

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF THE OPTIMUM GATE SIZE FOR MULTI-CAVITY PLASTIC NAME CARD INJECTION MOULD

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

NOR FAZLIYANA BINTI ABDULLAH B051110014 921230146168

FACULTY OF MANUFACTURING ENGINEERING 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND ANALYSIS OF THE OPTIMUM GATE SIZE FOR MULTI-CAVITY PLASTIC NAME CARD INJECTION MOLDING

SESI PENGAJIAN: 2014/15 Semester 2

Saya NOR FAZLIYANA BINTI ABDULLAH

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

	SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
	TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
\checkmark	TIDAK TERH	IAD
		Disahkan oleh:
Alamat Te	etap:	Disahkan oleh: Cop Rasmi:
Alamat Te No 2, Jala	etap: n Kebangsaan	Disahkan oleh: Cop Rasmi: 60,
Alamat Te No 2, Jala Taman Ur	etap: n Kebangsaan niversiti, 81300	Disahkan oleh: Cop Rasmi: 60, Skudai,
Alamat Te No 2, Jala Taman Ur Johor Bha	etap: In Kebangsaan hiversiti, 81300 Iru, Johor.	Disahkan oleh: Cop Rasmi: 60, Skudai,

DECLARATION

I hereby, declared this report entitled "Design and Analysis of the Optimum Gate Size for Multi-Cavity Plastic Name Card Injection Mould" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Nor Fazliyana binti Abdullah
Date	:	5 June 2015

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory committee is as follow:

.....

(Official Stamp of Supervisor)

ABSTRAK

Projek akhir ini adalah "Mereka-bentuk dan Menganalisa bagi menentukan saiz get yang optima untuk acuan". Projek ini memfokuskan kepada mereka bentuk saiz get (untuk acuan dua-rongga), menganalisa saiz get yang optima dan bahan yang sesuai untuk optima saiz get yang terpilih. Reka bentuk Pemegang Kad Nama Plastik dan beberapa saiz get yang berbeza telah direkabentuk menggunakan perisian CATIA V5R19. Perisian Simulasi Moldflow Adviser adalah perisian yang digunakan untuk menganalisa saiz get yang optima bagi acuan dua-rongga Pemegang Kad Nama Plastik. Bahan yang digunakan untuk menganalisa acuan Pemegang Kad Nama Plastik adalah berbeza seperti Polipropilena, Polietilena, Akrilonitril-Butadiena Stirena dan Polietilena Ketumpatan TInggi. Bermula dari menganalisa saiz get yang berbeza menggunakan perisian Simulasi Moldflow Adviser bagi reka-bentuk sedia ada. Kemudian, saiz get yang optima dan bahan yang sesuai adalah ditentukan berdasarkan analisa yang dibuat menggunakan perisian Simulasi Moldflow Adviser.

ABSTRACT

This final year project is about "Design and Analysis of the Optimum Gate Size for Multi-Cavity Plastic Name Card Injection Mould". This project is focused on the design of the gate size dimension (for two-cavity), analysis of the optimum gate size and suitable material for the selected optimum gate size dimension. The design of the Plastic Name Card Holder and the several of the gate size dimension were designed using CATIA V5R19 software. The Simulation Moldflow Adviser (SMA) software are used to analyse the optimum gate size for the two multi-cavity Plastic Name Card Holder. Material used for analysing the Plastic Name Card optimum gate size are Polypropylene (PP), Polycarbonate (PC), Polyethylene (PE), Acrylonitrile-butadiene-styrene (ABS) and High-Density Polyethylene (HDPE). For the start with analysing the suggested of several dimension of the gate size by using SMA software of existing design. Then, the optimum gate size dimension and the suitable material are determine according to the SMA analysis.

DEDICATION

All the hard work is only for you:

Abdullah bin Salleh Siti Fatimah binti Hassan

ACKNOWLEDGEMENT

First and foremost, all praise to The Almighty, who made this accomplishment possible. I seek his mercy, favour and forgiveness. Thousands of thanks to my great supervisor, En Baharudin bin Abu Bakar for the help, encouragement and guidance from the beginning until of the research until the end of this writing project. For my parents who always provides me with love and support all the time in order for me to complete this work. For my friends, I appreciate the present of being there with me through thick and thin. Thank you.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	V
List of Tables	xi
List of Figures	xiv
List Abbreviations, Symbols and Nomenclatures	xvii

CHAPTER 1: INTRODUCTION

1.1	Project Overview	1
1.2	Problem statement	2
1.3	Objectives	2
1.4	Scope	3

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction to Injection Molding	4
2.2	Process of Injection Molding		11
2.3	Injecti	on Molding Machine	11
	2.3.1	Injection Unit	11
		2.3.1.1 The Barrel	13
		2.3.1.2 End Cap and Nozzle	14

C Universiti Teknikal Malaysia Melaka

		2.3.1.3 Non-Return Valve	15
		2.3.1.4 Screw	16
		2.3.1.5 Injection Pressure	16
	2.3.2	Clamp Unit	17
		2.3.2.1 Hydraulic Clamp System	18
		2.3.2.2 Hydro-Mechanical System	18
	2.3.3	Clamp Unit Specification	19
2.4	Analy	sis of the Injection Molding	20
2.5	Mater	ial Used for Product	21
	2.5.1	Engineering and Commodity Plastics	23
	2.5.2	Additives Material	24
		2.5.2.1 Filler and Reinforcement	24
		2.5.2.2 Plasticizers	25
		2.5.2.3 Stabilizers	25
		2.5.2.4 Flame Retardant	25
		2.5.2.5 Colorants	25
	2.5.3	Material Applications	26
2.6	Mold		27
	2.6.1	Basic Requirement of Mold	27
	2.6.2	Mold Component	27
	2.6.3	Type of Injection Mold	30
		2.6.3.1 Cold Runner Molds	31
		2.6.3.2 Hot Runner Molds	32
	2.6.4	Material Used for Mold	33

2.7	Gate Designs		
	2.7.1	Type of Gate Design	34
		2.7.1.1 Common Edge Gate	34
		2.7.1.2 Fan Gate	36
		2.7.1.3 Pin Point Gate	37
		2.7.1.4 Diaphragm Gate	38
		2.7.1.5 Film/Flash Gate	40
		2.7.1.6 Submarine/Tunnel Gate	41
	2.7.2	Critical Gate Size for Gate Design	42
	2.7.3	Effects of Gate Diameter in Multi-Cavity Molds	45
2.8	Simul	ation Moldflow Adviser (SMA)	45
	2.8.1	Filling Analysis	46
		2.8.1.1 Fill Time and Plastic Flow	46
		2.8.1.2 Injection Pressure and Pressure Drop	47
		2.8.1.3 Time to Reach Ejection Temperature	47
		2.8.1.4 Quality Prediction	48
		2.8.1.5 Maximum Clamping Force used During Filling	48
		2.8.1.6 Estimated Cycle Time	49

CHAPTER 3: METHODOLOGY

3.1	Project Overview	50
3.2	Define the Problem Statement, Objective, Scope and Limitation	51
3.3	Strategic Planning	51
	3.3.1 Literature Review	53

	3.3.2 Framework of the Project	53
3.4	Gantt Chart	57
3.5	Preliminary Design	57
3.6	Product Specification	58
3.7	Software	58

CHAPTER 4: RESULT AND DISCUSSION

4.1	Select	ion of the Type, Size Gate and the Material	60
4.2	Optim	num Gate Size for Existing Design	62
	4.2.1	Gate Size 1mm x 1mm x 0.5mm	63
	4.2.2	Gate Size 1mm x 2mm x 0.5mm	66
	4.2.3	Gate Size 1mm x 3mm x 0.5mm	69
	4.2.4	Gate Size 1mm x 1mm x 1mm	72
	4.2.5	Gate Size 1mm x 2mm x 1mm	75
	4.2.6	Gate Size 1mm x 3mm x 1mm	78
4.3	Select	ion and Ranking of Important Parameters for Optimum Gate Size	
	(Exist	ing Design)	81
	4.3.1	Selection Material for Plastic Flow	82
	4.3.2	Selection Material for Quality Prediction	84
	4.3.3	Ranking Material for Cycle Time	85
	4.3.4	Ranking Material for Injection Pressure	86
	4.3.5	Ranking Material for Time to reach Ejection Temperature	86
	4.3.6	Ranking Material for Clamping Force	87
	4.3.7	Final Ranking	89

4.4	Best C	Gate Position	90
4.5	Optim	num Gate Size for Proposed Design	91
	4.5.1	Gate Size 1mm x 1mm x 0.5mm	91
	4.5.2	Gate Size 1mm x 2mm x 0.5mm	94
	4.5.3	Gate Size 1mm x 3mm x 0.5mm	97
	4.5.4	Gate Size 1mm x 1mm x 1mm	99
	4.5.5	Gate Size 1mm x 2mm x 1mm	102
	4.5.6	Gate Size 1mm x 3mm x 1mm	105
4.6	Select	ion and Ranking of Important Parameters for Optimum Gate Size	
	(Prope	osed Gate Position)	108
	4.6.1	Selection Material of the Plastic Flow for New Gate Position	109
	4.6.2	Selection Material of the Quality Prediction for New Gate	
	Positi	on	110
	4.6.3	Ranking Material of the Cycle Time for New Gate Position	111
	4.6.4	Ranking Material of the Injection Pressure for New Gate Position	111
	4.6.5	Ranking Material of the Time to reach Ejection Temperature for N	Jew
	Gate I	Position	112
	4.6.6	Ranking Material of the Clamping Force for New Gate Position	113
	4.6.7	Final Ranking for New Gate Position	115
4.7	Comp	arison Ranking for the Best Gate Size and Position	116

CHAPTER 5: CONCLUSION & FUTURE WORK

5.1	Conclusion	118
5.2	Future Work	119

ix

APPENDICES

- A Gantt Chart
- B Detail Drawing of Plastic Name Card Holder
- C Cross-sectional Drawing of Plastic Name Card Holder

LIST OF TABLE

2.1	Use of parts obtained by injection molding of different material	6
2.2	Classification of common plastics	23
2.3	Critical gate size for common gate type	42
4.1	Detail information about the selected material	61
4.2	Various dimension of gate size for plastic name card holder	62
4.3	Result for the gate size 1mm x 1mm x 0.5mm	64
4.4	Result for the quality prediction and plastic flow of gate size 1mm x 1mm	X
	0.5mm	65
4.5	Result for the gate size 1mm x 2mm x 0.5mm	66
4.6	Result for the quality prediction and plastic flow of gate size 1mm x 2mm	X
	0.5mm	68
4.7	Result for the gate size 1mm x 3mm x 0.5mm	70
4.8	Result for the quality prediction and plastic flow of gate size 1mm x 3mm x	
	0.5mm	71
4.9	Result for the gate size 1mm x 1mm x 1mm	73
4.10	Result for the quality prediction and plastic flow of gate size 1mm x 1mm	X
	1mm	74
4.11	Result for the gate size 1mm x 2mm x 1mm	76
4.12	Result for the quality prediction and plastic flow of gate size 1mm x 2mm	X
	1mm	77
4.13	Result for the gate size 1mm x 3mm x 1mm	79

4.14	Result for the quality prediction and plastic flow of gate size 1mm x 3mm 1mm	1 X 80
4.15	The ranking indicator for selecting the optimum gate size82	
4.16	Selection of the material due to plastic flow	83
4.17	Selection of the material due to quality prediction	84
4.18	The final ranking for the selected parameters criteria	89
4.19	Result for the new gate position size 1mm x 1mm x 0.5mm	92
4.20	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 1mm x 0.5mm	e 93
4.21	Result for the new gate position gate size 1mm x 2mm x 0.5mm	94
4.22	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 2mm x 0.5mm	e 95
4.23	Result for the new gate position gate size 1mm x 3mm x 0.5mm	97
4.24	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 3mm x 0.5mm	e 98
4.25	Result for the new gate position gate size 1mm x 1mm x 1mm	100
4.26	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 1mm x 1mm	e 101
4.27	Result for the new gate position gate size 1mm x 2mm x 1mm	103
4.28	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 2mm x 1mm	e 104
4.29	Result for the new gate position gate size 1mm x 3mm x 1mm	106
4.30	Result for the new gate position quality prediction and plastic flow of gate size 1mm x 3mm x 1mm	e 107
4.31	Selection of the material due to plastic flow for the new gate position	109
4.32	Selection of the material due to quality prediction for the new gate	

	position	110
4.33	The final ranking for the selected parameters criteria for the new gate	
	position	115
4.34	Comparison ranking for the best gate size and position	116

🔘 Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

2.1	Injection molding elements	5
2.2	Example product produce by injection molding	10
2.3	Example product produce by injection molding	10
2.4	Injection molding machine with the basic components	12
2.5	Positions and strokes of the reciprocating screw during one cycle	12
2.6	Elements of an injection unit of an injection molding machine	13
2.7	Three common types of mounting ends of the barrels	13
2.8	Nozzle, valve and barrel assembly	14
2.9	Illustration of the fit of a nozzle tip to the sprue bushing	14
2.10	Three piece ring type of non-return valve	15
2.11	Elements of an injection molding machine screw	16
2.12	Schematic of an injection molding machine clamp unit	17
2.13	Injection molding machine of hydraulic clamping unit	18
2.14	Injection molding machine toggle clamp unit	19
2.15	Virtual reality environment for plastic injection molding	20
2.16	Overview of global thermoplastics consumption	22
2.17	Two plate mold in a closed position	29
2.18	Two plate mold shown at ejection	30
2.19	Three plate mold is an alternative mold for cold runner mold	31
2.20	Hot runner mold in close position	32
2.21	Common edge gate	35

2.22	Lapped edge gate	35
2.23	Notched edge gate	36
2.24	Typical fan gate	37
2.25	Pin point gate as used in 3-plate cold runner mold	38
2.26	Design guidelines for pin point gates	38
2.27	Typical diaphragm gate and cross-section	39
2.28	Design guidelines for diaphragm/disk gate	39
2.29	Typical film/flash gate design	40
2.30	Design guidelines for film/flash gate	40
2.31	Typical tunnel/submarine gate design	41
2.32	Design guidelines for tunnel/submarine gate	41
2.33	Direct of sprue gate	42
2.34	Tab gate	42
2.35	Edge or side gate	43
2.36	Overlap gate	43
2.37	Fan gate	43
2.38	Disc or diaphragm gate	43
2.39	Ring gate	44
2.40	Spoke or spider gate	44
2.41	Film or flash gate	44
2.42	Pin gate	44
2.43	Submarine or tunnel gate	45
2.44	The flow of plastic into the part	47
2.45	Indicator of the quality prediction colour	48

2.46	Example of the clamping force for molding	49
3.1	The flowchart for strategic planning	52
3.2	The methodology for Simulation Moldflow Adviser software	54
3.3	The methodology for Simulation Moldflow Adviser software	55
3.4	The framework of the project	56
3.5	Product of plastic name card holder injection mould	57
3.6	Two multi-cavity of plastic name card holder injection mould	58
4.1	Ranking material and best size gate for cycle time	85
4.2	Ranking material and best size gate for injection pressure	86
4.3	Ranking material and best size gate for time to reach ejection temperature	87
4.4	Ranking material and best size gate for clamping force	88
4.5	New best gate position after using Simulation Moldflow Analysis Adviser	90
4.6	Design of the proposed gate position	91
4.7	Ranking material and best size gate for cycle time of the new gate	
	position	111
4.8	Ranking material and best size gate for injection pressure of the new gate position	112
4.9	Ranking material and best size gate for time to reach ejection temperature	of
	the new gate position	113
4.10	Ranking material and best size gate for clamping force of the new gate	114
	position	114

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

PE	-	Polyethylene
PP	-	Polypropylene
PC	-	Polycarbonate
ABS	-	Acrylonitrile butadiene styrene
DFM	-	Design for Manufacturing
CA	-	Cellulose acetate
CAP	-	Cellulose acetate propionate
PS	-	Polystyrene
PAS	-	Impact-resistance polystyrene
PA 6.6	-	Polyamide 6.6
LDPE	-	Low density polyethylene
HDPE	-	High density polyethylene
PMMA	-	Polymethyl methacrylate
MABS	-	Methyl methacrylate-butadiene-styrene
PVC	-	Polyvinylchloride
SAN	-	Styrene-acrylonitrile
PTFE	-	Polytetrafluoroethylene
PET	-	Polyethylene terephthalate
PBT	-	Polybutylene terephthalate

PEEK	-	Polyether ether ketone
PAI	-	Polyamide-imide
UV	-	Ultra violet
EVA	-	Ethylene-vinyl acetate
ISO	-	International Organization for Standardization
PSM	-	Projek Sarjana Muda
3D	-	3 Dimensional
SMA	-	Simulation Moldflow Adviser

CHAPTER 1 INTRODUCTION

This report consist of the literature review and the methodology for the research project. In this chapter, it consist of the problem statement obtain by preliminary study of the literature review. The objective is determine from the problem statement. The scope will only focused on what has been stated and discussed.

1.1 Project Overview

In the injection molding process, many factors can affect the molding process and the final quality of the products. The method of traditional mold design is relied on the mold designer's experiences. With the help of analysis software, the designers can reduce the cost of mold to be discovered called Heuristic loops and shorten the development cycle. By this, it is automatically solve the production problem on material property, product design and mold design. The process of time cycle in injection molding are very dependent on the product produce and other three parameters which include temperature, speed and pressure. With a slight difference in these three parameters, the product produce may be not in a good conditions. Gate is also included in the factor of the most important parameter in injection molding. Without a proper selection of gate design, it really can influenced the manners of the plastics flow in the injection molding. The selection of gate size become most vitals variable to improve the part quality to reduce the rejection and also elimination in trial and error method.

1.2 Problem statement

Parameter settings and feeding system such as gate, runner and sprue inside the plastic injection mould are located by mould makers by Heuristic method. In this situation, people that have experiences in injection molding process will be capable to decide the size of gating and feeding location of products. The problems occurs when they do not have any parameter or references to be guides in order to make the product being produce without any defect in the selected parameter. When the gating size of the mold is not proper, this can cause defect of the product being produce. This will result the waste in time and loss in money.

One of the solution of this problem is by using the simulation software which is available in the market. This simulation can forecast the plastics properties that flow into the mold. It is one of the most appreciate software because engineers can obtained the statistical data before the actual mold are being produce. Moreover, the result obtained help the designer of mold makers select the right dimension of sprue, gate and runner and indirectly these can save the economical and using less trial and error method.

1.3 Objectives

The main objectives of this research is:

i) To identify the optimum gate size in multi-cavity plastic name card holder injection mould (two-cavity).

ii) To find the best material according to the given parameters.

