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ABSTRACT

Under the International Road Assessment Programme (iRAP, sponsorship of UK
charity organization FIA Foundation for the Automobile and Society), led by AAM, JKR,
JKJR, and Malaysia Institute of Road Safety Research (MIROS), a series of road safety
assessment activity over 3600 km of road in Malaysia has been carried out. The current
system being used to carry out the road safety assessment was found not adequate by
MIROS. A cost effective, reliable and robust road survey data collection and analysis
system is required by MIROS for this road rating assessment. As a sub-system of this
required system, a computer system which is capable of real-time processing of multiple
high definitions (HD) image streams is utterly needed to be designed and developed.
Manager-worker pattern is an effective concurrent software programming technique that
could utilize the available central processing unit (CPU) cores in a computer system. By
implementing this programming pattern, the HD image capture, display and record process
from multiple cameras streams can be processed concurrently and thus a result of better
performance and lesser latency can be obtained. The system is then further developed with
the enhancement of swipe gesture enabled graphical user interface (GUI). The CPU usage
after running the GUI-based software for capturing, displaying and recording video from
three cameras when using Intel i7-4700MQ with camera setting of 1080p resolution,

4096kbps bit rate , and 15 frames per second is 61%,

(©) Universiti Teknikal Malaysia Melaka
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ABSTRAK

Di bawah Program Penilaian Jalan Antarabangsa (iRAP, tajaan UK organisasi
kebajikan FIA Yayasan Automobil dan Masyarakat), yang diketuai oleh AAM, JKR, JKJR
dan Malaysia Institut Penyelidikan Keselamatan Jalan Raya (MIROS), satu siri aktiviti
penilaian keselamatan jalan raya yang meliputi jalan raya sepanjang 3600 km di Malaysia
telah dijalankan. Sistem semasa yang digunakan untuk menjalankan penilaian keselamatan
jalan raya tersebut didapati tidak memenuhi keperluan MIROS. Satu sistem pengumpulan
data dan analisis kajian jalan yang berkos efektif, berkebolehpercayaan dan mantap amat
diperlukan oleh MIROS untuk menjalankan aktiviti penilaian jalan tersebut. Sebagai sub-
sistem daripada system tersebut, satu sistem komputer yang mampu memproseskan
beberapa aliran imej yang berdefinisi tinggi (HD) dengan masa nyata perlu direkai dan
dibangunkan. Corak Pengurus-Pekerja merupakan satu teknik pengaturcaraan serentak
yang berkesan dan ia menggunakan unit pemprosesan pusat (CPU) yang sedia ada dalam
suatu sistem komputer. Dengan melaksanakan corak ini, tangkapan, paparan dan proses
rekod imej HD daripada pelbagai aliran kamera dapat diproses bersama dan dengan itu
hasilan video yang berprestasi lebih baik dan kependaman yang lebih kurang boleh
diperolehi. Sistem ini seterusnya dibangunkan dengan peningkatan antara muka grafik
pengguna (GUI). Penggunaan CPU selepas menjalankan perisian berasaskan GUI untuk
menangkap, memapar dan merakam video dari tiga kamera dengan menggunakan Intel 17-
4700MQ yang cameranya beresolusi 1080p, kadar bit sebanyak 4096kbps, serta 15 bingkai
sesaat adalah 61%.
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1.1

CHAPTER 1

INTRODUCTION

Background

At year 2000, the Road Assessment Programmes (RAPs) was initiated
by the Automobile Association in Europe to upgrade the road safety in low
and middle income countries. An umbrella organization, the International
RAP (iRAP) is setup to promote and overlook the consistency of the globally
implemented RAPs With the strong will and commitment demonstrated by
the government of Malaysia for road safety improvement, Malaysia was
selected as pilot country for the iRAP in the Asia region. Under the
sponsorship of UK charity organization FIA Foundation for the Automobile
and Society, led by AAM, JKR, JKJR, and Malaysia Institute of Road Safety
Research (MIROS), technology and system were provided by the member of
RAPs and up to 3600km of road has been inspected at year 2007. Several
countermeasures have been proposed to improve the road safety through the
analysis of the recorded video images. This project focuses in the design and
development of the high performance video image processing system that
could effectively make use of the available computing power to handle

multiple incoming video image streams.



1.2 Problem Statement

The allocation of system resource for high definitions images processing is
the main concern of this study. The effect of various camera parameters setting with

respect to the system resource consumption is yet to be determined.

The suitable system design to effectively make use of the available system

resources of the computing device is yet to be determined.

1.3 Objectives

The following objectives will be achieved throughout this project:

1. To analysis the effect of various camera parameters setting with respect to the
performance of the CPU for image processing related task.

2. To study the underlying programming technique for optimal system
performance.

3. To design a touch screen based Graphical User Interface (GUI) to perform the

video displaying and recording.

14 Scope of Project

Since the main constraint of the project is to design the system in a cost
effective way, this study will not take graphic processing unit (GPU) into
consideration but only utilises the available central processing unit (CPU) of a

computing device.

1.5 Structure of Thesis

The related components of the high perfoﬁnance video image processing,
both the hardware and software, will be firstly reviewed in the chapter 2. The needed
components and the design of the system will be explained in detail in chapter 3. The
results obtained with the defined methods will then be discussed in chapter 4. The

first part of results discusses about the effect of different camera parameters to the



CPU utilisation and the video frame rate. The next part demonstrates the feasibility
of the high performance parallel programming by implementing the Manager-
Worker pattern without GUI and subsequently followed with the implementation of
GUL Last but not least, the achievement of this project is summarized at the end of

this chapter.



CHAPTER 2

LITERATURE REVIEW

Nowadays, the concept of “using more than one computation resource for
solving certain time consuming problems” is getting more interesting and valid.
However, coordination among multiple computation resources and intelligent work
distribution among them is a major challeﬁge for system designer. Naazish, et al.
(2013) described parallel computing as the simultaneous execution of the same task
on multiple processors in order to obtain faster results. Parallel computing has
traditionally been associated with ‘high performance computing’, which uses high-
end computer resources to solve ‘grand challenge’ computational problems (Jorge
2010). The expected result is a faster computation compared to execution on a
single-processor/core system. With the advent of commodity-market multi-core
processors (AMD 2008; Intel 2008) and cluster blade computers or low-cost servers,
parallel computing is now available to fnany application developers. It is always
desirable to have the results available as soon as possible, and for many applications,
such as real-time imaging system, late results often imply useless results. A high
performance parallel video image computing should consist of both software and
hardware implementations to process the video images produced by the Internet

Protocol Enabled Camera. Suitable design of software pattern is necessary by
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utilising the operating system features. The performance of the hardware of the

computing device such as CPU cores should also be taken care throughout this study.

2.1  Parallel Software Pattern and Design

A pattern is ‘a recurring solution to a standard problem’ (Coplien 1994;
Gabriel 1996). Jorge (2010) considered a software pattern as a function-form relation
that occurs in a context, where the function is described in problem domain terms as
a group of in resolved trade-offs or forces, and the form is a structure described in
solution domain terms that achieves a good and acceptable equilibrium among those

forces.

In general, the concept of software patterns is not confined to a particular
software domain. As software patterns express recurring designs, they can be used to
document design decisions at any level in any software domain. This generality is
particularly important for parallel software design: software patterns are useful in
documenting the design decisions in any aspects of a complete parallel system: for
example: to document hardware systems or subsystems, communication and

synchronization mechanisms, partitioning and mapping policies and so on.

Parallel software design is critical to effective parallel programming, since it
is significantly harder than programming sequential programs on single-processor
computers. Parallel software design begins when a need for high performance is
identified, and software designer starts creating a parallel software system. Often the
hardware and software resources are given. For example, a parallel program might
have to be designed using fine other important elements, such as operating system or
middleware. The problem of parallelization is normally described in terms of a data
set and an algorithm that performs operations in it. This algorithm can be a sequential
algorithm or a parallelized algorithm. The main performance goal is usually

optimizing execution time (Pancake & Bergmark 1990; Pancake 1996).

Parallel programming relies on the coordination of computing resources so
that they work simultaneously and efficiently towards a common objective.
Achieving such objective solely depend upon significant effort from software

designers due to the complexity involved. As parallel programming is intended to



improve performance, software designers also need to consider cost-effective
techniques for performance measurement and analysis. Most programming problems
have several possible parallel solutions, so parallel software design cannot easily be
reduced to recipes. At best, the designer has access to several parallel organization
structures, and needs to decide which to use as a basis, selection is performed
commonly based only on the information available at this stage and the intuition of

the software designers.

2.1.1 Producer-Consumer Pattern

Producer-Consumer pattern is a ‘classic concurrent programming design
pattern, where the processes are classified as either producers or consumers. The
producer is the process which generates some data and put it into a shared data
structure while the consumer is responsible for the data removing from that structure.
This pattern describes the multi-process synchronisation problem in which the
producer is not going to increment with any data when the shared data structure is
full while the consumer will not attempt to remove any data from an empty structure.
The proposed solution is that either the producer goes to sleep or discard the data if
the shared data structure, such as a queue, is full; until the consumer consumes an
item from the queue and notifies the producer to continue incrementing the queue.
Likewise, the solution could be the consumer goes to sleep if it finds the queue to be
empty till the producer generates and puts the data into the queue and wakes the

consumer up. Figure 2.1 illustrates the Producer-Consumer pattern.



