

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INFLUENCE OF SUSPENSION PREPARATION CONDITION AND MEDIUM MICROSTRUCTURE AND PHASE OF ELECTROPHORETIC DEPOSITED POLY(VINYLIDENE FLUORIDE) FILMS

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

NURSYAFIKA BINTI ROHIZAT

B051110355

901130-01-6122

FACULTY OF MANUFACTURING ENGINEERING 2015

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Tesis ini mengenai pencirian PVDF (Polyvinylidene Fluorida) filem aplikasi piezoelektrik untuk menyelesaikan masalah retak kerana ikatan yang lemah antara zarah PVDF yang didepositkan. Objektif eksperimen ini untuk mencirikan penggantungan dan filem PVDF yang disediakan oleh pelarut polimer berbeza (MEK (Methyl Ethyl Ketone) dan DMF (Dimethyl Formamide)), suhu kacau dan masa. Kaedah yang digunakan untuk deposit zarah PVDF pada ITO kaca ialah pemendapan elektroforetik. Ujian pemendapan menunjukkan PVDF yang disediakan dalam penggantungan DMF mempunyai kestabilan tinggi berbanding sampel MEK. Kekasaran permukaan rendah telah ditunjukkan oleh UV-vis Spectra dan SEM dalam filem PVDF yang disediakan menggunakan penggantungan DMF. Filem PVDF yang disediakan menggunakan penggantungan MEK mempunyai filem permukaan yang sangat kasar dan tidak rata berbanding DMF sampel. Filem PVDF yang disediakan menggunakan penggantungan DMF (120°C, 8 jam) mempunyai permukaan rata dan lebih rendah, walaupun tidak menyeliputi keseluruh kawasan filem. Analisis EDS pada sampel 120°C, 2 jam dan 120°C, 8 jam keadaan kacau yang disediakan menggunakan penggantungan DMF menunjukkan kawasan liputan filem PVDF ialah 60.4% bagi 120°C, 8 jam sampel. Keputusan FTIR menunjukkan filem PVDF yang disediakan menggunakan penggantungan DMF mengandungi β-fasa sahaja, manakala di MEK mengandungi α dan β -fasa. Oleh itu, parameter terbaik filem adalah pada 120°C, 8 jam yang disediakan menggunakan penggantungan DMF kerana ia mempunyai permukaan filem paling rata berbanding dengan sampel yang lain.

ABSTRACT

This thesis is about the characterization of PVDF (Polyvinylidene Fluoride) film of piezoelectric applications in order to solve the crack problem due to weak bonding between deposited PVDF particles. The objective of this experiment is to characterize PVDF suspensions and PVDF films prepared by different polymer solvents (MEK (Methyl Ethyl Ketone) and DMF (Dimethyl Formamide)), stirring temperatures and time. The method used to deposit the PVDF particles on the ITO glass is electrophoretic deposition. Sedimentation test shows PVDF prepared in DMF based suspension have higher stability when compared with MEK sample. Low surface roughness was shown by UV-vis Spectra and SEM in PVDF films prepared using DMF based suspension. PVDF films prepared using MEK based suspension have a very rough and uneven surface films as compared to DMF derived sample. PVDF film prepared in DMF based suspension (at 120°C, 8 hr stirring condition) has even and low surface roughness, although did not have fully coverage film area. EDS analysis is used in 120°C, 2 hr and 120°C, 8 hr stirring condition that prepared in DMF based suspension show PVDF film coverage area is 60.4% for for 120°C, 8 hr sample. FTIR results show PVDF films prepared in DMF based suspension contain β -phase alone, while in MEK contain α and β -phase. Therefore, the best parameter of PVDF film is at 120°C, 8 hr stirring condition prepared in DMF based suspension because it has the most even films' surface compared to other samples.

DEDICATION

I dedicate this report to my frist and second supervisor, Dr. Muhammad Zaimi bin Zainal Abidin and Dr. Lau Kok Tee, thank you for being a guider during this final year project. Thank you for your cooperation and help in the success of this report. Thanks also to my parents for being a pillar of strength for me when I was weak and also to my friends, thank you for not throwing me away when I disappoint you. Thank you for loving me.

Finally, I dedicate this report to my examiners, Associate Prof. Dr. Zulkifli bin Mohd Rosli and Dr. Zurina binti Shamsudin for being my correctors, and also like to dedicate this report to all my respectable lecturers.

ACKNOWLEDGEMENT

First of all, I am grateful to God for the opportunity to prepare this final year project report. Special appreciation to my first supervisor, Dr. Muhammad Zaimi bin Zainal Abidin for his supervision and constant support. His invaluable help of constructive comments and suggestions throughout the report. Not forgotten, my appreciation to my second supervisor, Dr. Lau Kok Tee for his support and knowledge regarding this topic.

I would like to thank to all the assistance engineers that assist in identifying equipment that will be used in the laboratory and I am indebted to my final year project examiners, Associate Prof. Dr. Zulkifli bin Mohd Rosli and Dr. Zurina binti Shamsudin for being my correctors. Therefore, I consider myself as a very lucky individual as I was provided with an opportunity to be a part of this project. I am also grateful for having a chance to meet so many wonderful people and professionals who lead me through this final year project.

Thanks also to my colleagues that have same field as me, thanks for the support, friendship and memories. Last but not least, my deepest gratitude goes to my beloved parents for their endless love, prayers and encouragement. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	viii
List of Tables	ix
List of Figures	viii
List Abbreviations, Symbols And Nomenclatures	xii

CHAPTER 1: INTRODUCTION

1.0	Introduction	1
1.1	History and Background	2
1.2	Problem Statement	6
1.3	Objectives	7
1.4	Scope	7

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	8
2.1	General Material Properties of PVDF	9

v

2.2	Depo	sition of PVDF	12
2.3	Defin	ition of Agglomeration	14
	2.3.1	Attributes and Characterization of Agglomeration	16
2.4	Disso	lution	17
	2.4.1	Factors of dissolution	17
2.5	Sedin	nentation Test	18
2.6	EPD	(Electrophoresis Deposition)	19
	2.6.1	Mechanism of Electrophoretic Deposition EPD	21
		2.6.1.1 Particles Accumulation	21
		2.6.1.2 Electrostatic Force	21
		2.6.1.3 Salting Out	22
		2.6.1.4 Neutralization	22
		2.6.1.4 Squeezing Out	22
2.7	Electi	ro-Plating	23
2.8	Vapo	ur Deposition	24
	2.8.1	Evaporation	24
	2.8.2	Transportation	25
	2.8.3	Reaction	25
	2.8.4	Deposition	25
	2.9	Comparison of Methods	26

CHAPTER 3: METHODOLOGY

3.0	Introduction	28
3.1	Formulation of PVDF Suspension	30
3.2	Electrophoretic Deposition of PVDF Film	34
3.3	Surface Microstructure, Thickness Measurement and Elemental Analysis	36

CHAPTER 4: RESULTS AND DICUSSION

4.0	Introduction	39
4.1	Sedimentation test	40
4.2	Surface Microstructures of PVDF Films	42
4.3	FTIR (Fourier transform infrared spectroscopy)	51

CHAPTER 5: CONCLUSION

5.0	Introduction	53
5.1	Conclusion	54
5.2	Recommendations	55

REFERENCES	56

APPENDIX A

LIST OF TABLES

Table 1.1	Discovery of Piezoelectric Materials and Their Mechanisms or Applications (Katzir, 2012)	5
Table 2.1	General Properties of PVDF (Frank, 2014)	10
Table 2.2	Comparison of Smart Materials (Leo, 2002)	11
Table 2.3	Comparison Piezoelectric Constants between PZT-4, BaTiO ₃ , PVDF, and Quartz (Leo, 2002)	11
Table 2.4	Comparison Between EPD, Electro-Plating and Vapour Deposition (Grainger and Blunt, 1998)	26
Table 3.1	Range of Times and Temperatures (Kolev, 2012)	33
Table 4.1	Average thickness of PVDF films prepared in MEK based suspensions	45
Table 4.2	Average thickness of PVDF films prepared in DMF based suspensions (coverage area only)	48
Table 4.3	Percentage of coverage area on the subsrate	50

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

Figure 1.1	PZT (Lunes, 2010) and BaTiO ₃ structures (Ersin, 1999)	2
Figure 2.1	Crystal Structure pf PVDF	9
Figure 2.2	SEM result (Razi, 2014)	13
Figure 2.3	FTIR Spectra of β -PVDF in Perpendicular Stress Deformation (Mano, 2001.	13
Figure 2.4	Linkage Between Material Properties, Process Parameters, Transformations and Product Attributes in A Binder Agglomeration Process. (Mort, 2005)	14
Figure 2.5	Agglomeration Nucleation Mechanisms: (a) Distribution, and (b) Immersion. Granule Properties Typically Depend on the Mode of Nucleation and Growth. (Morth, 2005)	15
Figure 2.6	Mechanism of sedimentation process	18
Figure 2.7	Schematic of Electrophoretic Deposition Setup (Razi, 2014).	20
Figure 2.8	Electroplating Process (Anonymous, 2011).	23
Figure 3.1	Flow Chart of the Experiment	29
Figure 3.2	Programmable Electrophoresis Power Supply System.	34
Figure 3.3	Setup for Elecphoretic Deposition (Razi, 2014).	35

Figure 3.4	Cross Section of PVDF Layer on the ITO Glass Substrate	35
Figure 3.5	UV-Spectroscopy.	36
Figure 3.6	Fourier Transform Infrared Spectroscopy	37
Figure 3.7	Mini Sputter Coater.	38
Figure 3.7	Scanning Electron Microscope.	38
Figure 4.1	Sedimentation results of PVDF particle in MEK based suspensions	40
Figure 4.2	Sedimentation process of PVDF prepared in DMF based suspensions	41
Figure 4.3	UV-vis results of PVDF film prepared in MEK based suspensions	42
Figure 4.4	 a) SEM results of PVDF film surface, while b), c) and d) cross section of deposited sample at 53°C, 8 hour stirring condition in MEK based suspension 	43
Figure 4.5	SEM results of PVDF film surface and cross section of deposited sample at 62°C, 2 hour stirring condition in MEK based suspension	44
Figure 4.6	SEM results of PVDF film surface and cross section of deposited sample at 64°C, 8 hour stirring condition in MEK based suspension	44
Figure 4.7	UV-vis results of PVDF film prepared in DMF based suspensions	45

Figure 4.8	SEM results of PVDF film surface and cross section of deposited sample at 80°C, 8 hour stirring condition in DMF based suspension	46
Figure 4.9	SEM results of PVDF film surface and cross section of deposited sample at 120°C, 2 hour stirring condition in DMF based suspension	46
Figure 4.10	SEM results of PVDF film surface and cross section of deposited sample at 120°C, 8 hour stirring condition in DMF based suspension	47
Figure 4.11	EDS point analysis of PVDF film prepared using 120°C, 2 hour stirring conditions	49
Figure 4.12	EDS point analysis of PVDF film prepared using 120°C, 8 hour stirring conditions	49
Figure 4.13	FTIR absorption bands of PVDF film prepared in MEK based suspensions	51
Figure 4.14	FTIR absorption bands of PVDF film prepared in DMF based suspensions	52

LIST ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

Ba	-	Barium
BaTiO ₃	-	Barium Titanate
CVD	-	Chemical Vapour Deposition
DC	-	Direct Current
DMF	-	Dimethyl Formamide
TBp, DMF	-	Boiling point of DMF
Tex, DMF	-	Temperature of DMF that used in the experiment
EDS	-	Energy Dispersive X-ray Spectroscopy
EPD	-	Electrophoresis Deposition
FESEM	-	Field Emission Scanning Electron Microscopy
FTIR	-	Fourier Transform Infrared
hr	-	Hour
ITO	-	Indium Tin Oxide
MEK	-	Methyl Ethyl Ketone
TBp, MEK	-	Boiling point of MEK
Tex, MEK	-	Temperature of MEK that used in the experiment
0	-	Oxygen
ОМ	-	Optical Microscope
Pb	-	Lead

PVD	-	Physical Vapour Deposition
PVDF TeFE	-	PVDF Tetrafluoroethylene
PVDF TrFE	-	PVDF Trifluoroethylene
PVDF	-	Polyvinylidene Fluoride
PZT	-	Lead Zirconate Titanate
SEM	-	Scanning Electron Microscopy
Ti	-	Titanium
U.S	-	United State
UV	-	Ultraviolet
Zr	-	Zirconia

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter will introduce the history of piezoelectric, problems statement, objectives, and scopes of project. All the materials involved in piezoelectric properties, especially piezoceramics and piezopolymers also cited in this chapter.

1.1 History and Background

When a piezoelectric substance is deformed, electric potential is generated. It is called piezoelectric effect. It was demonstrated by the brothers Pierre Curie and Jacques Curie in 1880 (Manbachi et al., 2011). Certain materials can generate a voltage when placed under stress, such as quartz, salt and sugar. These materials had crystal structures with asymmetric dipole moments that would respond to mechanical pressure (Morgan Advance Materials, 2009).

The crystalline structure produce a voltage proportional to the applied mechanical pressure when the crystals are exhibiting direct piezoelectric effect, which is electricity generated from applied stress. Vise-versa, the material exhibits the converse piezoelectric effect, a stress is generated in response to applied electric field (Jacques and Currie, 1881).

In 1945, ferroelectric ceramics were used as capacitor materials, because of its high dielectric strength. First ceramic to be discovered is quartz, followed by BaTiO₃ (Barium Titanate) and then PZT (Lead Zirconate Titanate). The ceramics are also exhibiting high piezoelectric constant. However, they have several disadvantages, which are high melting point and low flexibility. Besides, PZT contains toxic lead element.

Figure 1.1: PZT (Lunes, 2010) and BaTiO₃ structures (Oren, 1999).

Figure 1.1 shows the crystal structures of BaTiO₃ and Pb (Zr, Ti)O₃. PZT consists of one part of Pb (Lead), one part of Zr (Zirconia) and Ti (Titanium) and three parts of and O (Oxygen). Although PZT has higher permittivity and better crystal structures as piezoelectric applications than BaTiO₃, the PZT is toxic. For BaTiO₃, it consists of one part of the Ba (Barium), one part of Ti and three parts of O. They still cannot fulfill the mechanical flexibility requirement of piezoelectric applications.

Then, new piezoceramic families and several types of piezoceramic signal filters were developed such as television, radio and communications equipments were created (Piezo Systems, Inc. 1994). The commercial success of the Japanese efforts has attracted the attention of the industry in many other nations and spurred a new effort to develop successful piezoceramic products in 1980.

In 1969, Kawai has found a strong piezoelectricity in PVDF (Polyvinylidene Fluoride) and it used as an alternative candidate to PZT and BaTiO₃ (Kawai and Heiji, 1969). Piezoceramic materials like PZT and BaTiO₃ suffer from mechanical strength and flexibility issues since they are brittle. Besides that, PZT also contain lead that can harm human body. Because of that, these materials were replaced with PVDF. PVDF has no lead content, requires low processing temperature and has good mechanical flexibility. Although PVDF has a better mechanical properties compared to PZT and BaTiO₃ vibration sensor application, difficulties might occur in the produce PVDF thick film. Then, other PVDF co-polymers were also reported by Tasaka and Miyata in 1985, including PVDF TrFE (Trifluoroethylene) and PVDF TeFE (Tetrafluoroethylene) (Cohen et al., 1996). The search for perfect piezo material is still going on until now, because the materials that used today still cannot beat the PZT material. Researchers are trying to find the materials that did not contain lead, such as polymer materials.

The piezoelectric material was fabricated in the form of thick film for the purpose of poling process at much higher applied voltage. PVDF is an inert material and need to be poled for piezoelectric applications (Lin et al., 2002). The poling of piezoelectric material is to create electric polarization inside the material so that sufficient ferroelectric strength is achieved for application (Kok et al., 2014). Table 1.1 shows the history of piezomaterials discovery and development over the years. Although many materials that found in nature, have piezoelectric properties, there are gaps between the material properties and the application requirement. Because of these circumstances, development of better piezoelectric is still been continued to improve the properties to fill the needs of the applications.

Table 1.1: Discovery of piezoelectric materials and their mechanisms or applications (Katzir, 2012).

Years	Materials	Mechanisms/Applications
1880	Tourmaline, Topaz, Quartz, Rochelle Salt and Cane Sugar	Discovery of electrical charge voltage generated is proportional to the applied mechanical stress on the crystals.
1881	-	Piezoelectric effect was mathematically deduced from fundamental thermodynamic principles.
1917	Quartz	The converse piezoelectric effect was used in the first submarine detecting-sonar.
1920 - 1940	Natural Crystal	The first generation applications were produced. Resonating and non-resonating piezoelectric devices.
1939 - 1945	BaTiO ₃ and PZT	These materials possessed superior dielectric and piezoelectric properties as compared to quartz.
1951	BaTiO ₃ and PZT	Piezoceramic signal filters, which addressed needs arising in television and radio.
1952	BaTiO ₃ and PZT	BaTiO ₃ have been replaced by PZT.
1969	PVDF	This material was found as a piezoelectric material because it has a strong piezoelectricity. Consider as a replacement for PZT and BaTiO ₃ .

1.2 Problem Statement

PVDF film deposition faced the crack problem due to weak bonding between PVDF particles, in additional to high residue stresses (Razi, 2014). The densification process by heat treatment did not resolve the cracks problem because of poor bonding between deposited particles. To solve the problems, the improvement of the density of PVDF layer without heat treatment is needed to avoid the crack. The most important issue is the bonding between the deposited polymers must be strong enough to hold the coating. In addition, the substrate for the deposited film must undergo a surface heat treatment using an acid in order to achieve good adhesion between film and substrate.

EPD (Electrophoresis Deposition) has a capability to deposit a multilayer film on complex surface morphologies in a conformal manner at a high deposition throughput, but only with low cost and simple equipment set-up (Foster and White, 2002). However, the properties of the polymeric PVDF film deposited by EPD for accelerometer sensor such as thickness, density, and adhesion, are depended on chemicals formulation and process parameters of the EPD. As the process of EPD involved many parameters such as materials, substance design, formulation, EPD process, annealing temperature and time, study is required to characterize properties of the deposited film, so that an optimization of these parameters to obtain PVDF film with adequate mechanical properties to perform well as the cantilever of an accelerometer sensor (Razi, 2014).

1.3 Objectives

In order to synthesize crack-free PVDF thick film, the current study embarks on the following objectives:

- 1. To characterize PVDF suspension prepared by different suspension formulations, processing temperatures and times.
- To characterize the surface morphology, cross-sectional microstructure and phase composition of PVDF film electrophoretic deposited using the PVDF suspensions stated in objective 1.

1.4 Scopes

In this research, PVDF film will be deposited by EPD method using different PVDF suspension formulation, as well as suspension processing temperatures and times.

To produce a PVDF film, three phases must be completed. The first phase is the preparation of PVDF suspension in organic solvent. For second phase, PVDF suspension was deposited by EPD method on the ITO (Indium Tin Oxide) glass substrate. The last phase is characterizations of the filmed sample. Different parameters will produce PVDF films with different surface morphology, cross-sectional microstructure and phase composition. The appearance of the PVDF particles on the substrate also can be analyzed. Fixed EPD parameters are used for the deposition of all PVDF films. The film will be characterized by using OM (Optical Microscope), FTIR (Fourier Transform Infrared), UV-Visible spectroscopy) (Ultraviolet-Visible Spectroscopy) and SEM (Scanning Electron Microscopy).

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter is about the properties of the PVDF, which used as piezoelectric components. Beside that, the methods and mechanisms involved also cited in this chapter.

C Universiti Teknikal Malaysia Melaka

2.1 General Material Properties of PVDF

PVDF crystal structures consist of Fluorine, Carbon and Hydrogen elements (refer Figure 2.1). It used as a piezoelectric material to replace BaTiO₃ and PZT that contain lead. By reason of a broad, general properties of the material should be reviewed in advance to ensure it can meet the application requirements. Table 2.1 shows several general properties of PVDF. PVDF contain several unique properties that are not owned by BaTiO₃ and PZT. Because of that, PVDF has received particular attention. One of the most important features is that the PVDF can be easily produced in the form of large thin, flexible sheets and in variety of shapes. The low dielectric permittivity and elastic stiffness of PVDF films at room temperature, resulting in high voltage sensitivity and low acoustic impedance make them attractive for application in piezoelectric devices (Choudhary and Patri, 2009).

Figure 2.1: Crystal structures of PVDF (Plastics Europe, n.d.).

Properties	Descriptions		
Chemical resistance	PVDF is made of composite fluoropolymer resin and		
	ceramic pigment, making it a good chemical resistance		
	coating.		
Low melting point	PVDF is an easy melted material and have a low melting		
177°C	point. It's also easy to be processed compared to other		
	fluoropolymers.		
Low density	PVDF can be molded and is commonly used in the		
(1.78 g/cm^3)	chemical and semiconductor as well as lithium ion		
	batteries. It is also available as a crosslink closed cell foam		
	which used increasingly in aviation and aerospace		
	applications.		
UV resistance,	It have very high fade resistance and ultraviolet resistance		
thermal degradation	in extremely harsh environment. This will allow PVDF to		
(exposure to 149°C).	withstand the surrounding temperature as a film in		
	piezoelectric sensor.		
High mechanical	PVDF structures have the most stable chemical bond		
strength and	because of the fluoride-carbon bond.		
flexibility			

 Table 2.1: General properties of PVDF (Frank, 2014).

Table 2.2 shows the comparison of smart materials and it is shown piezoelectric polymers are much more durable and sensitive in responding to deformations than ceramics, and also better electric fields. These polymers are not the common that used in polymer films, but used as extreme piezoelectric at the moment. However, PVDF has piezoelectric voltage coefficient 20 times greater than the more common ceramic crystal (Esterly, 2002).