STUDY ON SUITABLE HIGH PERFORMANCE COMPUTING
SYSTEM FOR HD IMAGES PROCESSING

CHENG KAH LOON

This Report Is Submitted In Partial Fulfilment Of Requirements For The Bachelor
Degree of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2014

i

UNIVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY ON SUITABLE HIGH PERFORMANCE COMPUTING SYSTEM
Tajuk Projek : .FORHD IMAGES PROCESSING

Sesi
Pengajian

(HURUF BESAR)
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
Sila tandakan (V) :

*(Mengandungi maklumat yang berdarjah keselamatan atau
SULIT* kepentingan Malaysia seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

**(Mengandungi maklumat terhad yang telah ditentukan oleh

TERHAD organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

n Elektronlk Da

i an oleh:
RIS ol CHUaN
M) Pensya.rah Kanar
% gl

(TANDATANGAN PENULIS) (COP DAN TANDA;TMQ_A

“Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan

yang tiap-tiap satunya telah saya jelaskan sumbernya.”

Tandatangan L et

Nama Penulis s T L e,

ND
Tarikh . 27 JUNE 2014

..

“Saya/kami akui bahawa saya telah membaca karya ini pada pandangan saya/kami

karya ini adalah memadai dari skop dan kualiti untuk tujuan penganugerahan Ijazah

Sarjana Muda Kejuruteraan Elektronik (Kejututeraan Komputer).”

N K CHULAN
Tandatangan T Fakuy Kejury

Nama Penyelia e M,

Tarikh el L[.??\.‘F

For my beloved, father and mother

vii

ABSTRACT

Under the International Road Assessment Programme (iRAP, sponsorship of UK
charity organization FIA Foundation for the Automobile and Society), led by AAM, JKR,
JKJR, and Malaysia Institute of Road Safety Research (MIROS), a series of road safety
assessment activity over 3600 km of road in Malaysia has been carried out. The current
system being used to carry out the road safety assessment was found not adequate by
MIROS. A cost effective, reliable and robust road survey data collection and analysis
system is required by MIROS for this road rating assessment. As a sub-system of this
required system, a computer system which is capable of real-time processing of multiple
high definitions (HD) image streams is utterly needed to be designed and developed.
Manager-worker pattern is an effective concurrent software programming technique that
could utilize the available central processing unit (CPU) cores in a computer system. By
implementing this programming pattern, the HD image capture, display and record process
from multiple cameras streams can be processed concurrently and thus a result of better
performance and lesser latency can be obtained. The system is then further developed with
the enhancement of swipe gesture enabled graphical user interface (GUI). The CPU usage
after running the GUI-based software for capturing, displaying and recording video from
three cameras when using Intel i7-4700MQ with camera setting of 1080p resolution,

4096kbps bit rate , and 15 frames per second is 61%,

(©) Universiti Teknikal Malaysia Melaka

viii

ABSTRAK

Di bawah Program Penilaian Jalan Antarabangsa (iRAP, tajaan UK organisasi
kebajikan FIA Yayasan Automobil dan Masyarakat), yang diketuai oleh AAM, JKR, JKJR
dan Malaysia Institut Penyelidikan Keselamatan Jalan Raya (MIROS), satu siri aktiviti
penilaian keselamatan jalan raya yang meliputi jalan raya sepanjang 3600 km di Malaysia
telah dijalankan. Sistem semasa yang digunakan untuk menjalankan penilaian keselamatan
jalan raya tersebut didapati tidak memenuhi keperluan MIROS. Satu sistem pengumpulan
data dan analisis kajian jalan yang berkos efektif, berkebolehpercayaan dan mantap amat
diperlukan oleh MIROS untuk menjalankan aktiviti penilaian jalan tersebut. Sebagai sub-
sistem daripada system tersebut, satu sistem komputer yang mampu memproseskan
beberapa aliran imej yang berdefinisi tinggi (HD) dengan masa nyata perlu direkai dan
dibangunkan. Corak Pengurus-Pekerja merupakan satu teknik pengaturcaraan serentak
yang berkesan dan ia menggunakan unit pemprosesan pusat (CPU) yang sedia ada dalam
suatu sistem komputer. Dengan melaksanakan corak ini, tangkapan, paparan dan proses
rekod imej HD daripada pelbagai aliran kamera dapat diproses bersama dan dengan itu
hasilan video yang berprestasi lebih baik dan kependaman yang lebih kurang boleh
diperolehi. Sistem ini seterusnya dibangunkan dengan peningkatan antara muka grafik
pengguna (GUI). Penggunaan CPU selepas menjalankan perisian berasaskan GUI untuk
menangkap, memapar dan merakam video dari tiga kamera dengan menggunakan Intel 17-
4700MQ yang cameranya beresolusi 1080p, kadar bit sebanyak 4096kbps, serta 15 bingkai
sesaat adalah 61%.

TABLE OF CONTENT

CHAPTER TITLE

I

PROJECT TITLE

REPORT STATUS COMFIRMATION FORM

DECLARATION

VERIFICATION OF SUPERVISOR

DEDICATION
ACKNOWLEDGMENT
ABSTRACT
ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

1.1 BACKGROUND

1.2 PROBLEM STATEMENT

1.3 OBIJECTIVES

1.4 SCOPE OF PROJECT

1.5 STRUCTURE OF THESIS

LITERATURE REVIEW

2.1 PARALLEL COMPUTING

il
i1

v

vi
vil
viii

X
X1ii

Xiv

NN NN =

PAGE

III

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17

2.18

SOFTWARE PATTERN

PARALLEL SOFTWARE DESIGN
PRODUCER-CONSUMER PATTERN
MANAGER-WORKER PATTERN
MULTITHREADING
INTER-PROCESS COMMUNICATION
QUEUE

LOCK

SEMAPHORE

MUTEX

INTERNET PROTOCOL CAMERA
OPENCV

EMGUCV

NET FRAMEWORK

CAMERA PARAMETER

2.16.1 Image Resolution

2.16.2 Frame Rate

2.16.2 Bit Rate

INTEL CORES

2.17.1 Number Of Cores

2.17.2 Intel Turbo Boost

2.17.3 Cache Size

2.17.4 Hyper-Threading

GPU ACCELERATED IMAGE PROCESSING

METHODOLOGY

3.1
3.2
33

34

CAMERA PARAMETERS CONFIGURATION
HARDWARE DESIGN

SOFTWARE DEVELOPMENT WITH SERIALISE
PROGRAMMING

SOFTWARE DEVELOPMENT WITH PARALLEL

o« 3 N W W

10
11
11
12
12
12
13
13
13
14
14
15
15
15
15
16
16
16

18

18

22

22

23

3.5

PROGRAMMING

3.4.1 Capture Thread

3.4.2 Graphic Canvas Thread

3.4.3 Display Thread

3.4.4 Record Thread

SOFTWARE DEVELOPMENT WITH GUI

v RESULT AND DISCUSSION

4.1

4.2
43

4.4

4.5

CAMERA PARAMETERS
4.1.1 Video Resolution
4.1.1.1 1080p
4.1.1.2 720p
4.1.2 Frame Rate
4.1.2.1 25FPS
4.1.2.2 15FPS
4.1.2.3 SFPS
4.1.3 Bit Rate
4.1.3.1 6144 kbps
4.1.3.2 4096 kbps
4.1.3.3 1024 kbps
4.1.4 Data Tabulation
SERIALISED PROGRAMMING
SOFTWARE WITHOUT GUI
4.3.1 Runningin i3-2310M
4.3.2 Running in i7-4700MQ
SOFTWARE WITH GUI
4.4.1 Running in 17-4700MQ

PERFORMANCE COMPARISON AND DISCUSSION

A" CONCLUSION AND FUTURE WORK

5.1

CONCLUSION

25
25
25
25
25

26
27
27
27
28
30
30
31
33

xi

34

34
36
37
39
41
44
44
50
55
55
59

61
61

Xii

5.2 FUTURE WORK 62

REFERENCES 63

NO

4.1
4.2
4.3
4.4
4.5
4.6

LIST OF TABLES

TITLE

Results obtained for two different video resolutions.

Results obtained for three different frame rates

Results obtained from three different bit rates

Comparison of CPU utilisation for i3 and i7 (without GUI)
CPU utilisation of GUI-based software tested with 17
Comparison in CPU utilisation of the software with and without

GUI

xiii

PAGE

39
39
40
59
59
60

NO

2.1
2.2
23
24
2.5
3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

4.1

42

43

LIST OF FIGURES

TITLE

A Producer-Consumer pattern

A Manager-Workers organisation block diagram

Sequence Diagram for Manager-Workers Pattern

The operation of a FIFO queue

The difference between 60 fps and 24 fps

Network configuration page of the IndigoVision IP camera
Camera exposure setting

Configuration of frame rate and bit rate

Configuration of video resolutions

Block diagram of the proposed system

Timing diagram of serialised software to handle display and encode

operation of three cameras

Sequential diagram for video image capturing, displaying and
recording

Timing diagram of parallelise software to handle display and
encode operations of three cameras

CPU usage is around 83% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 1080p,
6144kbps, 25FPS) ‘

Calculated FPS (8.97666) output by the developed C++ program
for capture, display and record single camera stream with Intel i3
(camera setting: 1080p, 6144kbps, 25FPS)

CPU usage is around 30% when using Intel i3 CPU to capture,

display, and record single camera stream (camera setting: 720p,

Xiv

PAGE

24

24

27

28

29

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

6144kbps, 25FPS)
Calculated FPS (24.98) output by the developed C++ program for
capture, display and record single camera stream with Intel i3
(camera setting: 720p, 6144kbps, 25FPS)
CPU usage is around 31% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
6144kbps, 25FPS)
Calculated FPS (25.01) output by the developed C++ program for
capture, display and record single camera stream with Intel 13
(camera setting: 720p, 6144kbps, 25FPS)
CPU usage is around 14% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
6144kbps, 15FPS)
Calculated FPS (15.05) output by the developed C++ program for
capture, display and record single camera stream with Intel i3
(camera setting: 720p, 6144kbps, 15FPS)
CPU usage is around 7% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
6144kbps, SFPS)
Calculated FPS (4.998) output by the developed C++ program for
capture, display and record single camera stream with Intel i3
(camera setting: 720p, 6144kbps, SFPS)
CPU usage is around 33% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
6144kbps, 25FPS)
Calculated FPS (25.05) output by the developed C++ program for
capture, display and record single camera stream with Intel i3
(camera setting: 720p, 6144kbps, 25FPS)
CPU usage is around 24% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
4096kbps, 25FPS)
Calculated FPS (25.02) output by the developed C++ program for

capture, display and record single camera stream with Intel i3

XV

29

30

31

32

32

33

34

35

35

36

37

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

(camera setting: 720p, 4096kbps, 25FPS)

CPU usage is around 18% when using Intel i3 CPU to capture,
display, and record single camera stream (camera setting: 720p,
1024kbps, 25FPS)

Calculated FPS (25.03) output by the developed C++ program for
capture, display and record single camera stream with Intel i3
(camera setting: 720p, 1024kbps, 25FPS)

Graph of results obtained for three different frame rates

Graph of results obtained from three different bit rates

A typical serialised programming for capturing, displaying, and
recording three cameras

CPU usage of serialised software for three cameras when using
Inte] 13 (camera setting of the three cameras: 1080p, 4096kbps,
15FPS)

Quality of the images from three cameras when using Intel i3
(camera setting of the three cameras: 1080p, 4096kbps, 15FPS)
The CPU utilisation of an Intel i3 before running the software

The CPU utilisation after running the software for capturing,
displaying and recording video from one camera when using Intel
13-2310M (camera setting of camera #1: 1080p, 4096kbps, 15FPS)
Calculated FPS (15.09) output by the developed parallelised
software for capture, display and record single camera stream with
Intel i3-2310M (camera setting of camera #1: 1080p, 4096kbps,
15FPS)

The CPU utilisation after running the software for capturing,
displaying and recording video from two cameras when using Intel
13-2310M (camera setting of camera #1 & #2: 1080p, 4096kbps,
15FPS)

Calculated FPS (camera #1 14.79FPS; #2 15.02FPS) output by the
developed parallelised software for capture, display and record
single camera stream with Intel i3-2310M (camera setting of
camera #1 & #2: 1080p, 4096kbps, 15FPS)

The CPU utilisation after running the software for capturing,

Xvi

38

38

40
41
42

43

43

44

45

46

47

47

4.28

4.29

4.30
431

432

4.33

4.34

4.35

4.36

displaying and recording video from three cameras when using Intel
i3-2310M (camera setting of camera #1, #2 & #3: 1080p, 4096kbps,
15FPS)

Calculated FPS (camera #1 10.15FPS) output by the deveioped
parallelised software for capture, display and record single camera
stream with Intel 13-2310M (camera setting of camera #1 & #2:
1080p, 4096kbps, 15FPS)

Quality of videos from three cameras after the implementation of
Manager-Workers pattern

The CPU utilisation of an Intel 17 before running the software

The CPU utilisation after running the software for capturing,
displaying and recording video from one camera when using Intel
17-4700MQ (camera setting of camera #1: 1080p, 4096kbps,
15FPS)

Calculated FPS (15.07) output by the developed parallelised
software for capture, display and record single camera stream with
Intel 13-2310M (camera setting of camera #1: 1080p, 4096kbps,
15FPS)

The CPU utilisation after running the software for capturing,
displaying and recording video from two cameras when using Intel
17-4700MQ (camera setting of camera #1 & #2: 1080p, 4096kbps,
15FPS)

Calculated FPS (camera #1 14.79FPS; #2 15.02FPS) output by the
developed parallelised software for capture, display and record
single camera stream with Intel i3-2310M (camera setting of
camera #1 & #2: 1080p, 4096kbps, 15FPS)

The CPU utilisation after running the software for capturing,
displaying and recording video from three cameras when using Intel
17-4700MQ (camera setting of camera #1, #2 & #3: 1080p,
4096kbps, 15FPS)

Calculated FPS (camera #1 14.70; #2 14.72FPS; #3 14.72) output
by the developed parallelised software for capture, display and

record single camera stream with Intel i3-2310M (camera setting of

xvii

49

49

50
51

51

52

53

54

54

4.37

4.38

4.39
4.40
4.41
4.42

4.43

camera #1 & #2: 1080p, 4096kbps, 15FPS)

The CPU utilisation after running the GUI-based software for
capturing, displaying and recording video from one camera when
using Intel i7-4700MQ (camera setting of camera #1: 1080p,
4096kbps, 15FPS)

The CPU utilisation after running the GUI-based software for
capturing, displaying and recording video from one camera when
using Intel 17-4700MQ (camera setting of camera #1 & #2: 1080p,
4096kbps, 15FPS)

Left camera display

Middle camera display

Right camera display

The CPU utilisation after running the GUI-based software for
capturing, displaying and recording video from three cameras when
using Intel 17-4700MQ (camera setting of camera #1, #2 & #3:
1080p, 4096kbps, 15FPS)

Graph of performance comparison

xviii

55

56

57
57
58
58

60

1.1

CHAPTER 1

INTRODUCTION

Background

At year 2000, the Road Assessment Programmes (RAPs) was initiated
by the Automobile Association in Europe to upgrade the road safety in low
and middle income countries. An umbrella organization, the International
RAP (iRAP) is setup to promote and overlook the consistency of the globally
implemented RAPs With the strong will and commitment demonstrated by
the government of Malaysia for road safety improvement, Malaysia was
selected as pilot country for the iRAP in the Asia region. Under the
sponsorship of UK charity organization FIA Foundation for the Automobile
and Society, led by AAM, JKR, JKJR, and Malaysia Institute of Road Safety
Research (MIROS), technology and system were provided by the member of
RAPs and up to 3600km of road has been inspected at year 2007. Several
countermeasures have been proposed to improve the road safety through the
analysis of the recorded video images. This project focuses in the design and
development of the high performance video image processing system that
could effectively make use of the available computing power to handle

multiple incoming video image streams.

1.2 Problem Statement

The allocation of system resource for high definitions images processing is
the main concern of this study. The effect of various camera parameters setting with

respect to the system resource consumption is yet to be determined.

The suitable system design to effectively make use of the available system

resources of the computing device is yet to be determined.

1.3 Objectives

The following objectives will be achieved throughout this project:

1. To analysis the effect of various camera parameters setting with respect to the
performance of the CPU for image processing related task.

2. To study the underlying programming technique for optimal system
performance.

3. To design a touch screen based Graphical User Interface (GUI) to perform the

video displaying and recording.

14 Scope of Project

Since the main constraint of the project is to design the system in a cost
effective way, this study will not take graphic processing unit (GPU) into
consideration but only utilises the available central processing unit (CPU) of a

computing device.

1.5 Structure of Thesis

The related components of the high perfoﬁnance video image processing,
both the hardware and software, will be firstly reviewed in the chapter 2. The needed
components and the design of the system will be explained in detail in chapter 3. The
results obtained with the defined methods will then be discussed in chapter 4. The

first part of results discusses about the effect of different camera parameters to the

CPU utilisation and the video frame rate. The next part demonstrates the feasibility
of the high performance parallel programming by implementing the Manager-
Worker pattern without GUI and subsequently followed with the implementation of
GUL Last but not least, the achievement of this project is summarized at the end of

this chapter.

CHAPTER 2

LITERATURE REVIEW

Nowadays, the concept of “using more than one computation resource for
solving certain time consuming problems” is getting more interesting and valid.
However, coordination among multiple computation resources and intelligent work
distribution among them is a major challeﬁge for system designer. Naazish, et al.
(2013) described parallel computing as the simultaneous execution of the same task
on multiple processors in order to obtain faster results. Parallel computing has
traditionally been associated with ‘high performance computing’, which uses high-
end computer resources to solve ‘grand challenge’ computational problems (Jorge
2010). The expected result is a faster computation compared to execution on a
single-processor/core system. With the advent of commodity-market multi-core
processors (AMD 2008; Intel 2008) and cluster blade computers or low-cost servers,
parallel computing is now available to fnany application developers. It is always
desirable to have the results available as soon as possible, and for many applications,
such as real-time imaging system, late results often imply useless results. A high
performance parallel video image computing should consist of both software and
hardware implementations to process the video images produced by the Internet

Protocol Enabled Camera. Suitable design of software pattern is necessary by

CHAPTER 2

LITERATURE REVIEW

Nowadays, the concept of “using more than one computation resource for
solving certain time consuming problems” is getting more interesting and valid.
However, coordination among multiple computation resources and intelligent work
distribution among them is a major challen‘ge for system designer. Naazish, et al.
(2013) described parallel computing as the simultaneous execution of the same task
on multiple processors in order to obtain faster results. Parallel computing has
traditionally been associated with ‘high performance computing’, which uses high-
end computer resources to solve ‘grand challenge’ computational problems (Jorge
2010). The expected result is a faster computation compared to execution on a
single-processor/core system. With the advent of commodity-market multi-core
processors (AMD 2008; Intel 2008) and cluster blade computers or low-cost servers,
parallel computing is now available to many application developers. It is always
desirable to have the results available as soon as possible, and for many applications,
such as real-time imaging system, late results often imply useless results. A high
performance parallel video image computing should consist of both software and
hardware implementations to process the video images produced by the Internet

Protocol Enabled Camera. Suitable design of software pattern is necessary by

utilising the operating system features. The performance of the hardware of the

computing device such as CPU cores should also be taken care throughout this study.

2.1 Parallel Software Pattern and Design

A pattern is ‘a recurring solution to a standard problem’ (Coplien 1994;
Gabriel 1996). Jorge (2010) considered a software pattern as a function-form relation
that occurs in a context, where the function is described in problem domain terms as
a group of in resolved trade-offs or forces, and the form is a structure described in
solution domain terms that achieves a good and acceptable equilibrium among those

forces.

In general, the concept of software patterns is not confined to a particular
software domain. As software patterns express recurring designs, they can be used to
document design decisions at any level in any software domain. This generality is
particularly important for parallel software design: software patterns are useful in
documenting the design decisions in any aspects of a complete parallel system: for
example: to document hardware systems or subsystems, communication and

synchronization mechanisms, partitioning and mapping policies and so on.

Parallel software design is critical to effective parallel programming, since it
is significantly harder than programming sequential programs on single-processor
computers. Parallel software design begins when a need for high performance is
identified, and software designer starts creating a parallel software system. Often the
hardware and software resources are given. For example, a parallel program might
have to be designed using fine other important elements, such as operating system or
middleware. The problem of parallelization is normally described in terms of a data
set and an algorithm that performs operations in it. This algorithm can be a sequential
algorithm or a parallelized algorithm. The main performance goal is usually

optimizing execution time (Pancake & Bergmark 1990; Pancake 1996).

Parallel programming relies on the coordination of computing resources so
that they work simultaneously and efficiently towards a common objective.
Achieving such objective solely depend upon significant effort from software

designers due to the complexity involved. As parallel programming is intended to

improve performance, software designers also need to consider cost-effective
techniques for performance measurement and analysis. Most programming problems
have several possible parallel solutions, so parallel software design cannot easily be
reduced to recipes. At best, the designer has access to several parallel organization
structures, and needs to decide which to use as a basis, selection is performed
commonly based only on the information available at this stage and the intuition of

the software designers.

2.1.1 Producer-Consumer Pattern

Producer-Consumer pattern is a ‘classic concurrent programming design
pattern, where the processes are classified as either producers or consumers. The
producer is the process which generates some data and put it into a shared data
structure while the consumer is responsible for the data removing from that structure.
This pattern describes the multi-process synchronisation problem in which the
producer is not going to increment with any data when the shared data structure is
full while the consumer will not attempt to remove any data from an empty structure.
The proposed solution is that either the producer goes to sleep or discard the data if
the shared data structure, such as a queue, is full; until the consumer consumes an
item from the queue and notifies the producer to continue incrementing the queue.
Likewise, the solution could be the consumer goes to sleep if it finds the queue to be
empty till the producer generates and puts the data into the queue and wakes the

consumer up. Figure 2.1 illustrates the Producer-Consumer pattern.

