ANALYSIS ON HUMAN-ROBOT COLLABORATION THROUGH AFFECTIVE ENGINEERING

AINA BINTI MOHD SUKARNO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ANALYSIS ON HUMAN-ROBOT COLLABORATION THROUGH AFFECTIVE ENGINEERING

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic & Automation) with Honours

by

AINA BINTI MOHD SUKARNO B051110193 920923105110

FACULTY OF MANUFACTURING ENGINEERING 2015

DECLARATION

I hereby, declared this report entitled Analysis on Human-Robot Collaboration through Affective Engineering is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Aina Binti Mohd Sukarno
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic & Automation) with Honours. The member of the supervisory committee is as follow:

.....

APPENDICES

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Analysis on Hum	an-Robot Collaboration Through Affective Engineering			
SESI PENGAJIAN: 2015/16 Semester 2				
Saya AINA BINTI MOHD SUKARNO				
-	oran PSM ini disimpan di Perpustakaan Universiti Teknikal Igan syarat-syarat kegunaan seperti berikut:			
2. Perpustakaan Universiti tujuan pengajian sahaja	n membuat salinan laporan PSM ini sebagai bahan pertukaran			
SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
	Disahkan oleh:			
Alamat Tetap:				
No 9 Jalan Melor 5a	(PENYELIA PSM)			
<u>Desa Melor 48200, Serendah</u>	Cop Rasmi:			
<u>Selangor</u> . Tarikh: 2 nd JULY 2015	Tarikh:			
-	Γ atau TERHAD, sila lampirkan surat daripada pihak lengan menyatakan sekali sebab dan tempoh laporan PSM ini			

perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Human-robot collaboration in our working environments is necessary, since robot can perform complex task that cannot be attained by human. By using robot, it can increase quality of product and improve the efficiency in manufacturing. Moreover, as to ensure a safe and pleasant working environment between human and robot a better understanding between them need to be created. Hence, the main purpose of this project is to analyze the significant human feelings (Kansei) towards the robot during their interaction. In a meantime, to develop the framework of collaboration system between human and robot. In order to achieve the objectives, this project will evaluate two groups of respondent by using a questionnaire through the interaction between human and robots in FKP laboratory. The data collected, will be analyzed by using SPSS software. Then, by using the SPSS software all the data are evaluated through ANOVA and Independence T-test as to find the most significant factor on each of the experiment conducted. Throughout the analyzed data, ten most significant feelings were identified which are *Panic*, *Nervous*, Afraid, Hostile, Enthusiastic, Jittery, Distracted, Pressured, Attentive and Irritable. In near future, throughout this project a good and safe working environment can be created between human and robot.

ABSTRAK

Kerjasama antara Manusia dan Robot dalam alam pekerjaan adalah amat diperlukan. Ini adalah kerana Robot dapat melaksanakan tugas-tugas kompleks yang tidak boleh dicapai oleh manusia. Selain itu, pengunaan Robot dapat meningkatkan kualiti produk dan meningkatkan kecekapan dalam sektor pembuatan. Tambahan pula, bagi memastikan persekitaraan kerja yang selamat dan selesa antara manusia dan Robot, pemahaman yang mendalam antara mereka hendaklah diwujudkan. Oleh itu, tujuan utama projek ini adalah untuk menganalisi perasaan manusia (Kansei) yang signifikasi terhadap Robot sewaktu berinteraksi. Dalam pada yang sama, projek ini adalah untuk membentuk rangka sistem kerja kolaborasi antara manusia dan robot. Bagi mencapai objektif projek ini, penilaian terhadap dua kumpulan responden menggunakan borang soal selidik melalui interaksi antara manusia dan robot di makmal FKP dijalankan. Data yang diperolehi dianalisis menggunakan perisian SPSS. Kemudian, dengan menggunakan perisian SPSS kesemua data akan dinilai melalui cara ANOVA, dan Independecane T-Test bagi menilai faktor siginifaksi yang paling tinggi dalam setiap eksperimen yang dijalankan. Melalui data yang telah dianalisis, terdapat sepuluh perasaan paling signifikasi telah dikenalpasi iaitu *Panic*, Nervous, Afraid, Hostile, Enthusiastic, Jittery, Distracted, Pressured, Attentive and Irritable. Pada masa akan datang, persekitaran berkerja yang baik dan selamat antara manusia dan robot dapat diwujudkan.

DEDICATION

Especially dedicated to my beloved parents, Mohd Sukarno bin Ismail and Sulasteri binti Abd Hamid and to my supervisor, Dr.Fairul Azni bin Jafar, and all my friends who have encouraged, guided, and inspired me throughout this project.

ACKNOWLEDGEMENT

I would like to give my special thanks firstly to the Almighty God, for giving me a chance and strength to complete this final year project.

I want to express my sincere gratitude goes to Dean for Faculty of Manufacturing Engineering Profesor Madya Dr Mohd Rizal bin Salleh and to the members of the Faculty of Manufacturing department for their support in this project. I must also convey my earnest appreciation to my Supervisor, Dr Fairul Azni bin Jafar, who has guided, sharing ideas, encouragement and support in this whole journey project process.

The final tribute and appreciation are reserved for my family members and my colleagues for the help they gave me and to all that involved throughout this project directly or indirectly.

TABLE OF CONTENT

Abst	tract	Ι
Abst	trak	II
Ded	ication	III
Ack	nowledgement	IV
Tabl	le of Content	V
List	of Figures	IX
List	of Ttables	XI
List	of Abbreviations, Symbols and Nomenclatures	XIII
CHA	APTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Project Motivation	3
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Scope	5
1.6	Report Structure	5
CHA	APTER 2: LITERATURE REVIEW	7
2.1	Kansei	7
2.2	Kansei/Affective Engineering	8
	2.2.1 Product of Kansei Engineering	10
2.3	Kansei Robotics	14
2.4	Human-Robot Collaboration	17
2.5	Summary	19

CHA	APTER (3: METHO	DDOLOGY	20
3.1	Overall Methodology 2			20
3.2	Part A: Planning			22
	3.2.1 Specification of the Selected Robot			24
		3.2.1.1	Robot Manipulator	24
		3.2.1.2	Robot Welding	27
	3.2.2	Formulat	ted Hypothesis	29
3.3	Part B	: Design of	Experiment	30
	3.3.1	Designin	g the Robot's Movement	32
		3.3.1.1	Pick and Place	33
		3.3.1.2	Welding Process	34
	3.3.2	Teach Pe	ndant Programming	34
		3.3.2.1	Robot Manipulator Setup Program	35
		3.3.2.2	Robot Welding Setup Program	35
	3.3.3	Debuggin	ng Program	36
	3.3.4	Developm	nent of Questionnaire Form	36
3.4	Experi	rimental Procedure		
3.5	Respo	ondent 3		
3.6	PART C: Data Analysis		40	
	3.6.1	SPSS An	alysis	41
	3.6.2	One-Way	ANOVA	41
	3.6.3	Execution	n of SPSS Analysis	42
	3.6.4	Execution	n of One-Way ANOVA	45
3.7	Expec	ted Result		47
3.8	Summ	ary		48
CHA	APTER 4	4: RESUL	Γ AND DISCUSSION	49
4.1	Experi	ment Deve	lopment	49
	4.1.1	Robot M	anipulator	49
	4.1.2	Welding	Robot	53
4.2	Analysis Result 57			

4.3	One-W	ay ANOVA	58
	4.3.1	Relax	59
	4.3.2	Panic	62
	4.3.3	Thrilled	65
	4.3.4	Nervous	68
	4.3.5	Cautious	71
	4.3.6	Hesitate	74
	4.3.7	Excited	77
	4.3.8	Afraid	80
	4.3.9	Confident	83
	4.3.10	Hostile	86
	4.3.12	Jittery	92
	4.3.13	Alert	95
	4.3.14	Distracted	98
	4.3.15	Interested	101
	4.3.16	Anxious	104
	4.3.17	Impressed	107
	4.3.18	Pressured	110
	4.3.19	Attentive	113
	4.3.20	Irritable	116
	4.3.21	Conclusion of One-Way ANOVA	119
4.4	Indepen	ndent Sample T-test	121
	4.4.1	Question 1: Robot is at Original Position	122
	4.4.2	Question 2: Robot is Start to Perform Task	123
	4.4.3	Question 3: Robot is Set to Higher Speed	124
	4.4.4	Question 4: Robot is Set to Lower Speed	125
	4.4.5	Question 5: Smaller Size Robot	126
	4.4.6	Question 6: Bigger Size Robot	127
	4.4.7	Question 7: Robot Manipulator	128
	4.4.8	Question 8: Robot Welding	129
	4.4.9	Question 9: Expected Feelings Towards Robot	130

	4.4.10	Conclusion	131
4.5	4.5 Summary		
CHAI	PTER 5:	CONCLUSION & FUTURE WORK	133
5.1	Conclus	sion	133
5.2	Future V	Work (Recommendation)	134
	5.2.1	Kansei Word	134
	5.2.2	Experiments	135
	5.2.3	Robots	135
	5.2.4	Participants	135
REFE	ERENCE	ES	137

APPENDICES

LIST OF FIGURES

2.1	A Kansei Engineering System	9
2.2	Route of Kansei	10
2.3	Sharp Refrigerator (Before and After Improvisation)	12
2.4	Fluorescent lamp (Before and After Improvisation)	13
2.5	Peeperduring interaction with humans	16
2.6	Erwin Robot	16
2.7	Robot suit HAL for bathing care assistance	18
2.8	SmartWheeler	19
3.1	Overall methodology of the project	21
3.2	Planning process flow	22
3.3	Smart NS (16-1.65) Comau Robot	25
3.4	OTC FD-V6 Daihen Robot	27
3.5	Process flow of Part B	31
3.6	Program's Parameters	32
3.7	Robot manipulator's path	33
3.8	Robot welding's path	34
3.9	Group of Respondents	39
3.10	Data analysis process flow	40
3.11	Screen presented after created and opened a file of variable view	42
3.12	Value label window	43
3.13	Toolbar menu	43
3.14	Bar chart window	44
3.15	Define simple bar window	44
3.16	Create bar chart window	45
3.17	One-Way of ANOVA window	46
3.18	One – Way of ANOVA options window	46

4.1	Robot manipulator's program	50
4.2	Robot manipulator's setting	51
4.3	Pick up points	52
4.4	Placed points	52
4.5	Interaction between robots and participants	53
4.6	Line sketch on Aluminium plate	54
4.7	Robot welding's program	54
4.8	Participant conduct the welding robot	55
4.9	Welding process	55
4.10	Output of welding process	56
4.11	Graph of <i>Relax</i>	60
4.12	Graph of Panic	63
4.13	Graph of Thrilled	66
4.14	Graph of Nervous	69
4.14	Graph of Cautious	72
4.15	Graph of Hesitate	75
4.16	Graph of <i>Excited</i>	78
4.17	Graph of Afraid	81
4.18	Graph of <i>Confident</i>	84
4. 19	Graph of Hostile	87
4.20	Graph of Enthusiastic	90
4.21	Graph of <i>Jittery</i>	93
4.22	Graph of <i>Alert</i>	96
4.23	Graph of Distracted	99
4.24	Graph of Interested	102
4.25	Graph of Anxious	105
4.26	Graph of Impressed	108
4.27	Graph of <i>Pressured</i>	111
4.28	Graph of Attentive	114
4.29	Graph of <i>Irritable</i>	117

LIST OF TABLES

3.1	Comparison of robot manipulator available in FKP	23
3.2	Comau Robot's Specification	27
3.3	OTC DR 4000 Daihen's specifications	28
3.4	Selected kansei words	37
3.5	Display table of One-Way ANOVA	47
4.1	Hypotheses towards the results	57
4.2	One-Way ANOVA for <i>Relax</i>	59
4.3	One-Way ANOVA for Panic	62
4.4	One-Way ANOVA for <i>Thrilled</i>	65
4.5	One Way ANOVA for Nervous	68
4.6	One Way ANOVA for Cautious	71
4.7	One-Way ANOVA for Hesitate.	74
4.8	One-Way ANOVA for <i>Excited</i>	77
4.9	One-Way ANOVA for Afraid	80
4.10	One-Way ANOVA for Confident	83
4.11	One-Way ANOVA for Hostile	86
4.12	One-Way ANOVA for Enthusiastic	89
4.13	One-Way ANOVA for <i>Jittery</i>	92
4.14	One-Way ANOVA for Alert	95
4.15	One-Way ANOVA for Distracted	98
4.16	One-Way ANOVA for Interested	101
4.17	One-Way ANOVA for Anxious	104
4.18	One-Way ANOVA for Impressed	107
4.19	One-Way ANOVA for <i>Pressured</i>	110
4.20	One-Way ANOVA for Attentive	113
4.21	One-Way ANOVA for Irritable	116

4.22	Significant and non-significant feelings	119
4.23	Independent Sample T-Test for Question 1	122
4.24	Independent Sample T-Test for Question 2	123
4.25	Independent Sample T-Test for Question 3	124
4.26	Independent Sample T-Test for Question 4	125
4.27	Independent Sample T-test for Question 5	126
4.28	Independent Sample T-test for Question 6	127
4.29	Independent Sample T-test for Question 8	129
4.30	Independent Samples T-test for Question 9	130

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

-	Universiti Teknikal Malaysia Melaka
-	Fakulti Kejuruteraan Pembuatan
-	Fakulti Teknologi Maklumat dan Telokomunikasi
-	Fakulti Kejuruteraan Mekanikal
-	Fakulti Teknologi Kejuruteraan
-	Electromyography
-	Electroencephalography
-	Event-Related Potential
-	Functional Magnetic Resonance Imaging
-	Illumination Unit
-	Kelvin
-	Recreational Vehicle
-	International Federation Robotics
-	Statistical Package for the Social Science
-	Analysis of Variance
-	Honestly Significance Difference
-	F Test (ANOVA)
-	Significance
-	Alpha Subset
-	T-Test
-	Degree of Freedom
-	Less Than

CHAPTER 1 INTRODUCTION

This chapter gives an overview of a topic about Human-robot collaboration through Kansei/Affective Engineering which includes the background of the project. Next, the motivation which is the project inspiration will be discussed along in this chapter. The problem statement, objectives, scopes and report structure will also be discussed.

1.1 Background

In current era of technology, the use of robots in human life is inseparable. Robots are designed to assist human various type of tasks, especially on complex, dangerous, and hazardous task. Furthermore, the use of robot in a large industrial scale has brought a substantial improvement in productivity and a reduction of production cost (Cappeli, 2003). Despite it benefits on product, it will benefits to the manpower by reduce manpower's fatigue as robots can perform their work cycle consistently and repeatability that cannot be attained by humans. Apart from being used in industry, robots are also been applied in human's daily life which can be classified as service robot. A service robot is used to assist human activities such as cleaning, teaching, chores, guider for the needed, medical aid tools and many more. Hence, it is important to consider the development of robot as to ensure it can fit well and effectively collaborate with human environment. To achieve an effective collaboration for both parties, assorted method is scrutinize and one of them is through Kansei Engineering.

Kansei or Affective engineering is a technology, method or theory to translate human affective information or image to the production of real things or to design of objects. (Watada et al., 2013). Kansei engineering has been used since long ago and had introduced by Nagamachi in the early of 70's. Increasing number of universities and companies have adopted and implemented the method, and for now there are about 1,000 scientists working with Kansei Engineering in Japan alone; approximately 100 of them professors, and approximately 300 engineers in several companies (Schutte, 2002). Kansei applications are widely used in industry especially on product on system development process. Mazda, Nissan and Honda are among the pioneer to the Kansei method. The car's design has been develop based on the method by taking account the customer's desired and requirements. Kansei is an important perspective for realizing manufacturing and information service should appeal to each individual consumer. Thus, it has been applied in robotic technology as well, from there a suitable system of collaboration between human and robot can be determine and develop.

The collaboration between robot and human helps to create an effective environment during the interaction session. Human need to generate a positive affective feeling toward robot as to promote a safe and conformable environment and assure a robot performance during executing a task, must be adaptable to manpower output. In conjunction of that, human and robot collaboration plays a fundamental role in the development of robot that operate in an open environment and cooperate with humans. (Cappelli, Giovannetti; 2003).

1.2 Project Motivation

Ishiara and Harada (2010) have established a research on Kansei to the movement of autonomous robot. They had done a similar approach with this proposed project, which to analysis the human feeling towards the robot. They were using a small LEGO SPYBOTICS robot as their manipulator. Other than that, Hinds, Roberts and Jones (2004) also had done a similar study but using different robot manipulators. The robot manipulators were designed based on human –like and machine-like appearance. Most of the research were similar to this proposed project, where it focused on service robot or humanoid robot that are normally used in human's daily life. Meanwhile, as declared in Japan for the most high technology country, implementation of robot in their daily life are not a new things for them, but what really an issue is how they are really feel when interacting with those robot, are they excited, scared, anxious, happy, or nervous. Due to that, all researchers are keen to do an analysis on interaction between human and robots.

Instead of doing an analysis on service robot, less research had found on manufacturing robots. Anyhow if they do, majority of studies were using operators or workers as their respondents. Hence, the positive outcome of Kansei will showed out as they already familiar to the robot's behavior and workspace. Nevertheless, an inexpert user, visitor or new employees are the one that should be consider in term of their feelings as to create and promote a comfortable and safe environment to work with the robots even on their first time used. In conjunction to that, it motivates to do a project in analysis of human-robot collaboration through Kansei by using a manufacturing robot manipulator that involving expert and inexpert users as respondent.

1.3 Problem Statement

Robotic technology is used to design and develop an industrial robot to perform required task that has been done by human. Robotic Industries Association defined an industrial robot system include the robot(s) (hardware and software) consisting of manipulator, power supply, controller, end effector, any equipment, devices and sensors with which the robot is directly interfacing. An industrial robot can be categorize based on their geometrical shape such as Cartesian, Cylindrical, Spherical/Polar and Articulated/Jointed Arm. Different shape of robot will undergo different motion and position in work cell. The different motion of robots do triggered the human's feeling whenever they are dealing with it. However, robot's appearance, robot's size, robot's function also do take in account to trigger human feeling. In industry, usually they are using a big size robot with a high speed motion, hence human need a courage to deal with the robot. In such a way, feeling afraid or doubtful during collaborate with the robot might be arise in human feeling, whereby with this feeling it might be hard for them to concentrate during collaborating with the robot.

In spite of analyzing robot's behavior towards human, this project's purpose is to analyze human's emotion or feeling towards robots during their collaboration through Kansei engineering. Besides, a robot should be aware as well, of human work area so it can improve the quality of working environment between them. All the negative feeling present throughout interaction between human and robots can be removed along with secure and comfortable ambiance. In near future, robots with a more user friendly system can be designed, especially for those who are not familiar with it or the first timer users dealing with robots.

1.4 Objectives

The objectives of this project are:

a) To analyze the significant human feelings (Kansei) towards robot during the interaction between them.

1.5 Scope

The scope and limitation of this project are:

a) Robot used for this project are Robot Manipulator and Robot Welding provided by the Faculty of Manufacturing Engineering. Considering that, these are the robot in real manufacturing environment

b) Program the robot movements by using robot's teach pendant

c) This project only focused on reaction or feeling (Kansei) that participant express when collaborating with the robot

d) Participant involved during collaboration are limited to UTeM students and staff only.

e) The analysis process will be based on survey study conducted after interaction session and validate the data.

f) The experiment will be conducted at FKP laboratory.

1.6 Report Structure

In Chapter 1, it briefly explained on the background of the project, project motivation, problem statement, project objective, project scope, and project limitation. Firstly, background is discussing the general idea about the project. Next, the inspiration that motivated to do analysis on this project. Thirdly, problem statement which explain the situation that need to be addressed before solve the problem. Next, the goal that to be achieved are listed in objective. Lastly, the scope will explain the range of the project will be done. As for report structure, each chapter will be explained.