ANALYSIS OF PREVENTIVE MAINTENANCE FOR PROCESSING PLANT (GASSIFICATION PROCESS UNIT)

ABDUL PAIZAL BIN MOHD ZAIN B041210141 BMCL Email: abdpaizal@gmail.com

> Draft Final Report Projek Sarjana Muda II

Supervisor: PPN. NUR IZYAN B. ZULKAFLI C/O supervisor : DR. REDUAN B. MAT DAN

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

C Universiti Teknikal Malaysia Melaka

ANALYSIS OF PREVENTIVE MAINTENANCE FOR PROCESSING PLANT (GASSIFICATION PROCESS UNIT)

ABDUL PAIZAL BIN MOHD ZAIN

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Loji & Penyenggaraan)

> Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature	:	
Author	:	
Date	:	

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance)"

Signature	:
Supervisor	·
Date	:

DEDICATION

I dedicate this research to all lecturers, my family and friends

ABSTRACT

Preventive maintenance defined as a philosophy, a skill of management series in how to manage the plant operation to be more efficient in terms of cost and times. The purposes of this research is to find the value of preventive maintenance performance that consists of a several activities, according to standard operation of a particular components. The method that will be use is Weibull method, which by this method, the shape parameter and characteristic life can be evaluate to find the failure and reliability distribution in a period of specific time and economic analysis.

The scope of this research are only for terms in preventive maintenance; types of preventive activities, number of labors, inventory / spare parts, failures and any related terms for preventive maintenance. The terms of cost in labors and inventory for economic analysis will have two parameters as to be comparison, the first one is maintenance cost without optimization and the other one is maintenance cost with maintenance optimization. The result of these two parameters are depends on the characteristic life factors (η) and mean time between failure (MTBF).

The result of this research will shows all the evaluation for beta shape parameter, β and eta characteristic life, η for each of the components in the particular plant. Then both of the parameters will determine the factors needed in terms to find the optimized time line for preventive maintenance and leads to economic analysis after the optimization. Lastly, the conclusion will discuss the overall results and the relationship between all of the comparison, the shape factors, characteristic life and optimized maintenance cost.

ABSTRAK

'Preventive maintenance' ataupun penyelenggaraan pencegahan, adalah boleh dikatakan sebagai falsafah yang berkaitan dengan teknik dan pentadbiran operasi loji, unruk menjadikannya lebih efektif daripada segi masa dan kos. Penyelenggaraan ini terdiri daripada beberapa aktiviti yang merujuk kepada satu piawaian yang telah ditetapkan. Loji pemprosesan bergantung kepada kebolehupayaan sesuatu mesin untuk berfungsi dengan baik, dimana jika pengeluaran diberhentikan, ianya akan mempengaruhi keseluruhan loji tersebut. Daripada tesis ini, process flow diagram akan memberi gambaran secara keseluruhan aktiviti ini, dimana unit yang digunakan ialah unit-1000, iaitu unit klasifikasi gas. Komponen mesin pada proses loji ini adalah ssangat penting dimana setiap komponen diklasifikasikan sebagai kategori kritikal ataupun sebaliknya. FMEA digunakan untuk memberi garis panduan dalam penyelenggaraan yang akan dilakukan. Data yang diperoleh akan dianalisis dengan menggunakan teknikteknik tertentu dimana dengan menganalisa data tersebut, setiap komponen yang terlibat dapat dikaitkan dengan parameter tertentu contohnya seperti denggunakan OEE, MTBF dan CMMS, kecekapan sesuatu mesin itu boleh ditentukan dan dianalisa dengan lebih cekap.

CONTENTS

TITLE	PAGE
DECLARATION	i
DEDICATION	ii
ABSTRAK	iii
ABSTRACT	iv
CONTENTS	v
LIST OF FIGURES	Х
LIST OF TABLES	ix
LIST OF GRAPHS	xiii
LIST OF EQUATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	INTRODUCTION	1
1.2	2 OBJECTIVES	2
1.3	PROBLEM STATEMENTS	2
1.4	SCOPE	3
1.5	SUMMARY	3

CHAPTER 2 LITERATURE REVIEW

2.1	INTR	ODUCTION	4
2.2	IDEN	TIFICATION OF CRITICAL COMPONENTS	5
	2.2.1	Introduction	5
	2.2.2	Analysis of critical components	5
	2.2.4	Summary and conclusion	8
2.3	PREV	ENTIVE MAINTENANCE PERFORMANCE	9
	2.3.1	Weibull analysis	9
	2.3.2	Failure distribution	11
	2.3.3	Reliability of PM	15
	2.3.4	Availability of a system	16
	2.3.5	Summary and conclusion	18
2.4	TOTA	L MAINTENANCE COST AND	
	ECON	OMIC LOSSES	
	2.4.1	Life cycle cost (LCC) analysis	19
	2.4.2	Preventive maintenance cost	21
	2.4.3	Economic losses	24
	2.4.4	Summary and conclusion	24
2.5	PREV	ENTIVE MAINTENANCE DATA EVALUATION	
	2.5.1	Maintenance evaluation – Total productive	25
		maintenance (TPM)	

2.5.2	Maintenance evaluation – 7QC tools	28
2.5.3	Conclusion and summary	30

	2.6	SUMMARY OF LITERATURE REVIEW	3
--	-----	------------------------------	---

CHAPTER 3 METHODOLOGY

3.1	INTRODUCTION	31
3.2	EQUIPMENT CRITICALITY	
3.3	FAILURE ANALYSIS - Failure mode effect analysis	36
	(FMEA)	
3.4	WEIBULL ANALYSIS	37
	3.4.1 Failure distribution, F(t)	39
	3.4.2 Reliability distribution	40
3.5	AVAILABILITY	41
3.6	ECONOMIC LOSSES	
	3.6.1 Estimation of preventive maintenance total cost	44

CHAPTER 4 RESULT AND ANALYSIS

4.1	MAINTENANCE DATA	47
4.2	EQUIPMENT CRITICALITY	51

4.3 WEIBULL RELIABILITY ANALYSIS

	4.3.1	Equipment failure data	52
	4.3.2	Equipment reliability analysis	55
	4.3.3	Cumulative of relative frequency failure	58
4.4	Unit	t / System availability	59
4.5	MA	INTENANCE COST	
		4.5.1 Estimation of preventive maintenance	64

total cost

CHAPTER 5 DISCUSSION

5.1	Weibull analysis	70
5.2	Availability	74
5.3	Maintenance cost	75
5.4	Data constraint	77

CHAPTER 6 RECOMMENDATION AND CONCLUSION

6.1	RECOMMENDATION	78

6.2 CONCLUSION 80

REFERENCES	81
APPENDICES A	84
APPENDICES B	86
APPENDICES C	88

viii C Universiti Teknikal Malaysia Melaka

APPENDICES D – RELIABILITY PLOTTED GRAPH

D-1 PUMP	104
D-2 COMPRESSOR	108
D-3 PRESSURE VESSEL	112
D-4 HEAT EXCHANGER	115
D-5 REACTION CHAMBER	119
D-6 SCRUBBER	123
D-7 REDUCER	127
D-8 STRAINER	131
D-9 VALVE	136

ABBREVIATION

PM	Preventive maintenance
MTBF	Mean time between failure
FMEA	Failure mode effect analysis
MTTR	Mean time to repair
MTTF	Mean time to failure
МТВМ	Mean time between maintenance
η	Characteristic life
ß	Shape factor
R (t)	Reliability function
F (t)	Failure distribution function
H (t)	Hazard function
ТРМ	Total productivity maintenance
RCM	Reliability centered maintenance
ТРМ	Total productive maintenance
ТQМ	Total quality management
OEE	Overall equipment effectiveness
Qtty.	Quantity

LIST OF FIGURES

Figure 2.0 ABC analysis	8
Figure 2.1 Bath tub curve	10
Figure 2.2 Weibull-estimation data plotted-manual	11
Figure 2.4 Six different failure patterns	12
Figure 2.5 Failure distribution of cumulative percentage - time	14
Figure 2.6 Non-worn out failure (a & b)	14
Figure 2.7 Reliability of two parameters function	16
Figure 2.8 System component in series	17
Figure 2.9 Relationship between availability, MTBF and MTTR	17
Figure 3.0 Tpm vs uptime	22
Figure 3.1 Tpm vs downtime	23
Figure 3.2 Tpm vs expected cost (n=3)	23
Figure 3.3 Data required to analyze the life cycle cost	26
Figure 3.4 Mechanical downtime form 2005 – 2010 plant	27
Figure 3.5 Summary of downtime for EL102 in 2011	27
Figure 3.6 Use of 7QC tools in process of data identification	28
Figure 3.7 Approaches by using seven basic (7QC) tools	28
Figure 3.8 PDCA cycles	29
Figure 3.9 Seven basic quality tools in correlation with PDCA cycles	30

Figure 4.0	Gantt chart of PSM I	31
Figure 4.1	Preventive maintenance main objectives	32
Figure 4.2	Steps of methodology	33
Figure 4.3	Flow process of building FMEA program	36
Figure 4.4	Process flow diagram of availability (gasification unit)	42
Figure 4.5	Process flow chart unit 1000	60
Figure 4.6	Availability block diagram unit 1000	61

LIST OF TABLE

Table 2.0 Range limit and critically score	5
Table 2.1 Data of equipment list in 3 years	6
Table 2.2 Categorization of equipment list by total score	7
Table 2.3 Cumulative scores of ABC analysis	7
Table 2.4 Computation of LCC option 1	19
Table 2.5 Computation of LCC option 2	20
Table 2.6 Table of uptime, downtime and costs	21
Table 2.7 Uptime, downtime and cost by n-system	22
Table 2.8 EL102 –Bucket conveyor failure classification	25
Table 2.9 EL102 spare parts availability	26
Table 3.0Production cost of losses from 2005 until 2011	28
Table 3.1 Maintenance list equipment data	34
Table 3.2 Range limits and critically range	35
Table 3.3 Categorization and level of equipment criticality	35
Table 3.4 Example of FMEA sheet	36
Table 3.5 Table of cumulative failures (percentage)	37
Table 3.6 Table of MTBF and MTTR	37
Table 3.7 Table of shape factor and characteristic life of each component	38
Table 3.8 Table of failure cumulatives	39

Table 3.9	Total preventive maintenance cost estimation table	45
Table 4.0	Analysis of optimization maintenance cost table	46
Table 4.1	Mean time between failure for main components	48
Table 4.2	Maintenance data	49
Table 4.3	Score of 'S'	51
Table 4.4	Critical equipment assessment	52
Table 4.5	Critically range limit	52
Table 4.6	Failure mode effect critical analysis	
Table 4.7	Table of failure fraction at F(t) and f (t)	52
Table 4.8	Equipment Weibull shape factor and characteristic	56
Table 4.9	Availability values	62
Table 5.0	Table of size of labours, Lpm 65	
Table 5.1	Value of freq. of PM optimization based on eta (η) and MTBF	66
Table 5.2	Total preventive maintenance cost estimation table	67
Table 5.3	Analysis of optimization economic losses table	69

LIST OF GRAPHS

Graph 2.0	Weibull data plot graph	10
Graph 2.1	Life cycle cost analysis option 1 and option	20
Graph 2.2	Failures cumulative distribution function	39
Graph 2.3	Reliability cumulative distribution function	41
Graph 2.4	PM cost and average cost	50
Graph 2.5	Frequencies of failure vs time respond	50

LIST OF EQUATION

Eq. 2.0	Wear out failure : Beta ≥ 1	13
Eq. 2.1	Random / constant failure : $1 \leq Beta$	13
Eq. 2.3	Running-in failure : $0 \le \text{Beta} < 1$	13
Eq. 2.4	Reliability function	16
Eq. 2.5	Hazard function	17
Eq. 2.6	Availability	18
Eq. 2.7	Availability - series	18
Eq. 2.8	Availability – parallel	19
Eq. 2.9	Score,S (Probability)	30
Eq. 3.0	MTTR	31
Eq. 3.1	MTBF	33
Eq. 3.2	Failure, F(t)	36
Eq. 3.3	Failure, f(t)	36
Eq. 3.4	Failure population, F _x	36
Eq. 3.5	Probabilities of an item occur between tx and ty	36
Eq. 3.6	Number of failures (population)	36
Eq. 3.7	Reliability function, R(t)	36
Eq. 3.8	Reliability population	36
Eq. 3.9	Hazard function	37
Eq. 4.0	Availability (Total)	38
Eq. 4.1	Availability (1)	38

Eq. 4.2	Availability (2)	38
Eq. 4.3	Availability (3)	38
Eq. 4.4	Availability (Overall)	38
Eq. 4.5	Total maintenance cost	40
Eq. 4.6	Size of labor force	40
Eq. 4.7	PM activities optimization	41

LIST OF APPENDICES

PAGE
INGL

Appendices A PSM II Gantt chart	84
Appendices B Weibull plot graph	86
Appendices C Process flow diagram (PFD) – Unit 1000	88
Appendices D Weibull analysis tables and graphs	
D-1 PUMP	104
D-2 COMPRESSOR	108
D-3 PRESSURE VESSEL	112
D-4 HEAT EXCHANGER	115
D-5 REACTION CHAMBER	119
D-6 SCRUBBER	123
D-7 REDUCER	127
D-8 STRAINER	131

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Since decades ago, the history of preventive maintenance already begun, whereabouts the revolution of industry in Europe and America. Preventive maintenance is an activity that need to secure the reliability of a components or a machine in a period of time. Maintenance can be divided into a few types of major activity ; predictive maintenance (PDM), root cause analysis (RCA), preventive maintenance (PM) and condition based maintenance (CBM). Today's maintenance challenges consists of many factors; the more of the technologies developed each days, the more complicated the machines it can be. Hence, the maintenance work that need to be done, and of course, value of money is the first priority that will be considered. Initially, the keys of maintenance works are the combination of a particular skills in terms of process management, material handling, technical skills and specific knowledge about the machines. However, the maintenance activity must be executed in a manner way; as to

comply with the safety of the public and the machines, welfare and health to the society and environment. The goal of the maintenance in process plant is to develop a new technique or a concept so that we can adapt the maintenance activity without interfering any of the process, even the whole equipment changed over times, the subsequence of the maintenance activity are still the same. Therefore, this research is about to on how can we reduce the cost at all manners in terms of all the preventive maintenance activities and to manage the cost effectiveness. The evaluation in this research is based on gasification unit-1000, a raw syngas production processing plants. The process flow diagram of gasification unit-1000 can be refer to the appendices. The equipment consists of different unit which it continuously supply the product to another unit.

1.2 OBJECTIVES

There are a few main objectives of this research by the title; analysis of preventive maintenance planning for process plant. The objectives are to analysis the preventive maintenance plan and schedule of a process plant (gasification process unit), to study the effectiveness of a preventive maintenance planning and scheduling of a process plant in terms of it's failure rate, availability, reliability and maintenance cost. As an add on, the performance parameters can be relate to labor work and inventory (spare parts) cost optimization as well. Also, the other objectives are to estimate the total costs and economic losses incurred within the maintenance planning time horizon, by studying the graphs of the investment of the maintenance cost, tracking and predicting matters related in terms of the graph's fluctuation.

1.3 PROBLEM STATEMENTS

Problem statement in this project may vary but generally the problems arose subjectively due to cost planning and controlling. Preventive maintenance activities consumed a lot of financial related base. These included the skill labor cost, advance calibration equipment, special tools, production downtime, future expand and any other related consequences.

To maintain / reduce the loss of productivity, a time based scheduling and proper planning maintenance time consumption management were the preliminary challenges to build up an effective strategize maintenance management planning. By using a right preventive maintenance planning methods, the failure mode of each the equipment failure can been predicted before it happened and also to control the unnecessary inventory / spare parts / labor cost from flowing out.

1.4 SCOPE

- Total outflow cost are bounded only the PM cost (labor cost and inventory cost).
- To analysis the effect of preventive maintenance performance analysis been done by normal PM methods by using weibull analysis method method.
- The performance of preventive maintenance measured from the availability, reliability and failure distribution.
- Economic losses by the process plant estimated due to the equipment failures.

1.5 SUMMARY

As a conclusion, the impact of the preventive maintenance activities for process plant specifically plays an important role for the whole process and productivity. In either way, the maintenance programs and activities will influenced the fluctuation of the company's welfare. Operational and capital expenditure were the bases of the plant's total cost control. Hence, to achieved the cost planning and management scheduled, it needs to have a proper maintenance activities and Moreover, preventive maintenance planning were the essentials of the equipment in terms to reduce the failure