DESIGN OF SOLAR-POWERED GARDEN LIGHT WITH MOTION SENSOR

CHU HUN WEI B041110165 BMCD Email: hunwei_chu@msn.com

Projek Sarjana Muda II

Supervisor: DR. CHENG SEE YUAN

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

JUNE 2015

C Universiti Teknikal Malaysia Melaka

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design & Innovation)"

Signature:	
Supervisor:	DR. CHENG SEE YUAN
Date:	

i

DESIGN OF SOLAR-POWERED GARDEN LIGHT WITH MOTION SENSOR

CHU HUN WEI

This thesis is submitted in fulfillment of the requirement for the award of Bachelor of Degree of Mechanical Engineering (Design and Innovation)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA (UTeM)

JUNE 2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

" I hereby declare that the work in this thesis is my own except for summaries and quotations which have been duly acknowledge."

Signature:....

Author: CHU HUN WEI

Date:....

For my beloved family

ACKNOWLEDGEMENT

In preparing this thesis, there are many people had involved helping me to complete the thesis, so I would like to express my utmost gratitude to those who lend their hands and support me in order to complete this thesis. First of all, I would like to express my greatest gratitude of my family who has always been the pillar in my life. Their continuous support and love in the every way have made me who I am today. Without them I wouldn't be able to get this far in life.

I would like to express my indebted gratitude to my supervisor, Dr. Cheng See Yuan for all his advise and helps throughout my FYP project and thesis writing. Throughout the semester, he was very patient and guiding me and sharing his knowledge in Engineering. Without him, I would not have to done my FYP smoothly.

I would like to thanks to all my friends and others who have provided assistance at various occasions. Their comments and supports are very useful to me especially when I'm feeling stress throughout the process. Once again I am grateful to all of them who had help me in order to complete my FYP.

ABSTRACT

Nowadays, many lighting application require complicated wiring such as home lighting appliances. From main power to the specific lighting equipment, the amount of wire for installation is large and messy. In order to solve the wiring problem, solar powered garden light is introduced. This study cover on step by step in order to design a solar powered garden light with motion sensor. Motion sensor is included in the solar garden light as it function available in market is monotonous. The calculation about specification, selection of components, assembly and performance assessment of solar garden light included in this thesis. The design process began with the amount of light lumen require in order to illuminate a predetermined area of a garden. The next step covered on the wattage and the types of lighting element and sensor that fit the criteria. Choosing the right battery and solar panel were the next steps. Schematic circuit design is done after choosing of components. The physical body of solar garden light is designed as well as the materials selection. Final step focus on the performance assessment of solar garden light. Parameter such as sensing distance and field of vision of the sensor, luminance of the LED and operating hours of solar garden light are tested. A prototype of circuit of motion sensor solar garden light was done at the end of the project with sensing distance of 4 meter, 30° dispersion angle, 100 lumen brightness, and minimum of six hours of operating hours. Physical body is designed with the suitable materials but the fabrication of physical body is not included in this study.

ABSTRAK

Pada masa kini, banyak kegunaan lampu memerlukan pendawaian yang rumit contohnya peralatan lampu di rumah. Dari bekalan elektrik utama untuk peralatan pencahayaan tertentu, jumlah wayar untuk pemasangan atau pendawaian wayar adalah banyak dan tidak kemas. Dalam usaha untuk menyelesaikan masalah pendawaian, lampu taman solar diperkenalkan. Ini akan merangkumi pada langkah demi langkah untuk merangka lampu taman yang menggunakan kuasa solar bersama dengan sensor gerakan solar. Sensor gerakan termasuk dalam lampu taman solar kerana lampu kini yang terdapat di pasaran adalah tidak menarik. Pengiraan mengenai spesifikasi, pemilihan komponen, pemasangan dan analisis lampu taman solar dibincang dalam tesis ini. Proses reka bentuk bermula dengan jumlah percahayaan yang memerlukan untuk menerangi kawasan di taman. Langkah seterusnya meliputi watt dan jenis elemen pencahayaan dan sensor yang sesuai dengan kriteria tersebut. Langkah seterusnya adalah pemilihan bateri dan solar panel. Reka bentuk litar skematik selepas pemilihan komponen. Rangka fizikal lampu taman solar juga direka serta pemilihan bahan untuk rangka tersebut. Langkah terakhir memberi tumpuan kepada analisis lampu taman solar. Parameter seperti jarak dan sensitiviti sensor, keterangan LED, masa operasi lampu taman solar diuji. Satu prototaip litar sensor lampu taman solar difabrikasikan pada akhir projeck dengan mempunyai fungsi seperti jarak penderiaan sensor empat meter, 30° sudut serakan, 100 lumen kecerahan, dan jam waktu operasi sekurang-kurangnya enam jam. Badan fizikal direkan dengan bahan yang sesuai tetapi fabrikasi badan fizikal tersebut tidak termasuk dalam projek ini.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE
	SUPERVISOR DECLARATION	i
	COVER PAGE	ii
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	TABLE OF CONTENT	viii
	LIST OF FIGURES	xii
	LIST OF TABLES	XV
	LIST OF SYMBOLS	xvi
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDICES	XX
CHAPTER 1	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Problem Statement	3

CHAPTER 2	LITERATURE REVIEW	7
	1.4 Summary	6
	1.3 Scope	5
	1.2 Objective	4

	2.0 Introduction	7
	2.1 Previous Study	8
	2.2 Basic of Solar Cell	10
	2.2.1 Characteristic of Solar Cell	11
	2.3 Solar Specific	13
	2.4 Photovoltaic (PV) System & Application	14
	2.5 Light Emitting Diode (LED)	17
	2.6 Luminance	20
	2.6.1 Candela to Lumen	23
	2.7 Rechargeable Battery	24
	2.7.1 Lithium-ion Battery	26
	2.8 Design a Standalone PV System	29
CHAPTER 3	METHODOLOGY	32
	3.0 Design Consideration	32
	3.1 Circuit Design	34
	3.1.1 Circuit Design - Lighting Control	34
	3.1.2 Circuit Design - Motion Sensor	42

	3.1.3 Circuit Assembly	44
	3.1.4 Working Principle of Solar Garden Light	45
	3.1.5 Summary of Circuit Design	47
	3.2 Material Specification & Design of Physical Body of Solar Garden Light	48
	3.2.1 Materials Selection	48
	3.2.2 Physical Body Housing Specification	49
	3.2.3 Summary	49
	3.3 Method of Performance Assessment	50
	3.3.1 Ultrasonic Motion Sensor of Solar Garden Light	50
	3.3.2 Maximum Sensing Distance of Ultrasonic Motion Sensor	51
	3.3.3 Field Vision of Ultrasonic Motion Sensor	52
	3.3.4 LED Panel of Solar Garden Light	53
	3.3.5 Luminance & Operating Hours of Solar Garden Light	54
	3.3.6 Summary	55
CHAPTER 4	RESULTS AND DISCUSSION	56
	4.0 Introduction	56
	4.1 Results of Circuit Design - Fabrication	57
	4.1.1 Solar Garden Light Circuit Fabrication	57
	4.2 Results of Physical Body Design	60
	4.2.1 Physical Body Design	60
	4.2.2 Materials Selection	62

	4.3 Results of Performance Assessment	
	4.3.1 Results of Maximum Sensing Distance of Ultrasonic Motion Sensor	66
	4.3.2 Results of Field of Vision of Ultrasonic Motion Sensor	68
	4.3.3 Results of Luminance & Operating Hours of Solar Garden Light	70
	4.4 Discussion	74
CHAPTER 5	CONCLUSION & RECOMMENDATION	83
	5.0 Conclusion	83
	5.1 Recommendation	85
	REFERENCES	87

APPENDICES	93

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

No	TITLE	PAGE
2.1	Formation of Solar Panel from Solar Cell Unit	10
2.2	Model of Single Solar Cell	11
2.3	Standalone PV System - Solar Garden Light	15
2.4	Results of NLPIP Survey on PV Lighting System	16
2.5	Physical Outlook & Schematic Diagram of LED	17
2.6	Energy Saving of LED vs Sodium and Mercury Lamp	18
2.7	Photocouple/Optocoupler	19
2.8	Lighting Design Recommendation	21
2.9	Illuminance Level Recommendation	22
2.10	Apex Angle of LED	24
2.11	Solar Charging Equivalent Circuit	25
2.12	Structure of Li-Ion Battery	26
2.13	Properties of Common Positive Electrode Materials	28
2.14	Current & voltage during typical Li-ion charge cycle	28
2.15	PV Stand-Alone System Layout	29
3.1	Block Diagram of Solar Garden Light	33
3.2	Design Consideration of Solar Garden Light	33

3.3	Design Steps of lighting Control Circuit	34
3.4	Outlook of SMD 3528 LED	35
3.5	Schematic Lighting Control Circuit Diagram of Solar Garden Light	40
3.6	Ultrasonic Motion Sensor	42
3.7	Controller Circuit for Ultrasonic Motion Sensor	43
3.8	Buck Booster	43
3.9	Finalize Circuit Design for Solar Garden Light	44
3.10	Ultrasonic Motion Sensor	50
3.11	Sensor Ranging Measurement	51
3.12	Field of Vision Measurement	52
3.13	LED Panel of Solar Garden Light	53
3.14	Divided Square of 1m x 1m Area in Garden	55
4.1	Components Assembly by Soldering	57
4.2	Final Results of Circuit of Solar Garden Light	58
4.3	Simple Diagram of Circuit of Solar Garden Light	59
4.4	Physical Body Design of Solar Garden Light	60
4.5	Mode of Solar Garden Light	61
4.6	Materials Division Part of Solar Garden Light	62
4.7	Silo Satin Aluminum Outdoor Wall Light	63
4.8	Field of Vision Measurement	69
4.9	Graph of Lumen Against Position (Bright Mode)	70
4.10	Graph of Lumen Against Position (Dim Mode)	71
4.11	Graph of Average Lumen Against Operating Hours (Bright mode)	72

4.12	Graph of Average Lumen Against Operating Hours (Dim mode)	73
4.13	Working Process of The Solar Garden Light.	75
4.14	Light Mode of Solar Garden Light	76
4.15	Switch Button	77
4.16	Trim Pot	78
4.17	Resistor Potentiometer and Reset Button	78
4.18	Optimized Arrangement of solar Garden Light	79
4.19	Distance ratio between two solar Garden Light	80

xiv

LIST OF TABLE

TABLE	TITLE	PAGE
3.1	Electronic Components for Solar Garden Light Circuit	41
4.1	Results of Sensor Ranging Measurement	67
4.2	Results of Field of Vision (Sensor in Horizontal)	68
4.3	Results of Field of Vision (Sensor in Vertical)	68
4.4	Average Lumen Level of Solar Garden Light	80
4.5	Cost Estimation for Components of Solar Garden Light	81

LIST OF SYMBOLS

I_{ph}	=	Photocurrent source
D	=	Diode
R _s	=	Series Resistance
Ι	=	Net Current
I _D	=	Diode Current
m	=	Idealizing factor
k	=	Boltzmann's gas constant (1.38 x 10 ⁻²³ J/K)
T _c	=	Absolute Temperature of Solar Cell
e	=	Electronic Charge (1.6 x 10 ⁻¹⁹ C)
V	=	Voltage Imposed Across Cell
I ₀	=	Dark Saturation Current (depending on temperature)
G_a	=	Solar Irradiation
P _{max}	=	Maximum Power
V _{max}	=	Maximum Voltage
I _{max}	=	Maximum Current
W	=	Watt
m^2	=	Meter Surface Area
φ	=	Latitude

δ	=	Solar Declination
Hz	=	Hertz
lm	=	Lumen
cd/mcd	=	Candela/ Milli Candela
sr	=	Steradians
Φ	=	Luminous Flux
I _v	=	Luminous Intensity
Ω	=	Solid angle
θ	=	Apex Angle
Е	=	Voltage Source
i / I _{char}	=	Charging Current
r	=	Internal Resistance
Eo	=	Battery to Charge
Р	=	Power Stored
E _{cons}	=	Energy Consumed
I _{bat}	=	Battery Ampere
V _{bat}	=	Battery Voltage
V _{solar}	=	Solar Panel Voltage
P _{solar}	=	Solar Panel Power
P _{charging}	=	Solar panel Charging Power

LIST OF ABBREVIATION

PV	=	Photovoltaic
LED	=	Light Emitting Diode
IEE	=	Institute of Electrical & Electronic Engineers
TNB	=	Tenaga National Berhad
HPS	=	High Pressure Sodium
DC	=	Direct Current
AC	=	Alternative Current
FC	=	Foot Candle
psh	=	Peak Sun Hour
SMD	=	Surface Mount Device
SI	=	System International
IESNA	=	Illuminating Engineering Society of North America
UV	=	Ultraviolet
NIR/IR	=	Infrared
emf	=	electromotive force
PCB	=	Printed Circuit Board
Isc	=	Short Circuit Current
Voc	=	Open Circuit Voltage
FF	=	Fill Factor
Li	=	Lithium
MPP	=	Maximum Power Point

- NLPIP = National Lighting Product Information Program
- SHS = Solar Home System

LIST OF APPENDICES

BIL	TITLE	PAGE
А	Sunlight and Sun's path at Location of Latitude ϕ	94
В	Application of PV System	95
С	Solar Insolation of Specific Area in Malaysia	96
D	Rough Sketching of Solar Garden Light Circuit	98
E	Simple Solar Garden Light Circuit	99
F	Fabrication of Simple Solar Garden Light Circuit	100
G	Testing of Simple Solar Garden Light Circuit	101
Н	Schematic Diagram and Working Principle for Infrared Motion Sensor.	102
Ι	Fabrication and Testing of Infrared Motion Sensor Circuit	103
J	Draft Design of Physical Body	104
K	Testing on Ultrasonic Motion Sensor Range	105
L	Testing on Vision of Field of Ultrasonic Sensor	106
M(i)	Solar Garden Light Lumen Testing	107
M(ii)	Solar Garden Light Lumen Testing	108
Ν	Details Drawing of Physical body of Solar Garden Light	109

0	Chemical Composition of Die Cast Aluminum Alloys	110
Р	Physical and Mechanical Properties of Die Cast Aluminum	111
Q	Properties of Borosilicate Glass	112
R	PSM I Gantt Chart	113
S	PSM II Gantt Chart	114
Т	Plagiarism Review	115

xxi

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

Photovoltaic or PV is currently one of the most attractive options for renewable energy resources around the world (PV Industry, 2009). PV system application can be divided into 2 distinctive categories, which are grid-connected system and stand alone (off -grid system). In Grid-connected PV systems, energy storage is not required as solar radiation provides power and if there is surplus energy, it can be transferred into grid and operates by linking the solar PV with the utility-grid connection (Djamila et al, 2012). In standalone PV systems, electrical power is necessary from the system during night or dusk. Thus the storage must be added to system. Generally, rechargeable battery is used for energy storage (Djamila et al, 2012). Both system are widely applied in Malaysia, The standalone system will be further discussed in this section.

One of the application of standalone photovoltaic system is lighting system. The use of standalone photovoltaic lighting system has increased ubiquitous as it need little maintenance. silent, and free of moving parts. PV lighting system are self contained; there are no trenches, no external cabling, and no need to connect to the main power grid. PV lighting systems are apply to various fields including garden to parking lot and also street lighting.

In term of number of installations, lighting is presently the biggest application of photovoltaic, with tens of thousands of units installed worldwide (Markvart, 2010). They are mainly used to provide lighting for domestic or community building, such as schools or health centre. PV is also being increasingly used for lighting streets and tunnels, security lighting, and garden lighting.

Solar garden light is a cheap alternative to Solar Home System (SHS) which can provide 7 - 8 hours of lighting. It brighter than candle and kerosene lamp. Besides, it is wireless and contain no moving parts and make it easy to be install at everywhere in a garden. It is used as an alternative in enhancing any garden especially when the site not connected to utility grid. On the other hand, it requires minimal maintenance and reliable. It can be an awesome decorative item in garden too. In this project, the aim is to design a prototype of a standalone PV system for garden lighting application.