"I hereby declare that I have read through this report entitle "*The Effect of Priority Fitness Scheme for Controlling Robustness of Gantry Crane System*" and found out that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Control, Instrumentation and Automation)"

THE EFFECT OF PRIORITY FITNESS SCHEME FOR CONTROLLING ROBUSTNESS OF GANTRY CRANE SYSTEM

NOORLIEYANA BINTI RAMELE

This Report Is Submitted In Partial Fullfillment Of Requirements For The Bachelor Degree Of Electrical Engineering (Control, Instrumentation and Automation)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I declare that this report entitle "*The Effect of Priority Fitness Scheme for Controlling Robustness of Gantry Crane System*" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

ACKNOWLEDGMENT

Assalamualaikum w.b.t.

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this final year project 1. First and foremost, I would like to take this opportunity to express my sincerely gratitude and appreciation to my parents and my family for the moral support.

Special appreciation goes to my helpful supervisor, Mr Hazriq Izzuan Bin Jaafar for support and encouragement. His invaluable help of constructive comments and suggestions that he gave truly help the progression and smoothness of the final year project. The co-operation is much indeed appreciated.

Last but not least, my deepest gratitude goes to all staff at my faculty, Faculty of Electrical Engineering, my friends and everyone who are helping me to success .I am very appreciate the opportunity for let me gain invaluable knowledge and learn the valuable experiences. To those who indirectly contributed in this project, your kindness means a lot to me. Thank you very much for the wonderful hands.

ABSTRACT

In the industrial application, Gantry Crane System (GCS) plays an important role to control the trolley movement and payload oscillation in order to reduce the percentage of accident occurs to the surrounding. To solve the problem, the development of the actual behavior of the dynamic nonlinear GCS is presented by implementing with and without using PID+PD controller. In dynamic model system, Lagrange equation is derived. A combination of the PID+PD controller are used to control the desired position of trolley movement and minimize the angle of payload oscillation. The Particles Swarm Optimization (PSO) is used for tuning the PID+PD controller parameter in term of Overshoot (OS), Settling Time (Ts) and Steady-State Error (SSE) via Priority Fitness Scheme (PFS). Those three type of transient response will be rearranged according to the priority implementation. Then, the simulation show that the system have a better performance when the OS is set as a highest priority followed by Ts and SSE. Finally, the investigation of the robustness of GCS is accomplished by adjusting various desired position, payload mass and cable length.

ABSTRAK

Dalam permohonan perindustrian, Sistem Crane gantri (GCS) memainkan peranan yang penting untuk mengawal pergerakan troli dan muatan ayunan untuk mengurangkan peratusan kemalangan berlaku ke persekitaran. Untuk menyelesaikan masalah ini, pembangunan tingkah laku sebenar tak linear GCS dinamik dibentangkan dengan menggunakan dan tanpa menggunakan PID+PD pengawal. Dalam sistem model dinamik, persamaan Lagrange diperolehi. Gabungan pengawal PID+PD digunakan untuk mengawal kedudukan yang dikehendaki gerakan troli dan mengurangkan sudut muatan ayunan. *Particle Swarm Optimization* (PSO) digunakan untuk memperhalusi PID+PD pengawal parameter dari segi terlajak (OS), Penyelesaian Masa (Ts) dan Steady-State Ralat (SSE) melalui *Priority Fitness Scheme* (PFS). Tiga jenis sambutan fana akan disusun semula mengikut keutamaan pelaksanaan. Kemudian, simulasi menunjukkan bahawa sistem yang mempunyai prestasi yang lebih baik apabila OS ditetapkan sebagai keutamaan tertinggi diikuti oleh Ts dan SSE. Akhirnya, penyiasatan keteguhan GCS dicapai dengan melaraskan kedudukan diingini pelbagai, muatan besar-besaran dan panjang kabel.

TABLE OF CONTENT

CHAPTER	TITLE		PAGE
	ACKN	OWLEDGEMENT	iv
	ABSTH	RACT	V
	TABLI	E OF CONTENT	vii
	LIST C	DF TABLE	ix
	LIST C	OF FIGURE	X
CHUR	LIST C	OF ABBREVIATIONS	xii
TEA	LIST (DF APPENDICES	xiii
1 5	INTRO	DUCTION	1
	" Lawn	Gantry Crane System	1
4	1.2	Problems statement	3
-	1.3	Motivation	3
1.12		Objectives	4
01	1.5	Scopes	4
	1.6	Project Outlines	5
2	LITER	RITURE REVIEW	6
	2.1	Theory and Basic Principle	6
		2.1.1 PID controller	6
		2.1.1 Particle Swarm Optimization (PSO)	7
	2.2	Previous Research	
		2.2.1 Controller of GCS	8
		2.2.2 Tuning Method on Gantry Crane System	11
		2.2.3 Robustness of the GCS	13

2.3 Summary and Discussion 15

CHAPTER	TITLE		PAGE
3	METHO	DOLOGY	17
	3.1	Flow chart	17
	3.2	Gantt Chart and Project Milestone	20
	3.3	Nonlinear Model of GCS	22
		3.3.1 Lagrange's equation for Modeling of GCS	23
		3.3.2 The DC motor derivation	26
	3.4	Simulation on Gantry Crane System	28
		3.4.1 Simulation on Gantry System without Controller	28
		3.4.2 Simulation on Gantry System with PID-PD	30
		Controller	
	3.5 AY	PSO Implementation	31
	3.6	Priority Fitness Scheme (PFS)	32
-	3.5	Controlling Robustness	34
F	3.6	Conclusion	34
4	RESULT	TS AND DISCUSSIONS	35
	4.1/10	Result of simulation without using controller	35
	4.2	Result of simulation using PID +PD controller	42
	4.3	Analysis Responses of GCS Performance	34
U	INI44ERS	Implementation of PSO via PFSIA MELAKA	45
	4.5	The effect of PFS for controlling robustness	50
	4.4	Conclusions	55
5	CONCL	USIONS AND FUTURE WORK	56
	5.1	Conclusion	56
	5.2	Recommendation and Future Work	57
REFE	RENCES		58
APPEN	NDICES		62

LIST OF TABLE

NO.	TITLE	PAGE
2.1	Effect of Performance	7
3.1	Gantt Chart for FYP 1	20
3.2	Gantt Chart for FYP 2	21
3.3	Project Milestone	21
3.4	System Parameter for GCS	22
3.5	Six cases of Transient Responses	32
4.1	Reading of simulation results without controller	41
4.2	The performance result of GCS with PID+PD controller	44
4.3	The system response of six cases	46
4.4	The summary performances of six cases on GCS	48
4.5	PID and PD parameter of six cases	48
4.6	PID+PD parameters PSO via PFSAL MALAYSIA MELAKA	50
4.7	The performance result of GCS	50
4.8	Reading of simulation results for controlling robustness	54

LIST OF FIGURE

NO.	TITLE	PAGE
1.1	Example of a Gantry Crane System	2
2.1	K-chart obtains from previous researches	16
3.1	(a) Stage in FYP 1 (b) Stage in FYP 2 in Project Workflow	17
3.2	Schematic diagram of a GCS	22
3.3	The illustration of finding v	24
3.4	DC Motor	26
3.5	The GCS without controller	29
3.6	The subsystem of GCS	30
3.7	The GCS with PID + PD controller	27
3.8	The process of PSO via Priority Fitness Scheme	33
4.1	The responses of (a) Trolley position (b) Payload oscillation	36
4.2	The responses of system with input voltage of 1V, 5V and 10V	37
	(a) Trolley position (b) Payload oscillation	
4.3	The responses of system with payload mass of 1 kg, 5 kg and 10	38
	kg (a) Trolley position (b) Payload oscillation	
4.4	The responses of system with trolley mass of 1 kg, 5 kg and 10 kg	39
	(a) Trolley position (b) Payload oscillation	
4.5	The responses of system with cable length of 0.1m, 0.5m and	40
	1.0m (a) Trolley position (b) Payload oscillation	
4.6	Setting of PID controller parameter using auto-tuning method.	42
4.7	(a) Response of trolley position (b) Response of payload	43
	oscillation	

4.8	System Response with variation of Desired Position	51
4.9	System Response with variation of Payload Mass	52
4.10	System Response with variation of Cable length	53

LIST OF ABRREVIATION

 GSC
 Gantry Crane System

 PFS
 Priority Fitness Scheme

 PID
 Proportional, Integrator and Derivative

 PSO
 Particle Swarm Optimization

 UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Data Collection of six cases	62
В	Global Best Fitness of case 6	69
С	Turnitin report	71
	UTER اونيوم سيتي تيڪنيڪل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

This section will give an introduction of the project with a few explanations about Gantry Crane System (GCS). This chapter includes the problem statement, objectives, scopes, motivation and the project outcomes for the whole project.

1.1 Gantry Crane System UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ALLAYS/

Gantry Crane System (GCS) is one of the most widely used for the movement of heavy loads such as in shipyards, industrial workshops, production lines and compartment terminals that commonly used to transfer the load from one area to another area. The control of GCS needs a skillful operator and manually conducted to get the best performance of the operation. However, when the GCS moves as fast as possible, the payload will give a huge impact on the payload oscillation if it suddenly stopped. This result can harm the surroundings environment and also might cause accident to worker around the area.

Figure 1.1: Example of a Gantry Crane System

By having the GCS application, it can control the desired position of trolley movement and minimize the angle of payload oscillation. The controller become more effective to move the trolley in the fast motion to the various desired position with low payload oscillation based on Priority Fitness Scheme (PFS) [6]. The implementation of PFS will observe the sensitivity toward motion where it is practical due to the complexity of real world problem in order to improve safety features.

The GCS can beneficiate greatly from the use of the computer based techniques, both as the operator support system and safety reasons, automatic control and disturbances compensator [1]. In this system, both feedforward and feedback control, as suspended load attached to the trolley is a practical application of the classical gravitational pendulum which can present by second order dynamics.

The main purpose of this project is controlling a robustness of GCS by using PID and PD controller. Robustness is an important performance in the practical applications of the crane system since the most of the crane systems are characterized by parameter variations [7]. The robustness of the overall system performances can be verified via PFS. Therefore, in order to

tune and finding the optimal parameter of PID and PD controller, Particles Swarm Optimization (PSO) will be applied.

1.2 Problem Statement

List of problem statement:

- i. It is complicated when most of GCS is operate in manually in order to control the payload oscillation and trolley movement at desired position. Many probabilities can cause an accident that related to human carelessness.
- ii. The length of cable and the weight of load can affect the performances of the system.It can cause the larger swing angle while carrying the maximum load. The higher payload oscillation can cause an accident to surrounding.

1.3 Motivation

In this project, PID and PD controller will be implemented to control the payload oscillation and trolley movement of the GCS. By using controller, it can reduce the percentage of accident that can be occurred. Then, Particles Swarm Optimization (PSO) will be applied to tune the controller in order to improve the performance. The robustness of the overall system performances will be verified by adjusting various payload, desired distances and cable length via Priority Fitness Scheme (PFS). Upon the sort of system considered, this project may help to improve the operation of GCS application in real world problem.

1.4 Objectives

1.5

There are several objectives of this project, which are:

- To develop and observe the actual behavior of the dynamic nonlinear GCS using PID+PD controller to control desired position of trolley movement and minimize the angle of payload oscillation.
- To implement Particles Swarm Optimization (PSO) in the GCS performance in terms of Overshoot, Settling Time and Steady State Error via Priority Fitness Scheme (PFS).
- iii. To investigate the robustness of GCS by adjusting various desired position, payload mass and cable length. Scopes اونیون سینی نیکنیک ر ملیسیا ملاک UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The scopes on this project are stated as below:

ALAYS/

- i. Develop the nonlinear modeling of the gantry crane using Lagrange's equation and implement at SIMULINK in MATLAB environment software 2012.
- Implement the optimal PID+PD controller. The optimal PD controller for control the swing-angle and optimal PID controller for movement of trolley to the desired position.
- iii. Observe the PSO implementation and the robustness of GCS based on priority based fitness for tuning the PID+PD controller.

1.6 Project Outlines

There are project outline, as listed below:

Chapter 1 is a brief introduction regarding the actual development of GCS in real life environment. The problem statement, objectives, and scopes of project are clearly states in report.

Chapter 2 is an explanation about GCS which consists of discussion based on several papers about GCS research. Moreover, the discussion on the controller and optimization also state in this chapter.

Chapter 3 is about the methodology of the whole project that includes PSM 1 and PSM 2. In this chapter, consist of model of the GCS which is referring to the other researchers model. The GCS was developed by the derivation of mathematical expression. The software for simulation also state in this chapter.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Chapter 4 state the simulation results and discussion which are consists of design and execution of the project. In this stage, result will be divided into two parts. The first part is regarding on implementation of GCS without any controller and the second part is implementation with PID+PD controller to GCS.

Chapter 5 consists of conclusion of the overall work and recommendation for the future works.

CHAPTER 2

LITERATURE REVIEW

This chapter will discuss regarding the previous research for controlling the GCS. Many type of controller will be exposed in this chapter. Firstly, the basic theory for PID controller and Particle Swarm Optimization (PSO) will be described. Other than that, the research about the robustness of GCS was included in this chapter.

2.1 Theory and Basic Principle

1/WD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

In order to control GCS, PID controller will be implemented. The tuning methods of controllers are used to develop the controller of GCS by using Particle Swarm Optimization (PSO) via PFS.

2.1.2 PID controller

PID controller also known as Proportional-Integral-Derivative is widely used in industrial control system. The three basic coefficients, proportional, integral and derivative

which are used to get optimal response. The reason of using PID controller in many situation is because a proportional controller may not give SSE performance needed in a system. An integral controller may eliminate SSE performance, but slow down a system. By adding a derivative term, it may help cure both of those problems. Table 2.1 shows the effect of performance on a closed-loop system.

Table 2.1: Effect of Performances

Parameter	Rise Time,	Steady-state	Overshoot,	Settling Time,
	(Tr)	Error, (SSE)	(OS)	(Ts)
Proportional, P	Decrease	Decrease	Increase	Small change
Integral, I	Decrease	Eliminate	Increase	Increase
Derivative, D	Small change	Small change	Decrease	Decrease

PID controller is used to calculate the error exist between measured process variable and a desired set point by calculating and outputting a correct action that can be used to adjust the process accordingly, the equation shown as below.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

$$u(t) = K_P e + K_i \int e \, dt + K_d \left(\frac{de}{dt}\right) \tag{2.1}$$

2.1.3 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a meta-heuristic global optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995 [33]. It is inspired by social behavior of bird flocking or fish schooling. Where it state that optimization performance was improved, and

the parameters were easier to tune and they performed more consistently across different optimization problems. In PSO, simple software agents, called particles, move in the search space of an optimization problem. The position of a particle represents a solution to the optimization problem at hand. Each particle searches for better conditions in the search space by changing its velocity according to rules originally inspired by behavioral models of bird flocking.

2.2 **Previous Research**

2.2.1 Controller of GCS

Nowadays, the performance of GCS can be controlled using various types of controller. The example of controller that have been proposed such as Linear Quadratic Regulator (LQR), Sliding Mode Controller (SMC), Delayed Feedback Signal (DFS), Fuzzy-Logic Controller (FLC), Fuzzy Sliding Mode Control (FSMC), H-infinity, Proportional-Derivation (PD) and Proportional Integrative Derivation (PID).

Many researcher was discussed to find the best controller to design the techniques for the anti-sway of the GCS. Then for varying the payload weight at rope tip, there are 3 feedback controller used which is LQR, DFS and PD. According to [2], LQR gave a better performance in minimize the overshoots and settling time even weight of payload is increased. Besides that, PD controllers have the slowest system response and give the low sensitivity to disturbance and higher steady state error. Other than that, PD controller has provided the smallest overshoot compared to LQR and DFS [3].

In additional, an Adaptive Fuzzy Logic Sliding Mode Controller (AFSMC) was proposed to approximate the uncertain parts of the underactuated nonlinear GCS and designed based on Lyapunov [4]. Besides, the stability of the closed-loop system is presented in the Lyapunov sense. The result showed the performances of AFSMC give high robust control performance when the system is subject to parametric uncertainties, external disturbances and parameter variations.

Furthermore, H-infinity is one of a good controller which is synthesis with pole clustering based on LMI techniques that used to control the position of payload with minimal swing. This type of controller is better because it can handle various type of control objectives such as disturbances cancellation, robust stabilization of uncertain systems, input tracking capability or shaping of the open-loop response. All of behavior was discussed in [5]. However, the weakness of H-infinity controller is in handling with transient response behavior and closed-loop pole location instead of frequency aspects.

Many researchers are using the implementation of the PID controllers into the system of GCS. The speed of the response is slightly improved at the expenses of decrease in the level of swing angle reduction by using the PID-PD control compared to PD with Input Shaping (IS) [6]. Recent work on GCS was proposed PD controller for both position and payload oscillation. But, for controlling position by using PD controller cause higher steady state error and low sensitivity to disturbances [7]. So that, PID controller was proposed for controlling GCS.

Another technique involved the use of the feedforward Posicant control and feedforward-feedback with PID controller to GCS in open loop condition [1]. This controller achieves the performance with no overshoot, but it is not effective in eliminating the steady state error for load disturbances.

The implementation of output-delayed feedback control (ODFC) technique is to control the oscillation of payload in GCS. This design contain prior knowledge of the controller gain for the time delay is treated as design parameter [8].

The Tensor Product (TP) model transformation and LMI framework is used to control nonlinear rotary pendulum gantry in two position which are hanging and upright [9]. By comparing both position, steady state error due friction effect were neglected in controller synthesis.

The optimal Composite Nonlinear Feedback (CNF) control show an effective result in controlling the trolley position and payload oscillation to achieve desired performances [10]. The Particle swarm optimization (PSO) was applied to search the optimal parameter. The finding is CNF control law shows better performances than the optimal linear control in GCS.

The combined finite element and analytical method is used to set up the motion equation to obtain the dynamic responses of gantry crane for load movement with suspension element in system [11]. The result shows machine performances should have accompanied with strong dynamical analysis. This is cause by the different parameter that can affect its behavior.

NURBS (Non-Uniform Rational B-Spline) interpolation is proposed to achieve high speed and high accuracy performances. Input shaper is a method to reduce the vibration in the system [12]. To increase the robustness of the system, a number of impulses can be added in the input shaper.

The Reach Control Problem (RCP) is formulate to solve the crane obstacle problem on a polytope state space [26]. The controller can be merged with an iterative control synthesis method to obtain an aggressive, safe and robust, maneuver without a predefined open-loop trajectory.

In order to control these three objective which are to reduce the vibration of the flexible cable, to move the payload to desired position and to guarantee the boundary tension constraint, the Internal-Barrier Lyapunov function system are used for the control design and stability analysis [14].

In this project, PID and PD controller are used to develop the dynamic nonlinear of GCS. The optimal PD controller is used for controlling payload oscillation and PID controller is used for controlling trolley movement to the desired position. It is seen a reliable controller performance and widely used in industries in term of simple structure and robust performance. Nevertheless, since PID controller is well known compared to the other control techniques, thus it is being chosen to be implement for this project.

2.2.2 Tuning Method on Gantry Crane System

Tuning method is a systematic adjusting procedure of the controller parameters to obtain a desired performance of the control system. In this research, the traditional tuning method and intelligent method was applied. The traditional tuning method such as trial and error is an easy way to tune the PID controller but is difficult to determine optimal PID parameter and the performance cannot be guaranteed [3]. This method is not applicable for processes when open loop is unstable. Some simple processes do not have ultimate gain such as first order and second order processes without dead time.

The example of traditional method is Ziegler-Nichols (Z-N). This tuning method is widely used but the disadvantages are it has a larger overshoot and oscillatory responses. This method also may lead to unstable operation or a hazardous situation due to set point changes or external disturbances. For that reasons, recently many researches implement the meta-heuristic methods using modern optimization on GCS to find the most appropriate and optimal value of PID parameter.

The optimization techniques is divide into two such as heuristic and mete-heuristic. Heuristic technique is more on derivation of mathematical equation compared to meta-heuristic that will find and solve the solution for the system. Many type of meta-heuristic technique, for example are Genetic Algorithm (GA), Practical Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony Algorithm (ACA), and Firely Optimization.

Many advantages of PSO including simplicity and easy implementation, the algorithm can be used widely in the fields such as function optimization, the model classification, machine study, neutral network training, the signal procession, vague system control and automatic adaptation control [15].

In this project, PSO is used as optimization tools because it was established since year 1995 until now and also known as simple optimization compared to others. By referring the existing research, PSO is used with a single objective and multi objective. Multi Objective Practical Swarm Optimization (MOPSO) is used to balance the impacts of PID tuning process to the GCS. By implementing the MOPSO algorithm, various performances results are produced according to desired position based on linear weight summation approach [16].

There are many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optimal by updating generations. PSO has no evolution operators likes crossover and mutation compared to GA it is easy to implement and there are few parameters to adjust. PSO has been successfully applied in many areas such as function optimization, artificial neural network training and fuzzy system control.

PFS is the latest method used to improve the optimization. Priority Fitness Scheme (PFS) was used to improve the Binary PSO algorithm in performance analysis for GCS in finding optimal PID+PD parameter [18]. PFS is proposed to study the system performances in term of Ts, OS, and SSE. In this research, settling time is set as highest priority, followed by steady-state error and overshoot.

By having that priority, the trolley movement and payload oscillation can be control effectively for GCS. The main strength of PSO is its fast convergence compares with many optimizations. Because of that, PSO is highly demand by researcher and makes them interesting to do more research about that optimization.

2.2.3 Robustness of the GCS

Robustness is an important issue in controlling the system design. Robust control theory is a method to measure the stability and the performance changes of a control system with a changing system parameter. In order to increase the efficiency and reliability of the system, these control system are required to give more accurate and better performance in the face of difficult and changing operating conditions.

Active Disturbance Rejection Control (ADRC) is proposed to control the payload position [19]. The external disturbance and unknown internal dynamics was added to the system and tested on hardware platform, then overcome with more excellent robustness result. The disturbance rejection minor loop was designed to compare the effects of external disturbance between the modeled dynamics and real plant. ADRC also used to design effectiveness decentralized in interconnected nonlinear system constituted by non-feedback subsystem of local trajectory tracking problem [20].

Other than that, input shaping was used with system inversion method is proposed to control the vibration and precise position in 3 dimensions system [21]. With the reducing of vibration on GCS, it will increase the robustness of this system.

The control law was introduced into the crane dynamic by varying periodically its cable length. Furthermore, this vibration control is feasible for gantry crane applications since it considered small frequencies in the control design [22].

A new anti-swing control scheme is proposed to control performances over existing method and shows strong robustness with unmodeled uncertainties and external disturbances [23].

The robust right coprime factorization design is applied to a planar gantry crane to avoid the influence of the unknown uncertainties for the nonlinear system [24]. The influence of motion friction and viscous friction of the linear motor and the cable is considered.

The control system is robust when it has low sensitivities, stable over the range of parameter variations and the performance continuous to meet the specifications in the presence of a set of changes in the system parameter.

In GCS, the performance and robustness of the feedback controllers in minimizing the sway angle was proposed in term of time response specifications and magnitude of sway [25]. The author evaluated the robustness on three feedback controls which are DFS, LQR and PD. The shorter settling time is important to prevent the rope swing too large. DFS and LQR show the faster settling time compared to PD controller.

In research by Wahyudi, he said that intelligent GCS is more robust to parameter variation compared the automatic gantry crane system [7]. In this paper, Fuzzy logic controller were adopted and designed for the intelligent GCS. In other hand, the automatic GCS is controlled by classical PID controllers. The parameter change in this system is the length variation of the cable.

Furthermore, the robustness of pendulum system control on GCS was investigated by using feedback controller design via constrained optimization [26]. The system robustness is measuring by optimization techniques which are Particle Swarm Optimization (PSO) and Differential Evolution (DE). This research is compared in term of repeatability and computation time and shows that DE is a better repeatability compared to PSO. However, the computational time much longer than PSO.

Other researcher investigates the robustness of the controller using Kharitonov's Stability [27]. In this research, the Genetic Algorithm (GA) is implemented to find the stable robust of PID. The controller is tested using Kharitonov's polynomials robust stability criterion to deal with the parametric uncertainly appears in GCS. The robustness of anti-swing controller is seen by variations of parameter, the cable length and payload mass. However, it is effectively works in specified range of variations parameter.

2.3 Summary and Discussion

In this project, an optimal PID+PD controller is develop for controlling the nonlinear GCS. The optimal parameter of PID+PD controller is obtained by Particle Swarm Optimization (PSO) algorithm and improved using Priority Fitness Scheme (PFS) as fitness function. As well known, many controllers have been implemented to get a better performance of GCS. PID controller was chosen because it is widely implemented in industry and also known as the easier controlling method to tune the system operation. Compares to other controller, PID controller make of simple design and easy to understands. PFS is the latest method to find optimal parameter in term of settling time, steady state error and overshoot. Usually, the latest method always is better and good performance compared to other method. In conclusion, the robustness of the GCS is investigated using PFS approach.

Figure 2.1 shows the k-chart obtains from the previous research. It shows the summaries flow of previous techniques used for controlling the GCS. The type of controller and optimization method use in this project also clearly observes in this figure.

Figure 2.1: K-chart obtains from previous researches

CHAPTER 3

METHODOLOGY

In this section, it consist of process workflow for the whole project. The PSO algorithm based on a priority fitness sheeme will be implemented for finding optimal PID+PD parameter. The robustness of GCS is investigated by adjusting various desired position, payload mass and cable length using PFS.

3.1 Flow chart

The flow chart shown in Figure 3.1 is for the overall process of this project. The flow chart consists of two stages which are stage 1 for FYP 1 and stage 2 for FYP 2. For this section only stage 1 will be carried out and the process will end until the progress report is submitted.

The stage 1 is the derivation of the equation using Lagrange's Equation. Moreover, the Simulink in MATLAB environment is used to complete the simulation part. simulation is done by investigated the performance of GCS with PID+PD controller and without PID+PD controller in order to observe the difference between it.

Task/Week	1	2	3	4	5	6	7	8	9	10	11	12	13
Deal with Supervisor and													
Confirmation of Title													
Research about GCS													
Research about PSO via PFS													

UNIVERSITI TELEVISION TABLE 3.2: Gantt Chart for FYP 2

Task/Week	1	2	3	4	5	6	7	8	9	10	11	12	13
Simulation on PSO via PFS													
Collect data of simulation													
Write Progress Report													
Analysis about the effect of rearrangement of PFS on the													
system													

Analysis about robustness of GCS							
Submit the Final report							
Final Presentation							

Table 3.3: Project Milestone

	TASK	DATE
	Deal with Supervisor and	08/09/2014 -
	Confirmation Project Title	24/09/2014
	Model GCS with derive the Lagrange	
Alley	Equation	23/10/2014
TE	Simulation with PID Controller	31/10/2014
Y	Seminar and Presentation Project	
	Proposal	19/11/2014
او	Implement PSO in GCS	. 1/3/2015
	Due Date for Send Full Report	1/6/2015
J١	Presentation of Project	9/6/2015

3.3 Nonlinear Model of GCS

The dynamic nonlinear of the GCS is model [6]. Lagrange equation is used in order to derive the GCS. Figure 3.2 shows the schematic diagram of the GCS where consists of m_1 , l, m_2 , x, θ , T and F denote as payload mass, cable length, trolley mass, horizontal position of trolley, swing angle, torque and driving force respectively. Parameters of the system show in Table 3.4 [6].

Figure 3.2: Schematic diagram of a GCS [6]

SAL WALAYSIA ME		
Table 3.4: System Parameter for GCS		
Parameters	Value	Unit
Payload mass (m_1)		kg
Cable length (1)	0.75	m
Trolley mass(m_2)	ی بیا جنب	kg m
Gravitational (g)	NIKAL 9.81	IA MEL ^M /s ²
Damping coefficient (B)	12.32	Ns/m
Radius of pulley (r_p)	0.02	т
Torque constant (K_T)	0.007	N_m/A
Electric constant (K_E)	0.007	V_s/rad
Radius of pulley (r_p)	0.02	т
Gear ratio (z)	15	-
3.3.1 Lagrange's equation for Modeling of GCS

Lagrange's equation was selected to model the gantry crane system (GCS) instead of several method. The equation is useful to provide the good system that will operate in GCS. In this system, two parameters used which is payload oscillation, θ and trolley displacement, *x*. Equation (3.1) is the standard Lagrange's equation:

$$\frac{d}{dt} \left[\frac{\delta L}{\delta \dot{\theta}_i} \right] - \frac{\delta L}{\delta \dot{\theta}_i} = Q_i$$
(3.1)

The derivation of Lagrange equation used the mathematical expression of kinetic and potential energy that related to the operation of GCS. The lagrange function is :

$$T = \frac{1}{2}mv^2 \tag{3.3}$$

$$V = \frac{1}{2}ky^2 + mgh$$
(3.4)

which T and V are respectively kinetic and potential energies. To find the position noted as v, the illustraction as Figure 3.2 is used and solve by trigonometry rule.

Figure 3.3 The Illustration of finding v

$$V_2^2 = \dot{x}^2 + \left(\dot{\theta}\right)^2 - 2\dot{x}l\dot{\theta}\cos\alpha$$
(3.5)

$$V_{1}^{2} = \dot{x}^{2} + \left(\dot{\theta}\right)^{2} - 2\dot{x}\dot{l}\dot{\theta}\cos\theta \qquad (3.6)$$

find the total kinetic energy by substitute the behavior of payload oscillation, and trolley displacement:

UNIVERSITI TEKN $T = T_{trolley} + T_{payload}$ A MELAKA

$$T = \frac{1}{2}m_1 x^2 + \frac{1}{2}m_2 x^2 + \frac{1}{2}m_1 x l \theta^2 + \frac{1}{2}m_1 x l^2 \theta \cos \theta$$
(3.7)

because of the gravity at trolley is zero. The total potential energy is

$$=-mgl\cos\theta \tag{3.8}$$

Largangian equation

$$L = T - V$$

$$= \frac{1}{2}m_1 \dot{x}^2 + \frac{1}{2}m_2 \dot{x}^2 + \frac{1}{2}m_1 \dot{x}l^2 \dot{\theta} + \frac{1}{2}m_1 \dot{x}l \dot{\theta} \cos \theta + mgl \cos \theta \qquad (3.9)$$

From above the position, \dot{x} and payload oscillation, $\dot{\theta}$ can be obtained:

For trolley displacement, x:

$$\frac{dl}{dx} = 0 \tag{3.10}$$

substitute Equation (3.12) and (3.13) in Equation (3.1). The equation of GCS is

$$m_1 x + m_2 x - m_1 x - m_1 l \theta \sin \theta + m_1 l \theta \cos \theta + B x = F$$
(3.14)

$$m_1 l^2 \dot{\theta} - m_1 x l \dot{\theta} \sin \theta + m_1 x l \cos \theta + m_1 g l \sin \theta = 0$$
(3.15)

3.3.2 The DC motor derivation

Since the DC motor is used in this GCS model as shown in Figure 3.4, derivation of DC motor is needed to drive the movement of trolley. The force equation is derived as below

Since moment inertia of motor, J_m inversely small, therefore:

$$T_m = D_m \frac{d\theta_m}{dt} = \frac{T_L}{r}$$
(3.17)

V is an input voltage

$$V = R_1 + L\frac{di}{dt} + V_b \tag{3.18}$$

L can be neglected

$$V = R_i + V_b \tag{3.19}$$

$$= R\left(\frac{T_m}{K_t}\right) + \left(K_e \frac{d\theta_m}{dt}\right)$$
(3.20)

$$= R \left(\frac{\frac{T_{L}}{r}}{K_{t}} \right) + K_{e} \frac{d}{dt} \left(\frac{r}{r_{P}} \cdot x \right)$$
(3.21)

$$r = \frac{RF_{rp}}{K_{tr}} + \frac{K_{er}}{r_p} \dot{x}$$
(3.22)

$$F = \frac{VK_{tr}}{R_{rp}} - \frac{K_e K_{tr}^2}{R_{rp}^2} \dot{x}$$
(3.23)

so, a complete nonlinear equation for the GCS can are [15]:

TEKNIN

$$V = \left[\frac{R_{rp}B}{K_{t}r} + \frac{K_{e}r}{r_{p}}\right] \cdot \left[\frac{R_{rp}}{K_{t}r}\right] m_{1} + m_{2}x + \left[\frac{R_{rp}}{K_{t}r}\right] m_{1}l \left[\frac{\partial\cos\theta - \partial^{2}\sin\theta}{\partial\sin\theta}\right]$$
(3.24)

$$m_1 l^2 \dot{\theta} - m_1 x l \theta \sin \theta + m_1 x l \cos \theta + m_1 g l \sin \theta = 0$$
(3.25)

where V is input voltage. Therefore, these two equations are represent for this nonlinear GCS as shown in Figure 3.2.

3.4 Simulation on Gantry Crane System

In this project, Simulink in MATLAB environment is used. The dynamic nonlinear model of GCS model is developed using (3.24) and equation (3.25). The GCS is tested with input voltage and two types of output, which is payload oscillation, θ and trolley movement, x was examined.

The GCS have two model of simulation. One is without controller and other is with PID+PD controller. The result is to examine the behavior of system by changing different parameters and the efficiency of PID controller with tuning method in Simulink MATLAB environment.

3.4.1 Simulation on Gantry Crane System without Controller

ALAYS/A

Firstly, the nonlinear of GCS is modeled without controller to observe the actual behavior of the system. The subsystem of GCS is created by inserting the lagrange equation that has been developed previously. All the parameter is set according to Table 3.4 to complete the simulation. The block diagram is designed below as shown in Figure 3.5 and 3.7.

In simulation of GCS without controller, the bang-bang input voltage signal is applied as an input voltage that allowed the trolley to accelerate, decelerate and immediately stop at certain position. This is because bang-bang input combination of two pulses to form a positive and negative period of the system.

Figure 3.6: The subsystem of GCS

3.4.2 Simulation on Gantry Crane System with PID-PD Controller

As shown in Figure 3.7, the input source used is the step input. The function of converter is to convert the input voltage to get the input in position or displacement value such as 1 V (voltage) is convert to 1 m (meter) since the Simulink do not have the unit of meter as an input.

Moreover, the PID controller was used to control the position of the trolley and PD controller used to control the output of payload oscillation. Based on understanding and theory from Table 2.1, the PID controller used to reduce the overshoot percentage of the system and minimize the time of the system. The important part is to eliminate the steady-state error because the system must achieve the desired position. Then, the PD controller is used to decrease the precent of overshoot in the payload oscillation while the steady-state error can not be eliminate. The subsystem is used similar with Figure 3.6. The system was automated tune using both controller to get the best performance of GCS.

3.5 **PSO Implementation**

PSO is an intelligent algorithm that search the best solution which relies on exchanging information through social interaction among particles. The basic concept of PSO is each particle will memorizes its personal best solution (P_{best}) which is corresponding to the best fitness value in the searced space. The particle also can access the global best solution (G_{best}) that is overall found by one member of the swarm.

It is initially conduct searching using swarm particles randomly. The initialization of particles is calculated using

$$x^{i} = x_{\min} + rand(x_{\max} - x_{\min})$$
(3.26)

(3.28)

where x_{max} and x_{min} are the maximum and minimum values in the search space. After finding the two best values, the modified position and velocity of each particle is calculated by the current velocity and the distance from pbest and gbest using (3.27) and (3.28)

$$v^{i+1} = \omega v^i + c_1 r_1 (P_{best} - x^i) + c_2 r_2 (G_{best} - x^i)$$
(3.27)

$$x^{i+1} = x^i + y^{i+1}$$

where:

 v^{i+1} = velocity of particle at iteration k AL MALAYSIA MELAKA

 ω = inertia weight factor

 c_1, c_2 = acceleration coefficients

 $\boldsymbol{r}_1, \boldsymbol{r}_2$ = random numbers between 0 and 1

 \mathbf{x}^{i+1} = position of particle at iteration k

For this system, the particle position in PSO is modeled as Eq. 3.29.

$$x^{i} = [K_{P}, K_{I}, K_{D}, K_{PS}, K_{DS}]$$
(3.29)

there are five optimal value of parameter should be find where x is the particle position, K_P, K_I, K_D are the PID parameter to control the trolley displacement of the GCS and K_{PS}, K_{DS} are the value of PD parameter to control the payload oscillation of GCS.

3.6 **Priority Fitness Scheme (PFS)**

The PFS is implemented on PSO algorithm to improved the tuning of PID parameters in term of Overshoot, OS, Setling Time, Ts and Steady-state Error, SSE. Those three transient responses will be rearranged to investigate which is properties that have the highest priority and the best arrangement to obtain the better performances. All properties are rearranged into 6 cases which are :

Table 3.5: Six cases of Transient Response

	CASE 1	CASE 2	CASE 3	CASE 4	CASE 5	CASE 6		
Properties 1	TS	TS	SSE	SSE	OS	OS		
Properties 2	OS	SSE	TS	OS	SSE	TS		
Properties 3	SSE	OS	OS	TS	TS	SSE		
"sanna								
heinin min india alumi alle								

Figure 3.8 shows the P_{best} and G_{best} in PSO updated according to the priority of those three properties.

Figure 3.8 : The process of PSO via Priority Fitness Scheme

3.7 Controlling Robustness

The robustness of GCS is examined by adjusting the variable parameter. In PSM 1, the parameter of input voltage, payload mass, trolley mass and cable length will be varied to observe the robust of the system without any controller implemented.

In second part after the implementation of PID+PD controller, the one of best parameter will be choosen from the six cases of transient responses properties to study the robustness of GCS in term of variation of desired position, payload mass and cable length.

3.8 Conclusion

This chapter consists of the method used in modeling the nonlinear system of GCS by using Simulink block diagram. The simulation of GCS is done with and without controller. The flow of project was described to show the process occur in this project included PSM 1 and PSM 2. The PSO is applied in the GCS performance in terms of OS, Ts and SSE via PFS and will be proceed in controlling the robustness of GCS.

رسيتى تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 4

RESULTS AND DISCUSSIONS

This chapter will discuss on result of whole project. For the first part is regarding on without any controller implementation to GCS and second part is implementation with PID+PD controller to GCS. Next, the system performance is improved by applying the PSO algorithm via PFS. The robustness of GCS is investigated.

4.1 Result of simulation without using Controller.

The simulation is conducted by Simulink block in MATLAB environment software as mention in Chapter 3. There are a four parameters have been examined such as variety of input voltage, cable length, payload mass and trolley mass in order to determine the actual behavior of the system. In simulation result, it should be produce various responses with setting the different value of parameter in GCS.

Trolley displacement and payload oscillation are observed to analyze the responses of GCS. Figure 4.1 shows the responses of dynamic nonlinear of GCS. All the parameters have been set up as in Table 3.1.

Figure 4.1: The responses of (a) Trolley position (b) Payload oscillation

Subsequently, it is desirable to examine the actual behavior of GCS performance under various parameters such as input voltage (v), payload mass (m_1) , trolley mass (m_2) and cable length (*l*). Figure 4.2 shows the responses of the trolley position and payload oscillation.

Figure 4.2: The responses of system with input voltage of 1 V, 5 V and 10 V (a) Trolley position (b) Payload oscillation

Figure 4.3: The responses of system with payload mass of 1 kg, 5 kg and 10 kg (a) Trolley position (b) Payload oscillation

Figure 4.4: The responses of system with trolley mass of 1 kg, 5 kg and 10 kg (a) Trolley position (b) Payload oscillation

Figure 4.5: The responses of system with cable length of 0.1 m, 0.5 m and 1.0 m (a) Trolley position (b) Payload oscillation

Parameter	Value	Trolley Position,(m)	Payload Oscillation, (rad)
	1.0 V	0.002	0.001
Voltage, V	5.0 V	0.008	0.004
	10.0 V	0.017	0.009
	1 kg	0.009	0.004
Payload mass,m1	5 kg	0.005	0.002
	10 kg	0.003	0.001
Rt MALATS	ARC.		
CILL.	l kg	0.025	0.004
Trolley mass, m ₂	5 kg	0.009	0.0025
E.	10 kg	0.005	0.0009
S'AAINO			
shi (0.1 m	0.0085	0.002
Cable length, l	0.5 m	0.009	0.0045
UNIVERSI	1.0 m	CAL MALAYSIA	MELAKA

Table 4.1: Reading of simulation results without controller

In Table 4.1 show the summaries of simulation reading for input voltage, payload mass, trolley mass and cable length. Based on Table 4.1, several observations can be analyzed from the result:

- i. When small input is applied to the system it produces a long distance of position while the oscillation is low. Moreover, once viewing at high input voltage it shows low distance of trolley position and also high oscillation is made.
- ii. Higher mass of payload was affect the distance of trolley position become shorter while the payload oscillation is decreasing.

- iii. Higher distance of trolley position can be reached with the lower mass of trolley itself. The maximum payload oscillation is also decrease.
- Lastly, by increasing the length of cable can be not much affect to the distance of trolley position. Then, increasing of payload oscillation can be seen when the cable length is increase.

4.2 Result of simulation using PID +PD controller.

The PID+ PD controller was applied in auto-tuning method to control the performance responses of GCS to complete the first objective in this project. This section show the simulation result. The configuration of the MATLAB Simulink model for PID+PD controller combines with GCS is shown as in Figure 3.9. The PID parameter is setting by using auto tuning as shown in Figure 4.6. The value of controller parameter that selected is choose by the best and the minimum value of performance parameter.

	Tuned	Block
Rise time (sec)	219	1.26e+003
Settling time (sec)	685	2.4e+004
Overshoot (%)	8.66	9.4
Peak	1.09	1.09
Gain margin (db @ rad/sec)	-Inf @ 0	149 @ 4.29
Phase margin (deg @ rad/sec)	60 @ 0.0061	60 @ 0.00105
Closed-loop stability	Stable	Stable

Figure 4.6: Setting of PID controller parameter using auto-tuning method

Figure 4.7: (a) Response of trolley position (b) Response of payload oscillation

Figure 4.6 shows the result of simulation to responses of trolley position and payload oscillation with PID+PD controller. Table 4.2 shows the performance result for each parameter are also been observed based on OS, Ts and SSE.

Performances						
Trolley Position Payload oscillatio				illation		
SSE (m)	OS (%)	Ts (s)	$\theta \max (rad)$	T (s)		
0.00	8.34	822	4.47 x 10 ⁻³	981		

Table 4.2: The performance result of GCS with PID+PD controller

Based on Table 4.2, OS response of payload oscillation is infinity. This result shows the unacceptable condition for payload oscillation response. However, overshoot response for trolley position is acceptable. Both responses have higher settling time and also take a long time to reach the stable condition.

4.3 Analysis Responses of GCS Performance without Optimization

From the first part of the result show in the simulation of GCS without control, it shows the trolley position and payload oscillation with various system parameters. It is noted that the system dynamic behaviors are affected by the system parameters. Moreover, the system shows that the result could not reach the stable condition.

In the second part, the responses show with the implementation combination PID+PD controller. The result obtained and the system shows in stable condition even the responses time is higher. The responses of the system in Figure 4.7 can be conclude that PID and PD controller cannot control the trolley position and payload oscillation in simultaneously. Even though the

auto-tuning method is the simplest method but the value obtained from this method does not refer on the respective parameter. Thus, the optimization will be used for handling this issue.

4.4 Implementation of PSO via PFS

PSO algorithm is proposed to find and tune the optimal parameter of PID+PD controller. In this project, 20 particles are simulated with 100 iterations. The initial particles are bounded at 0 to 200, c_1 and c_2 are set as 2. The initial value of ω is 0.9 and linearly decreased to 0.4 at some stage in iteration [28].

The of six cases of transient response shown in Table 3.5 in term of arrangement properties in PFS was done with 50 data collected for each cases. Table 4.3 shows the best result that selected from each cases. The result is show in Appendix A.

Table 4.3: The system response of six cases

	Trolley Displacement			Payload Oscillation	
	OS (%)	Ts (s)	SSE	θ _{max}	T(s)
Case 1	1.9592	0.7984	0.0099	1.0253	1.6680
Case 2	1.9680	0.7642	0.0101	1.0381	1.6700
Case 3	0.0147	4.3039	0.0000	0.2100	1.8533
Case 4	2.913	2.247	0.0000	0.246	2.125
Case 5	0.0000	4.9239	0.0000	0.1753	1.8977
Case 6	0.0000	2.2325	0.0000	0.2227	2.2035

Table 4.4. The summary performances of six cases on OC	1 auto 4.4. 1 no sui	initially period	ormances o	OI SIX	cases c	n uu:
--	----------------------	------------------	------------	--------	---------	-------

Table 4.5: PID and PD parameter of six cases

*3A1	Vn P	ID Controller	PD Co	ontroller	
ملاك	Kp	<u>K</u>	KD	Kps	KDS
Case 1	248.5908	0.0154	46.4062	0.0787	0.1049
Case 2	249.7825	K 0.0115	44.4295	A 0.0243 A M	(A 0.2074
Case 3	37.7647	0.0044	32.8556	41.9819	0.0520
Case 4	125.1931	0.0012	84.7052	197.9454	0.0032
Case 5	35.5036	0.0077	37.4201	56.2508	0.0554
Case 6	26.9260	0.0022	14.1940	44.4394	0.0566

The simulation with the PSO-tuned controller parameter via PFS is executed. Based on Table 4.3 and 4.4, several observations can be analyzed from the result of rearrangement properties of transient responses:

- a) In case 1 and 2, Ts is set to be the highest priority. The result provide the lowest value of Ts but the trolley not arrived at the desired position and unstable oscillation.
- b) In case 3 and 4, SSE is set as the first priority. The result shows the value of SSE is zero, means that the system is achieved accordingly at the desired position and the value of oscillation is minimum.
- c) In case 5 and 6, OS is set as the highest priority. The value of OS is clearly reduce to zero. The system is achieved at the desired position with the zero SSE and stable payload oscillation.

By referring the Table 4.3 and 4.4, it is clearly shows that case 6 is the best result of trolley position and the payload oscillation by tuned by PSO via PFS. The trolley can arrived the desired position with a zero SSE and zero percent of overshoot. Hence, it can archive the desired position which is 1 m without any OS. It also takes very minimum time to arrive at desired position in 2.2325 second.

Moreover, the payload oscillation result shows that the system provide a quite better result between the others. The GCS produce payload oscillate about 0.2227 radian at 2.2035 second. This value of oscillation is related to the trolley position when the system shows there is delay in time in order system going to archive the desired position.

Finally, it can be conclude that the best result of performances with the minimum values of transient responses is case 6. So that, in this system, OS is the highest priority, followed by Ts and SSE. Appendix B shows the result of global best fitness of Case 6 that followed the process of PSO via Priority Fitness Scheme.

4.5 The effect of PFS for controlling robustness

In this part, by taking the best value of PID+PD parameter as shown in Table 4.6, the result of trolley displacement and payload oscillation is varied by the variation of desired position, payload mass and cable length to study the robustness of GCS.

	PID Gains	P	arameters				
	Кр		26.9260				
	Ki		0.0022				
ALAY	Kd		14.1940				
At MA	Kps		44.4394				
Kal	Kds		0.0566				
	_						
Table 4.7: The performance result of GCS							
Performances of GCS							
تيا ملاك	Payload osc	illation					
OS (%)	Ts (s) S	SSE (m)	θ max (rad)	T (s)			
0.0000	2.2325	0.0000	0.2227	2.2035			

Table 4.6: PID+PD parameters PSO via PFS

In this part, by taking the best value of PID+PD parameter as shown in Table 4.6, the result of trolley displacement and payload oscillation is varied by the variation of desired position, payload mass and cable length to study the robustness of GCS.

Figure 4.8: System Response with variation of Desired Position

(a) Trolley displacement (b) Payload Oscillation

Figure 4.9: System Response with variation of Payload Mass

(a) Trolley displacement (b) Payload Oscillation

Figure 4.10: System Response with variation of Cable length

(a) Trolley displacement (b) Payload Oscillation

	Pe	rformances	of GCS	
Trolley Position		tion	Payload oscillation	
OS (%)	Ts (s)	SSE (m)	$\theta \max$ (rad)	T (s)
0.0000	2.2325	0.0000	0.2227	2.1961
0.0000	3.3275	0.0000	0.6905	2.1997
0.0000	3.6130	0.0000	1.2379	2.2527
0.0000	2.2325	0.0000	0.2227	2.2035
2.0000	2.7000	0.0000	0.2205	2.9691
5.5500	3.8450	0.0000	0.1763	3.3310
A.C.				
0.0000	2.2325	0.0000	0.2227	2.2035
0.800	2.3901	0.0000	0.1943	2.2955
5.100	3.467	0.0000	0.1610	2.6328
	Tro OS (%) 0.0000 0.0000 0.0000 2.0000 5.5500 0.0000 0.800 5.100	Pe Trolley Posi OS (%) Ts (s) 0.0000 2.2325 0.0000 3.3275 0.0000 3.6130 0.0000 2.2325 2.0000 2.7000 5.5500 3.8450 0.0000 2.2325 0.800 2.3901 5.100 3.467	Performances Trolley Position OS (%) Ts (s) SSE (m) 0.0000 2.2325 0.0000 0.0000 3.3275 0.0000 0.0000 3.6130 0.0000 0.0000 2.2325 0.0000 0.0000 2.2325 0.0000 2.0000 2.7000 0.0000 5.5500 3.8450 0.0000 0.0000 0.8000 2.3901 0.0000 5.100 3.467 0.0000	Performances of GCS Payload osc OS (%) Ts (s) SSE (m) θ max (rad) 0.0000 2.2325 0.0000 0.2227 0.0000 3.3275 0.0000 0.6905 0.0000 3.6130 0.0000 1.2379 0.0000 2.2325 0.0000 0.2227 0.0000 2.2325 0.0000 0.2227 0.0000 2.2325 0.0000 0.2227 0.0000 2.2325 0.0000 0.2227 0.0000 2.7000 0.0000 0.2227 0.0000 2.2325 0.0000 0.2205 5.5500 3.8450 0.0000 0.1763 O.0000 0.2227 0.8000 2.3391 0.0000 0.1943 5.100 3.467 0.0000 0.1610

Table 4.8: Reading of simulation results for controlling robustness

In Table 4.1 show the summaries of simulation reading for input desired position, payload mass and cable length. Based on Table 4.7, several observations can be analyzed from the result: UNIVERSITITEKNIKAL MALAYSIA MELAKA

- i. For trolley displacement, when short desired position is applied to the system it produces a lower Ts while the value of SSE and OS is zero. However, the oscillation is increasing but the time is reduced.
- ii. Higher mass of payload is increase the value of OS and Ts of trolley displacement with a zero SSE while the payload oscillation is decreasing but required more time to settle down.
- iii. Lastly, by increasing the length of cable it will be increased the value of OS of trolley displacement with a zero SSE. Then, decreasing of payload oscillation can be seen when the cable length is increased.

4.6 Conclusions

Based on the result, it shows that the performance of result of the GCS without controller and the GCS with PID+PD controller implementation. The analysis shows the better performance occur when applying the controller to the system. However, the result of trolley position and payload oscillation cannot be control in the same time.

PSO algorithm is applied via PFS to improve the parameter of PID+PD controller. The system responses changed with the rearrangement of properties of OS, Ts and SSE that which one are chosen to be set as first, second and third priority.

As the result, OS has the highest priority followed by Ts and SSE. However, the value of SSE clearly show a zero value even it is set as third priority. The effect of PFS for controlling the robustness of this system have been evaluated by those best parameter to achieve the better performances of GCS.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

As a conclusion, PID and PD controller had been successfully designed to control movement of trolley to the desired position and minimizing the payload oscillation on GCS. Nonlinear equation of the system has been derived using Lagrange's equation. The actual behavior of dynamic nonlinear of GCS was discussed by comparing both simulation with and without controller. The performance of the system may achieve the good performance but it quite difficult to control both PID and PD controller in the same time. Furthermore, to overcome the problem, PSO algorithm is implemented via PFS to find the optimal parameter of PID and PD controller. The effect of PFS have been examined by using the best transient response arrangement which is Overshoot, OS% is the first priority, followed by Settling Time, Ts and the Steady state error, SSE to control the robustness of GCS. Finally, the simulation result shows the system performances become more effective to move the trolley as fast as possible to the desired position with low payload oscillation.

5.2 Recommendation and Future Work

From the conclusion, PID and PD controller shows a better performance in controlling the trolley position and payload oscillation. However, when control the PID for the trolley position, the PD controller will definitely disturbed the result of payload oscillation. Therefore, PSO algorithm will be implement via PFS to tuned the PID and PD controller for better performance. Future research about the robustness of GCS in term of external disturbance is recommended.

REFERENCES

- P. B. de Moura Oliveira and J. B. Cunha, "Gantry crane control: A simulation case study," 2013 2nd Exp. Int. Conf., pp. 58–63, Sep. 2013.
- M. a. Zawawi, W. M. S. W. Zamani, M. a. Ahmad, M. S. Saealal, and R. E. Samin, "Feedback control schemes for gantry crane system incorporating payload," 2011 IEEE Symp. Ind. Electron. Appl., pp. 370–375, Sep. 2011.
- [3] A. I. Technology, H. I. Jaafar, Z. Mohamed, J. J. Jamian, A. M. Kassim, M. F. Sulaima, U. Teknikal, M. Engineering, S. Lecturer, S. Lecturer, U. Teknikal, S. Lecturer, U. Teknikal, and U. Teknikal, "EFFECTS OF MULTIPLE COMBINATION WEIGHTAGE USING MOPSO FOR MOTION CONTROL GANTRY CRANE," vol. 63, no. 3, pp. 807–813, 2014.
- [4] N. D. That, Q. P. Ha, R. Ismail, and N. D. That, "Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Underactuated Mechanical Systems A . Fuzzy Logic Control," 2013.
- [5] M. Tumari, A. W. Control, and E. Engineering, "H ∞ controller with graphical LMI region profile for Gantry Crane System," pp. 1397–1402, 2012.
- [6] H. I. Jaafar, N. M. Ali, Z. Mohamed, N. A. Selamat, A. F. Z. Abidin, J. J. Jamian, and A. M. Kassim, "Optimal Performance of a Nonlinear Gantry Crane System via Priority-based Fitness Scheme in Binary PSO Algorithm," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 53, p. 012011, Dec. 2013.
- [7] J. Jalani, "Robust Fuzzy Logic Controller for an Intelligent Gantry Crane System," no. August, pp. 8–11, 2006.
- [8] R. Dey, N. Sinha, P. Chaubey, S. Ghosh, and G. Ray, "Active sway control of a single pendulum gantry crane system using output-delayed feedback control technique," 11th Int. Conf. Control. Autom. Robot. Vision, ICARCV 2010, no. December, pp. 532–536, 2010.
- [9] S. Iles, J. Matusko, and F. Kolonic, "TP transformation based control of rotary pendulum," 2011 Proc. 34th Int. Conv. MIPRO, pp. 833–839, 2011.
- [10] Y. Xiao and L. Weiyao, "Optimal composite nonlinear feedback control for a gantry crane system", Control Conference (CCC), 2012 31st Chinese. pp. 601–606, 2012.
- [11] N. Đ. Zrni, V. M. Ga, and S. M. Bo, "Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator," vol. 5, pp. 1–8, 2014.
- [12] Q. K. Duong, P. Hubinsky, P. Paszto, M. Florek, J. Sovcik, M. Kajan, "Effectiveness of Input Shaping and Real-Time Nurbs Interpolation for Reducing Feedrate Fluctuation", 2014.
- [13] M. Vukosavljev, M. Broucke, "Control of a Gantry Crane : A Reach Control Approach", *IEEE Conference on Decision and Control*, 2014.
- [14] W. He, X. He and S. S. Ge, "Adaptive Control Design for a Nonuniform Gantry Crane with Constrained Tension", *Control Conference (CCC)*, 2014 33rd Chinese, 2014.
- [15] Q. Bai, "Analysis of Particle Swarm Optimization Algorithm," vol. 3, no. 1, pp. 180– 184, 1998.
- [16] H. I. Jaafar and M. F. Sulaima, "Optimal PID Controller Parameters for Nonlinear Gantry Crane System via MOPSO Technique," pp. 86–91, 2013.
- [17] V. K. Gupta and R. Mahanty, "Optimized switching scheme of cascaded H-bridge multilevel inverter using PSO," Int. J. Electr. Power Energy Syst., vol. 64, pp. 699–707, 2015.

- [18] H. I. Jaafar, Z. Mohamed, A. F. Z. Abidin, Z. Md Sani, J. J. Jamian, and A. M. Kassim, "Performance Analysis for a Gantry Crane System (GCS) Using Priority-Based Fitness Scheme in Binary Particle Swarm Optimization," *Adv. Mater. Res.*, vol. 903, pp. 285– 290, Feb. 2014.
- [19] T. Cai, H. Zhang, L. Gu, and Z. Gao, "On Active Disturbance Rejection Control of the Payload Position for Gantry Crane", *American Control Conference*, 2013, pp. 1–6.
- [20] S. R. Hebertt, G. Zhiqiang, C. R. Luis, "Tracking in Interconnected Gantry Crane Systems : A Decentralized Active Disturbance Rejection Control," pp. 4342–4347, 2014.
- [21] M Ajayan, P N Nishad, "Vibration Control of 3D Gantry Crane with Precise Positioning in two dimensions", *International Conference on Magnetics, Machine & Drives*, 2014.
- [22] L. Moreno-Ahedo, J. Collado, and C. Vazquez, "Parametric resonance cancellation via reshaping stability regions: Numerical and experimental results," *IEEE Trans. Control Syst. Technol.*, vol. 22, no. 2, pp. 753–760, 2014.
- [23] N. Sun, Y. Fang, and H. Chen, "A New Antiswing Control Method for Underactuated Cranes With Unmodeled Uncertainties : Theoretical Design and Hardware Experiments," vol. 62, no. 1, pp. 453–465, 2015.

- [24] S. Wen, M. Deng, Y. Ohno, and D. Wang, "Operator-based robust right coprime factorization design for planar gantry crane," in 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 2010, pp. 1–5.
- [25] A. Bu, "Robustness Evaluation of Feedback Control Scheme for Overhead Crane," pp. 66–71, 2011.
- [26] M. I. Solihin, R. Akmeliawati, and A. Legowo, "Robust controller design for uncertain parametric systems using modern optimization approach," 2011 4th Int. Conf. Mechatronics, no. May, pp. 1–6, May 2011.

- [27] M. I. Solihin, A. Legowo, and R. Akmeliawati, "Robust PID anti-swing control of automatic gantry crane based on Kharitonov's stability," 2009 4th IEEE Conf. Ind. Electron. Appl., pp. 275–280, May 2009.
- [28] H. I. Jaafar, Z. Mohamed, A. F. Z. Abidin, and Z. A. Ghani, "PSO-tuned PID controller for a nonlinear gantry crane system," 2012 IEEE Int. Conf. Control Syst. Comput. Eng., pp. 515–519, Nov. 2012.
- [29] H. I. Jaafar, Z. Mohamed, J. J. Jamian, A. F. Z. Abidin, A. M. Kassim, and Z. A. Ghani, "Dynamic Behaviour of a Nonlinear Gantry Crane System," *Procedia Technol.*, vol. 11, no. Iceei, pp. 419–425, 2013.
- [30] L. C. L. Chunyue and W. Z. W. Zongyan, "A Knowledge Based Rapid Design System for Crane Gantry," Syst. Sci. Eng. Des. Manuf. Informatiz. (ICSEM), 2010 Int. Conf., vol. 1, pp. 269–272, 2010.
- [31] Kennedy, J. and Eberhart, R., Particle Swarm Optimization, *Proceedings of IEEE International Conference on Neural Network*, 1942-1948, 1995.

APPENDIX A

DATA COLLECTIONS

	Tr	olley Displaceme	ent	Payload C	Descillation
No.	Ts (s)	0S (%)	SSE	$\theta_{\rm max}({\rm rad})$	T (s)
1	0.7455	1.9957	0.8107	1.0500	1.6740
2	0.8388	1.9617	0.4698	1.0100	1.6648
3	0.8397	1.9990	0.6591	1.0025	1.6650
4	0.8374	1.8808	0.6351	1.0080	1.6637
5	0.8156	1.9800	0.7112	1.0183	1.6650
6	0.8791	1.8119	0.5668	0.9906	1.6608
7	0.8112	1.9919	0.7218	1.0217	1.6650
8	0.8235	1.9758	0.7037	1.0161	1.6645
9	0.8235	1.9758	0.7037	1.0159	1.6645
10	0.8044	1.9880	0.7250	1.0236	1.6659
11	0.7709	1.9921	0.7624	1.0332	1.6700
12	0.8856	1.7572	0.5528	0.9885	1.6597
13	0.8735	1.8125	0.5638	0.9913	1.6613
14	0.9341	1.5326	0.3993	0.9629	1,6585
15	0.8701	1.8609	0.5979	0.9940	1.6616
16	0.7984	1.9592	0.7298	A 1.0253	1.6680
17	0.8098	1.9772	0.7104	1.0204	1.6657
18	0.8164	1.9439	0.6943	1.0179	1.6650
19	0.9616	1.5864	0.3824	0.9550	1.6565
20	0.7895	1.9965	0.7219	1.0286	1.6678
21	0.7887	1.9848	0.7494	1.0287	1.6677
22	0.8450	1.8378	0.6307	1.0077	1.6628
23	0.8276	1.9992	0.6608	1.0037	1.6673
24	0.8683	1.8234	0.5884	0.9959	1.6616
25	0.8902	1.7128	0.5330	0.9862	1.6692
26	0.8878	1.7194	0.5339	0.9870	1.6597
27	0.8878	1.7194	0.5339	0.9870	1.6597
28	0.8131	2.0000	0.7164	1.0183	1.6659
29	0.8477	1.8540	0.6391	1.0060	1.6627
30	0.8396	1.9999	0.6771	1.0060	1.6647
31	0.8601	1.9107	0.6266	0.9993	1.6621
32	0.8368	1.9463	0.6812	1.0107	1.6632
33	2.4222	0.7329	0.1225	0.6332	1.6784

34	0.8872	1.7931	0.5456	0.9845	1.6600
35	0.8608	1.9978	0.6303	0.9935	1.6644
36	0.8245	1.9674	0.6937	1.0134	1.6651
37	0.8446	1.9999	0.6679	1.0043	1.6640
38	0.8416	1.9054	0.6582	1.0085	1.6628
39	1.6551	1.9927	0.4173	0.2131	1.9500
40	1.6551	1.9927	0.4173	0.2131	1.9500
41	0.8263	1.9921	0.6902	1.0125	1.6650
42	0.7937	1.9993	0.7377	1.0265	1.6673
43	0.8472	1.9502	0.6603	1.0040	1.6630
44	0.8810	1.8481	0.5765	0,9885	1.6600
45	0.8563	1.8648	0.6278	1.0018	1.6622
46	0.8229	1.9914	0.7031	1.0142	1.6655
47	0.8023	1.9926	0.7322	1.0245	1.6660
48	0.9696	1.5460	0.4101	0.9566	1.6563
49	0.8202	1.8604	0.6690	1.0167	1.6650
50	0.7935	1.9771	0.7398	1.0270	1.6670

-	a de la companya de la compa				
EK		Ş			
SE 2					
	Tr	ollev Displaceme	ent	Payload C	Discillation
No.	Ts (s)	SSE	0S (%)	$\theta_{\rm max}$ (rad)	T (s)
1	1.2661	0.0115	1.7252	0.7825	1.6566
2	0.8296	0.6725	1.8989	1.0145	1.6641
3	0.8160	0.6996	1.9788	1.0185	1.6650
4	0.8362	0.6764	1.9319	1.0111	1.6635
5	0.7764	0.7723	1.9955	1.0350	1.6687
6	0.9212	0.4576	1.7024	0.9706	1.6578
7	0.7802	0.7514	1.9756	1.0320	1.6687
8	0.8473	0.6590	1.9962	1.0014	1.6648
9	1.6577	0.7103	1.9696	0.1934	2.0071
10	0.8591	0.6308	1.9468	0.9991	1.6624
11	0.9930	1.1379	1.9815	0.9160	1.6635
12*	1.6718	0.1505	1.9671	0.1780	2.0611
13	0.8944	0.5231	1.7465	0.9825	1.6600
14	0.9841	0.3701	1.6025	0.9393	1.6578
15	0.8814	0.5409	1.7491	0.9885	1.6606
16	0.8388	0.6450	1.9097	1.0082	1.6633
17	0.8340	0.6795	1.9953	1.0086	1.6650
18	0.8186	0.6864	1.9555	1.0150	1.6655
19	0.8752	0.3377	1.9577	0,9920	1.6629
20	0.8434	0.6667	2.0000	1.0050	1.6642
21	0.8414	0.6754	1.9692	1.0071	1.6637
22	0.8090	0.7053	1.9357	1.0020	1.6653

24 25 26 27	0.9177 1.7330 0.8881	0.5216	1.8741	0.9896	0.9685
25 26	1.7330	0 2962			0.7005
26	0.8881	0.2702	1.9990	0.2756	1.8465
27	0.0001	0.4139	1.5405	0.9813	1.6601
21	1.7585	0.1113	1.9388	0.2912	1.9145
28	0.8267	0.6845	1.9986	1.0100	1.6656
29	0.7642	0.7789	1.9680	1.0381	1.6700
30	1.6510	0.1402	1.9995	0.2355	1.8935
31	0.8530	0.6461	1.9988	0.9981	1.6644
32	0.8609	0.6052	1.8959	0.9970	1.6623
33	0.9033	0.5558	1.9697	0.9715	1.6630
34	0.7917	0.7046	1.8792	1.0256	1.6655
35	0.8097	0.7272	1.9938	1.0222	1.6649
36	0.8612	0.6072	1.8153	1.0005	1.6610
37	0.8698	0.5852	1.8555	0.9928	1.6619
38	0.8832	0.5573	1.8084	0.9871	1.6601
39	0.8333	0.6714	1.9929	1.0065	1.6658
40	0.8279	0.6881	1.9953	1.0105	1.6660
41	0.7978	0.7376	1.9896	1.0250	1.6655
42	1.0753	0.2438	1.3861	0.9050	1.6560
43	0.8325	0.6732	1.9215	1.0115	1.6635
44	1.6463	0.1551	1.9996	0.2110	1.9454
45	0.8215	0.6892	1.9150	1.0170	1.6650
46	0.7958	0.7332	1.9778	1.0265	1.6650
47	0.9198	0.4613	1.6148	0.9750	1.6605
48	0.7782	0.7653	1.99557	1.0323	1.6685
49	0.8301	0.6815	1.9533	1.0155	1.6648
50	0.8847	0.3448	1.9054	0.9889	1.6618
		- July	ي ي	ويور	

	Trolley Displacement			Payload C	Dscillation
No.	SSE	Ts (s)	0S (%)	$\theta_{\rm max}({\rm rad})$	T (s)
1	0.0000	3.8697	40.5659	0.3195	2.3415
2	0.0001	3.4219	12.7473	0.3253	2.0233
3	0.0000	5.8376	0.0000	0.2603	1.7200
4	0.0000	4.7362	0.4836	0.2663	1.7320
5	0.0001	5.2734	30.4834	0.3409	2.0125
6	0.0000	4.0213	46.0947	0.3573	2.2745
7	0.0000	4.6017	6.0995	0.4810	1.8452
8	0.0020	4.8360	0.4267	0.2772	1.7708
9	0.0001	5.4041	56.0487	0.4120	2.1573
10	0.0000	4.7404	33.9153	0.3239	2.0748
11	0.0000	4.8724	0.2033	0.2069	1.7700
12	0.0000	3.2345	9.3091	0.3125	1.9385
13	0.0003	4.9125	0.4035	0.2650	1.7440

14	0.0000	6.3851	0.0550	0.2242	1.7574
15	0.0000	5.4244	8.5673	0.5525	1.8357
16	0.0000	5.1454	0.0136	0.2855	1.7180
17	0.0000	3.0411	1.4214	0.2913	1.8122
18	0.0003	4.3407	1.0471	0.3776	1.7108
19	0.0000	4.6020	0.5768	0.3174	1.7606
20	0.0002	4.5923	5.9039	0.4727	0.4727
21	0.0025	5.0323	32.9464	0.2706	2.1926
22	0.0017	4.5934	39.7445	0.3571	2.1269
23	0.0007	5.6828	0.0000	0.2664	1.7176
24	0.0001	6.7137	35.0474	0.4900	1.9000
25	0.0000	5.4079	8.4222	0.5420	1.8389
26	0.0000	4.5332	0.7153	0.3224	1.7500
27	0.0000	4.5258	0.5808	0.3314	1.7557
28	0.0000	4.7555	0.3550	0.2380	1.7525
29	0.0000	4.6811	0.0703	0.2118	1.8128
30	0.0000	4.2465	21.2902	0.6715	1.7433
31	0.0000	3.0531	1.2395	0.2861	1.8025
32	0.0000	3.0878	0.9021	0.2610	1.8066
33	0.0000	2.6105	1.8056	0.6610	1.6975
34	0.0003	3.0756	0.9875	0.2973	1.7665
35	0.0005	3.3170	9.9048	0.2972	1.7666
36	0.0002	5.7136	0.1740	0.2572	1.7455
37	0.0003	6.4766	28.1048	0.3683	2.2563
38	0.0000	3.7940	7.3284	0.3697	1.8037
39	0.0000	4.2752	42.9249	0.4449	1.9661
40	0.0005	4.3186	1.9582	0.5252	1.6869
41	0.0000	3.4037	10.5047	0.2983	2.0504
42	0.0000	4.2246	1.8740	0.5330	1.6964
43	0.0003	9.8127	48.1879	0.6790	1.6798
44	0.0003	6.1643	0.1600	0.2410	1.7265
45	0.0000	4.3039	0.0147	0.2100	1.8533
46	0.0000	2.5787	1.7023	0.6650	1.6978
47	0.0003	4.1713	21.2124	0.6567	1.7455
48	0.0002	4.7048	14.0372	0.6432	1.8150
49	0.0004	5.2150	3.8516	0.1234	1.4657
50	0.0000	6.4102	0.1191	0.1995	1.7485

	Trolley Displacement			Payload C	Dscillation
No.	SSE	0S (%)	Ts (s)	$\theta_{\rm max}({\rm rad})$	T (s)
1	0.0000	0.4836	4.7363	0.2664	1.7320
2	0.0000	30.4834	5.2734	0.3408	2.0126
3	0.0000	6.0995	4.6017	1.4820	1.8460
4	0.0020	0.4267	4.8460	0.2771	1.7708

5	0.0000	56.0487	5.4041	0.4071	2.1575
6	0.0000	0.2033	4.8724	0.2070	1.7700
7	0.0000	9.3091	3.2345	0.3220	1.9387
8	0.0004	0.4035	4.9125	0.2650	1.7440
9	0.0000	8.5673	5.4244	0.5546	1.8356
10	0.0000	1.4214	3.0411	0.2760	1.8120
11	0.0000	2.913	2.247	0.246	2.125
12	0.0000	0.5768	4.6020	0.3178	1.7600
13	0.0002	5.9039	4.5923	0.4728	1.8450
14	0.0025	32.9464	5.0323	0.2705	2.1925
15	0.0017	39.7445	4.5934	0.3576	2.1268
16	0.0000	0.4836	4.7362	0.2664	1.7320
17	0.0001	30.4834	5.2734	0.3400	2.0000
18	0.0000	6.0995	4.6017	0.4800	1.8450
19	0.0001	56.0487	5.4041	0.4070	2.1555
20	0.0000	0.2033	4.8724	0.2070	1.7700
21	0.0000	9.3091	3.2345	0.3212	1.9384
22	0.0003	0.4035	4.9125	0.2650	1.7440
23	0.0000	8.5673	5.4244	0.5526	1.8357
24	0.0000	1.4214	3.0411	0.2915	1.8121
25	0.0000	0.5768	4.6020	0.3174	1.7600
26	0.0003	5.9039	4.5923	0.4726	1.8472
27	0.0025	32.9464	5.0323	0.2706	2.1926
28	0.0017	39.77445	4.5934	0.3576	2.1267
29	0.0000	8.4222	5.4079	0.5420	1.8391
30	0.0000	0.7153	4.5332	0.3224	1.7500
31	0.0000	0.3550	4.7555	0.2380	1.7522
32	0.0000	0.0703	4.6811	0.2120	1.812
33	0.0000	21.2902	4.2465	0/6716	1.7433
34	0.0000	1.2395	3.0531	0.2860	1.8000
35	0.0000	0.9021	3.0878	0.2610	1.8070
36	0.0000	1.8056	2.6105	0.6610	1.6955
37	0.0000	0.4836	4.7362	0.2664	1.7321
38	0.0001	30.4834	5.2734	0.2400	2.0127
39	0.0000	6.0995	4.6017	0.4810	1.8460
40	0.0020	0.4267	4.8369	0.2772	1.7700
41	0.0001	56.0487	5.4041	0.4070	2.1577
42	0.0000	33.9153	4.7404	0.3240	2.0749
43	0.0000	0.2033	4.8724	0.2070	1.7700
44	0.0000	9.3091	3.2345	0.3213	1.9384
45	0.0000	0.0550	6.3851	0.2250	1.7574
46	0.0000	8.5673	5.4244	0.5525	1.8357
47	0.0000	1.4214	3.0411	0.2914	1.8120
48	0.0000	0.5768	4.6020	0.3174	1.7600
49	0.0003	5.9039	4.5923	0.4727	1.8456
50	0.0025	32.9464	5.0323	0.2706	2.1923

	Tr	olley Displaceme	ent	Payload C	Discillation
No.	0S (%)	SSE	Ts (s)	$\theta_{\rm max}({\rm rad})$	T (s)
1	0.0000	0.0001	5.4760	0.1088	2.900
2	0.0000	0.0000	5.3760	0.1088	2.900
3	0.0000	0.0013	8.7457	0.0829	1.8955
4	0.0000	0.0007	5.6701	0.2660	1.7203
5	0.0000	0.0000	5.6636	0.1555	1.8645
6	0.0000	0.0000	6.6917	0.1356	1.8900
7	0.0000	0.0000	6.2602	0.2382	1.7303
8	0.0000	0.0000	6.2727	0.2375	1.7287
9	0.0000	0.0000	6.7630	0.1582	1.800
10	0.0000	0.0009	9.8556	0.1200	2.1588
11	0.0000	0.0000	5.4136	0.2730	1.7210
12	0.0000	0.0001	67379	0.1918	1.7762
13	0.0000	0.0002	7.2796	0.1650	1.7962
14	0.0000	0.0007	5.2838	0.2809	1.7157
15	0.0000	0.0008	9.6870	0.0329	2.6550
16	0.0000	0.0002	5.2850	0.1660	1.8523
17	0.0000	0.0000	5.7945	0.2619	1.7220
18	0.0000	0.0003	6.4358	0.1546	1.8000
19	0.0000	0.0002	6.3511	0.2318	1.7339
20	0.0000	0.0000	5.7518	0.2628	1.7250
21	0.0000	0.0004	4.3321	0.1875	1.9290
22	0.0000	0.0000	5.7951	0.2620	1.7200
23	0.0000	0.0000	6.5167	0.1005	1.9745
24	0.0000	0.0005	9.8749	0.2689	1.7860
25	0.0000	0.0000	5.1077	0.1711	1.8635
26	0.0000	0.0000	4.9239	0.1753	1.8977
27	0.0000 —	0.0000	5.1419	0.1745	1.8355
28	0.0000	0.0001	6.0087	0.1548	1.8410
29	0.0000	0.0000	6.1358	0.2460	1.7271
30	0.0000	0.0000	5.92253	0.2567	1.7236
31	0.0000	0.0000	6.8496	0.1859	1.7665
32	0.0000	0.0003	6.4527	0.2250	1.7345
33	0.0000	0.0000	6.6223	0.2087	1.7540
34	0.0000	0.0006	3.5861	0.1429	1.9748
35	0.0000	0.0000	5.7566	0.2635	1.7988
36	0.0000	0.0019	6.5642	0.2100	1.7575
37	0.0000	0.0019	5.7869	0.2627	1.7155
38	0.0000	0.0013	6.8014	0.0676	1.5466
39	0.0000	0.0002	7.3250	0.1221	1.8551
40	0.0000	0.0000	5.7445	0.2640	1.7255
41	0.0000	0.0000	6.5968	0.2041	1.7655
42	0.0000	0.0000	5.4368	0.2725	1.7200
43	0.0000	0.0012	6.8210	0.1844	1.7821
44	0.0000	0.0000	9.8738	0.2789	1.7988
45	0.0000	0.0000	6.3896	0.2260	1.7500

46	0.0000	0.0000	6.2541	0.2379	1.7400
47	0.0000	0.0001	8.6858	0.0477	1.7548
48	0.0000	0.0004	7.7561	0.0841	1.9781
49	0.0000	0.0004	7.7561	0.0882	1.7641
50	0.0000	0.0004	5.4892	0.2723	1.7200

	Tr	olley Displaceme	ent	Payload C	Dscillation
No.	0S (%)	Ts (s)	SSE	$\theta_{\rm max}({\rm rad})$	T (s)
1	0.0000	2.2605	0.0000	0.1943	2.5225
2	0.0000	2.2453	0.0000	0.1928	2.5382
3	0.0000	2.2555	0.0000	0.1893	2.5600
4	0.0000	3.6780	0.0000	0.4643	2.5630
5	0.0000	2.3383	0.0000	0.1790	2.7530
6	0.0000	4.6901	0.0012	0.3213	1.7114
7	0.0000	3.2932	0.0009	0.1943	2.2127
8	0.0000	2.2605	0.0001	0.1943	2.5222
9	0.0000	2.2453	0.0001	0.1928	2.5388
10	0.0000	2.2555	0.0000	0.1893	2.5608
11	0.0000	8.8698	0.0000	0.1456	2.7860
12	0.0000	2.3382	0.0004	0.1790	2.7537
13	0.0000	4.6901	0.0028	0.3212	1.7110
14	0.0000	3.2932	0.0008	0.1943	2.2129
15	0.0000	2.3031	0.0001	0.1809	2.5900
16	0.0000	2.4541	0.0001	0.1606	2.7120
17	0.0000	2.5534	0.0000	0.1597	3.4700
18	0.0000	2.3028	0.0002	0.1787	2.6075
19	0.0000	2.9466	0.0010	0.1545	3.0000
20	0.0000	2.3534	0.0003	0.1714	2.8800
21	0.0000	2.2325	0.0000	0.2227	2.2035
22	0.0000	4.5169	0.0006	0.3385	1.7356
23	0.0000	2.7956	0.0001	0.2183	2.1030
24	0.0000	2.3430	0.0005	0.1736	2.8010
25	0.0000	2.2539	0.0000	0.1930	2.7200
26	0.0000	2.3671	0.0001	0.1904	2.8900
27	0.0000	2.6571	0.0001	0.1937	4.0000
28	0.0000	2.5785	0.0000	0.1857	2.9900
29	0.0000	3.1017	0.0007	0.1865	2.4000
30	0.0000	3.2735	0.0000	0.1732	2.5700
31	0.0000	2.2568	0.0001	1.9100	2.6155
32	0.0000	2.6937	0.0005	1.5181	3.5000
33	0.0000	4.2470	0.0002	0.1325	1.8963
34	0.0000	2.3370	0.0000	0.1901	3.0300
35	0.0000	2.3231	0.0003	0.1804	2.6060
36	0.0000	5.2124	0.0015	0.2250	1.7172

37	0.0000	4.7356	0.0006	0.3175	1.7120
38	0.0000	2.7853	0.0004	0.1644	3.3300
39	0.0000	2.2900	0.0000	0.1999	2.6900
40	0.0000	2.3337	0.0004	0.1750	2.8000
41	0.0000	2.2308	0.0003	0.1880	2.5821
42	0.0000	5.2030	0.0018	0.2850	1.7160
43	0.0000	2.5405	0.0002	0.1698	2.8650
44	0.0000	4.6403	0.0000	0.1827	1.9000
45	0.0000	3.2200	0.0001	0.1740	2.8620
46	0.0000	2,4015	0.0001	0.1903	2.4834
47	0.0000	2.3253	0.0001	0.1740	2.8620
48	0.0000	4.3873	0.0042	0.1770	1.9680
49	0.0000	2.3376	0.0002	0.1876	2.7445
50	0.0000	2.3351	0.0000	0.1725	2.8667

APPENDIX B

GLOBAL BEST FITNESS OF CASE 6

27 0.0000 4.0010 0.0270

Global Best Fitness

Iteration	OS	Ts	SSE		28	0.0000	4.9610	0.0270
1	0.0000	9.8374	121.6166		29	0.0000	4.9610	0.0270
2	0.0000	9.4358	95.5988		30	0.0000	4.9610	0.0270
3	0.0000	9.4319	102.7679		31	0.0000	4.9610	0.0270
4	0.0000	9.4319	102.7679		32	0.0000	2.7820	0.0265
5	0.0000	9.4319	102.7679		33	0.0000	2.7820	0.0265
6	0.0000	9.4319	102.7679		34	0.0000	2.7820	0.0265
7	0.0000	9.4319	102.7679		35	0.0000	2.7820	0.0265
8	0.0000	9.4319	102.7679		36	0.0000	2.7820	0.0265
9	0.0000	9.4319	102.7679		37	0.0000	2.7820	0.0265
10	0.0000	9.4319	102.7679		38	0.0000	2.7820	0.0265
11	0.0000	9.4319	102.7679		39	0.0000	2.7820	0.0265
12	0.0000	9.4319	102.7679		40	0.0000	2.7820	0.0265
13	0.0000	9.4319	102.7679		41	0.0000	2.7820	0.0265
14	0.0000	9.4319	102.7679		42	0.0000	2.7097	0.0059
15	0.0000	9.4319	102.7679		43	0.0000	2.7097	0.0059
16	0.0000	9.4319	102.7679		44	0.0000	2.7097	0.0059
17	0.0000	9.4319	102.7679		45	0.0000	2.7097	0.0059
18	0.0000	9.4319	102.7679		46	0.0000	2.7097	0.0059
19	0.0000	9.4319	102.7679		47	0.0000	2.7097	0.0059
20	0.0000	9.3686	105.3466		48	0.0000	2.7097	0.0059
21	0.0000	8.3308	2.0887		49	0.0000	2.7097	0.0059
22	0.0000	5.6922	0.0124		50	0.0000	2.7097	0.0059
23	0.0000	5.6922	0.0124	ais	51	0.0000	2.7097	0.0059
24	0.0000	4.9610	0.0270	-	52 C	0.0000	2.7097	0.0059
25	0.0000	4.9610	0.0270	ZA1 84	53	0.0000	2.7097	0.0059
26	0.0000	4.9610	0.0270	AL M	AL 54	0.0000	2.7097	0.0059

55	0.0000	2.7097	0.0059
56	0.0000	2.7097	0.0059
57	0.0000	2.7097	0.00599
58	0.0000	2.7097	0.0059
59	0.0000	2.7097	0.0059
60	0.0000	2.7097	0.0059
61	0.0000	2.7097	0.0059
62	0.0000	2.7097	0.0059
63	0.0000	2.7097	0.0059
64	0.0000	2.7097	0.0059
65	0.0000	2.2324	0.0079

91	0.0000	2.2324	0.0079
92	0.0000	2.2324	0.0079
93	0.0000	2.2324	0.0079
94	0.0000	2.2324	0.0079
95	0.0000	2.2324	0.0079
96	0.0000	2.2324	0.0000
97	0.0000	2.2324	0.0000
98	0.0000	2.2324	0.0000
99	0.0000	2.2324	0.0000
100	0.0000	2.2324	0.0000

66 0.0000 2.2324 0.0079 67 0.0000 2.2324 0.0079	
67 0.0000 2.2324 0.0079	
68 0.0000 2.2324 0.0079	
69 0.0000 2.2324 0.0079	
70 0.0000 2.2324 0.0079	
71 0.0000 2.2324 0.0079	
72 0.0000 2.2324 0.0079	
73 0.0000 2.2324 0.0079	
74 0.0000 2.2324 0.0079	
75 0.0000 2.2324 0.0079	
76 0.0000 2.2324 0.0079	
77 0.0000 2.2324 0.0079	
78 0.0000 2.2324 0.0079	
79 0.0000 2.2324 0.0079	
80 0.0000 2.2324 0.0079	
81 0.0000 2.2324 0.0079	
82 0.0000 2.2324 0.0079	
83 0.0000 2.2324 0.0079	
84 0.0000 2.2324 0.0079	
85 0.0000 2.2324 0.0079	
86 0.0000 2.2324 0.0079	
87 0.0000 2.2324 0.0079	
88 0.0000 2.2324 0.0079	
89 0.0000 2.2324 0.0079	avia me
90 0.0000 2.2324 0.0079	. 03.3