Drain implantation	46
3.18	MOSFET Structure after silicide growth	47
3.19	MOSFET Structure after BPSG Process	48
3.20	MOSFET Sturcture after compress implantation	49
3.21	MOSFET Structure after aluminium Matellization	50
3.22	MOSfet Structure after after Aluminium etching	51
3.23	100n SOI MOSFET Structure after mirorring	52
3.24	Optimization process Flowchart	54
3.25	Major steps of implenting the taguchi method	55
4.1	Bulk MOSFET	57
4.2	Graph I _D -V _D for Bulk MOSFET	58
4.3	Graph I _D -V _G for bulk MOSFET	59
4.4	ION and IOFF value for bulk MOSFET	59
4.5	Output window of bulk MOSFET	60
4.6	SOI MOSFET structures	61

1.0

xv

4.7	Countour of 100nm SOI MOSFET	61
4.8	Graph I _D -V _D for 100nm SOI MOSFET	62
4.9	Graph I _D -V _G for 100nm SOI MOSFET	62
4.10	I _{ON} and I _{OFF} value for 100nm SOI MOSFET	63
4.11	Characteristic value of SOI MOSFET	63
4.12	200nm SOI MOSFET Structure	65
4.13	Graph I _D -V _D for 200nm SOI MOSFET	65
4.14	Graph I _D -V _G for 200n SOI MOSFET	66
4.15	ION and IOFF value 200nm SOI MOSFETS	66
4.16	Electrical Characteristic value of 200n SOI MOSFET	67
4.17	300nm SOI MOSFET design Structure	68
4.18	Graph I _D -V _D for 300nm SOI MOSFET	68
4.19	Graph I _D -V _G for 300nm SOI MOSFET	69
4.20	I _{ON} and I _{OFF} value 300nm SOI MOSFETS	69
4.21	Electrical Characteristic value of 300nm SOI MOSFET	70
4.22	S/N graph of threshold voltage for SOI MOSFET	78
4.23	S/N graph of Leakage Current for SOI MOSFET	79
4.24	S/N graph of Drive current (ION) for SOI MOSFET	80
4.25	S/N graph of Drive current (ION) for SOI MOSFET	80

XVI

LIST OF ABBREAVIATIONS

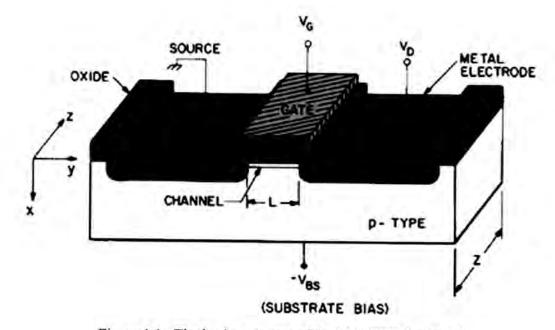
SOI	Silicon on Insulator	
MOSFET -	Metal-Oxide Semiconductor Field Effect Transistor	
DIBL	Drain induced Barrier Lowering	
ITRS	International Technology Roadmap Semiconductor	
SIO ₂	Silicon Dioxide	
TCAD	Techonology Computer Aided System	
SNR	Signal to Noise Ratio	
nm	Nanometer	
NMOS	N-Channel MOSFET	
PMOS	P- Chanel MOSGET	

XVII

LIST OF SYMBOLS

ID	-	Drain Current
I _{OFF}	-	Off-state Leakage Current
V _{DS}	÷	Drain to source Voltage
V _G	-	Gate Voltage
V _{GS}	÷	Gate to source Voltage
\mathbf{V}_{TH}	(*	Threshold Voltage
I _{ON}	der i	Drive current
Ss		Subthreshold Swing
S/N	÷	Signal to noise

XVIII


CHAPTER 1

INTRODUCTION

1.1 Introduction

The Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) is a device that widely used in industry, especially digital circuit, microprocessor and memory circuit industry. This MOSFET is used as a switch or to amplify the electronic signal. In one integrated circuit (IC), they will be a lot the number of MOSFET because of his small size characteristic thus simply make it another advantage of this device to the electronic industry in the world [3]. MOSFET technology is well-known in the industry. This technology has been used a lot and has been around for many years starting from early 60-70s. There have been a lot of gains in the performance of the MOSFET device since their creation with the size keeps decrease with improving years [1].

The cost and size are the main attribute of MOSFETS devices. Since the technology is well established thus make the fabrication process of this device have experienced decreased of cost. With the advantage of smaller physical shape than the others' technologies, thus allowing more devices in silicon wafer in fabrication makes MOSFET devices mainly used in the creation of Complementary Metal Oxide Semiconductor (CMOS) logic chips because of its cheap cost. Now MOSFET technologies have become the heart of every computer. An enhancement-type NMOS

transistor was used during this course of this project. Figure 1.1 shows the basic structure of MOSFET device.

Figure 1.1: The basic structure of the MOSFET device [2].

Silicon-On-Insulator (SOI) devices are new technology that recently popular. Although the technology has been around since 1960's, this SOI less popular of before and lately become popular because of the expense associated with producing the devices. SOI is the advancement of standard MOSFET technologies that improve in their characterizations. The main difference between SOI MOSFET and regular MOSFET is the inclusion of an insulating layer. SOI devices are created from a thin layer of silicon placed on top of a layer of insulating [1].

The purpose of this research is to design and analyze the electrical characterization of Silicon-On-Insulator (SOI) Metal-Oxide-Semiconductor Field Effect transistor (MOSFET) performance using Technology Computer-Aided Design (TCAD) tools. TCAD tool is a program that's been made to allow the creation, fabrication, and simulation of semiconductor devices. This TCAD tool is used for designing various

applications for semiconductor device. Silicon-On-Insulator (SOI) device is a siliconbased device built upon an insulating substrate [3].

Substrate for this SOI can be ranged from a rate material such as ruby, diamond and sapphire to common materials that largely been used in the semiconductor industry that is silicon dioxide. The SOI design that is being applied in this research was SOI MOSFET design, using silicon dioxide for the dielectric. The structure of SOI MOSFET is no different from a regular MOSFET design, but the difference is the existence of a thick layer of insulating material under the depletion region that gives a slightly different value of electrical value in this design thus improve its characteristic value. During this research, Silvaco's TCAD tools were used to create simulations of the device. These simulations provided a great deal of opportunities to examine the issue of various parameters on the overall device performance. Throughout the years, the operation of each simulated device gradually been improved and until an optimal device, configuration was produced for the particular applications.

The primary advantage of SOI performance over conventional bulk CMOS is more often than not from lower average threshold-voltage due to transient floating body (FB) operation and lower junction capacitance. SOI MOSFET has two types, which is the partial depleted and fully depleted SOI MOSFET. Nowadays, the partially depleted (PD) instead of fully depleted (FD) SOI becomes the desirable choice for mainstream digital applications, due to the easy manufacturing, better controlling of short channel effect, large design window for the threshold voltage and lower self-heating effect.

1.2 Objectives of the project

There are three main objectives of this research:

- i) To create an initial SOI-MOSFET device design.
- ii) To analyze the characterization of SOI MOSFET.
- iii) To compare the electrical characteristic between SOI MOSFET and conventional bulk MOSFET.

4

1.3 Problem statement

In the material universe, before certain MOSFET device, proceed with the fabrication process the SILVACO TCAD tools (virtually fabrication tools) will be used to design it at the 1st hand. This will make the cost of production been minimized effectively. In current MOSFET devices, there is physical limitation, which is the short channel effect that is found in conventional MOSFETS as the gate length is further downsized. There are also a few problems in device performance for such an example, switching effect, which came from the higher leakage current (I_{OFF}) [3]. Besides that because of the high-power usage and low speed characteristic of conventional circuit MOSFET must be improved to a new level so that this device can improve and be a lot more useful for future. Hence, the new device concept that has more improved than conventional MOSFET is introduced. That device calls Silicon-On-Insulator (SOI) MOSFET. To prove that statement, research has been conducted to analyze the characteristic of SOI MOSFET.

1.4 Scope of the project

This research mainly focused on designing the device structure and determined the characterization of Silicon - On - Insulator (SOI) MOSFET. Besides that, this project was conducted by using Silvaco's TCAD tool. The Silvaco's TCAD simulation tool is

