DEVELOPMENT OF PACK BORONIZING FOR AUTOMOTIVE APPLICATION

MUHAMMAD HIZRAN BIN KAMALUDIN

Universiti Teknikal Malaysia Melaka

DEVELOPMENT OF PACK BORONIZING FOR AUTOMOTIVE APPLICATION

MUHAMMAD HIZRAN BIN KAMALUDIN

Thesis submitted in partial fullfillment of requirements for the award of a Bachelor Degree in Mechanical Engineering (Structure &Materials)

> Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Structure & Materials)"

Signature:.....Supervisor:DR. RAFIDAH BINTI HASANDate:29 JUNE 2015

DECLARATION

"I hereby declare that the work in this thesis is my own except for summaries and quotations which have been duly acknowledged."

Signature:	
Author:	MUHAMMAD HIZRAN BIN KAMALUDIN
Date:	29 JUNE 2015

For all my beloved family and supervisor for all their support and blessing

ACKNOWLEDGEMENT

Thank to Allah for giving me a good mind and health to my body in completing my research from the beginning until the end. I would like to express my deepest appreciation to my supervisor Dr. Rafidah bt. Hasan who gave me opportunity to do my PSM research under her guidance and willing to spent time and commitment during the entire study. My appreciation also extended to all lecturers and technicians of Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, especially technician of Material Science Laboratory, Mr. Mahadir who helps a lot during the boronizing process. Also my appreciation to Mr. Mohd Farhan, technician from Multimedia University and to all my friends especially who involve in my research. I would like to express my gratitude to my family for their love and support, patient and encouragement and lastly to Universiti Teknikal Malaysia Melaka for giving me a chance to prove my potential here.

ABSTRACT

Boronizing is a thermo-chemical surface hardening treatment in which boron atoms diffused into the metal substrate to form metallic boride layer, providing high hardness, corrosion resistance, and 3-10 times increasing service life. This type of surface treatment is widely used in many applications. The purpose of this work is to study and to investigation the hardness of the part before and after the boronizing treatment. The types of steel that was choose in this study is Stainless Steel AISI 316 (austenitic type). The boronizing powder pack that are used is Ekabor 1. The pack boronizing process involves the embedding of the metal into boronizing powder mixture. The unboronized and boronized of specimens at different value of powder condition will be analyzed in term of their hardness values for each specimen that was boronized at various conditions will be further analyzed to verify the effects of boronizing powder condition on hardness. The microstructure of boronized and unboronized specimens observed in this study. All of the causes were discussed.

ABSTRAK

Penyusukboronon adalah rawatan kimia dan suhu untuk tujuan mengeraskan permukaan logam dimana atom boron bercampur dengan logam asas, memberi tahap kekerasan yang tinggi, ketahanan terhadap kakisan dan meningkatkan jangka hayat kepada 3 - 10 kali lebih dari logam asal. Banyak aplikasi yang menggunankan rawatan permukaan ini secara meluas. Kajian ini adalah bertujuan untuk menbincangkan kesan-kesan penyusukboronan ke atas kekerasan logam sebelum dan selepas penyusukboronan. Jenis logam yang digunakan dalam kajian ini ialah Stainless steel AISI 316 sebagai spesimen. Serbuk penyusukboron yang digunakan adalah Ekabor 1. Pek proses boronizing melibatkan pembenaman logam ke dalam boronizing campuran serbuk. Spesimen-spesimen yang tidak diaplikasikan proses penyusukboronan dan juga spesimen yang diaplikasikan proses tersebut pada keadaan serbuk yang berbeza seperti yang ditetapkan akan dianalisis sifat kekerasan mereka dengan menggunakan alatan pengujian kekerasan. Perbezaan nilai kekerasan yang disusukboronan pada variasi berbeza dianalisis lebih lanjut untuk menilai kesan serbuk penyusukboronan terhadap kekerasan. Microstruktur permukaan bahan sebelum dan selepas proses penyusukboronan dikaji. Semua kajian dibincangkan didalam kajian.

TABLE OF CONTENTS

i ii
ii
iii
iv
V
vi
vii
Х
xi
xiii
xiv
1
2
3
3
4
erials 7
8
ents 8
10

2.3	Advar	ntages of Boronizing	11
2.4	Disad	vantages of Boronizing	13
2.5	Stainl	ess Steel	13
	2.5.1	Types Of Stainless Steel	14
	2.5.2	Advantages of Stainless Steel	15

CHAPTER 3 METHODOLOGY

3.1	Process Flow		16
3.2	Materials		
	3.2.1	Stainless Steel	17
	3.2.2	Grade	17
	3.2.3	Composition	18
3.3	Selecti	ion of Automotive Part	19
3.4	Specin	nen Preparation	21
	3.4.1	Boronizing Powder	22
3.5	Boron	izing Procedure	23
3.6	Operating Condition		
	3.6.1	Temperature and Treatment Time	26
3.7	Vicker	rs Microhardness	
	3.7.1	Hardness Test Apparatus And Procedures	27
3.8	Micros	structure	
	3.8.1	Step to obtain microstructure	28
3.9	Research Done in this Study		
	3.9.1	Fabrication Of Container Which Suits The	
		Selected Automotive Parts	31
3.10	Expec	ted Outcome After Boronizing Treatment	
	3.10.1	Optimum Thickness Of Boride Layer	32

CHAPTER 4 RESULTS AND ANALYSIS

4.1 RESULTS

4.1.1 Measurement of Hardness 34

	APPENDIC	ES	49
	REFERENC	ES	46
CHAPTER 6	RECOMMEN	NDATION	45
CHAPTER 5	CONCLUSIO	DN	44
	4.1.4	Gear Microstructure	39
			20
	4.1.3	Hardness Test for Bearing	37
	4.1.2	Hardness Test for Gear	36

C Universiti Teknikal Malaysia Melaka

LIST OF TABLE

NUM.	TITLE	PAGE

1.1	Typical Part For Boronizing And The Benefit	
	Of Boronizing	2
2.1	Microhardness Of Different Boride Phases Formed After	
	Boriding Of Different Substrate Materials	5
2.2	Typical Surface Hardness Of Boronized Steels Compare	
	With Others Treatment And Hard Materials	6
2.3	The Application Of Boronized Ferrous Materials	10
2.4	The Surface Hardness Of Boronized Steels Compares To	
	Other Treatments And Hard Materials	12
3.1	Chemical Composition Of Austenitic Grade	18
3.2	Mechanical & Physical Properties	19
3.3	Boronizing Parameter for ball bearing	21
3.4	Boronizing parameter for gear	21
3.5	Boronizing agents	23
3.6	Experimental Condition	25
3.7	Temperature and time	26
4.1	Hardness values for boronized gear (Hv)	36
4.2	Hardness values for boronized bearing	38
4.3	Hardness for unboronized bearing	38
4.4	Thickness of boronized layer	41

х

LIST OF FIGURES

NUM.	TITLE	PAGE
2.1	The Effect Of Percent Alloying Elements On The Boride	
	Layer Thickness	9
2.2	The Hardness Value For Various Materials Surface	
	Treatment	11
3.1	Process Flow	16
3.2	Microstructure Of Steel AISI316	19
3.3	Stainless Steel On Automotive Parts	20
3.4	Ball Bearing And Gear Specimens	20
3.5	Scales are used to measure the powder condition	22
3.6	Boronizing powder EKABOR 1	23
3.7	Gear placed inside container	24
3.8	Container heated in the furnace	24
3.9	Schematic diagram for boronizing treatment	25
3.10	The container been removed from the furnace after the process	25
3.11	Vickers Microhardness machine	26
3.12	Vickers hardness test measurement	27
3.13	Intermediate polishing the specimens	28
3.14	Fine polishing the specimens	29
3.15	Gear after fine polishing	29
3.16	Etching solution carpenter	30
3.17	Microscope to obtain microstructure	30
3.18	Schematic Diagram Of Boronizing Container	31
3.19	Boronizing Container used	32
4.1	(a) Vickers Microhardness Machine (b) Vickers Microhardness	\$
	measurement	35

4.2	(a)Boronized gear (b) Microhardness test indention on gear 3	
4.3	Graph showing Rockwell hardness values of gear	
	with surrounding 5,10 & 15mm	37
4.4	Hardness of boronized bearings	38
4.5	(a) Microstructure before boronizing process	
	(b) Microstructure after boronizing process	39
4.6 (a)	5mm powder pack surrounding	40
4.6 (b)	10mm powder pack surrounding	40
4.6 (c)	15mm powder pack surrounding	40
4.7	Boride layer thickness of 15mm powder pack surrounding	41
4.8	Graph showing Boride layer thickness against powder pack	
	surrounding	42

xii

LIST OF SYMBOLS

NUM. TITLE

1. x = Thickness

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

U.T.e.M : Universiti Teknikal Malaysia Melaka

Hv : Vickers Hardness

xiv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Boronizing is a thermochemical process in which boron atoms are diffused into the surface of a workpiece to form complex borides with the base metal. It is a diffusion-controlled process. In addition to nickel, titanium, cobalt alloys and cemented carbides, nearly any ferrous material can be boronized. It should be noted that the diffusion rate slows down in higher-alloyed steels. (R.Davis ,2002)

Boronized steels are extremely resistant to abrasion because of their high hardness and the service life can be significantly increased (R.Davis ,2002). The process uses boronized agents such as powder, granulates of various grain sizes and pastes, which are commercially available. Depending on the requirements of the parts, the diffusion layer thickness is in range of 20-200 µm depth. Layers are much thinner in the case of austenitic stainless steel. Boronized steel part can be vacuum hardened afterward to achieve the desired mechanical properties of the base material due to the similar thermal expansion coefficient. The process temperature for boronizing depends on the materials grade and lies between 700 °C to 1000 °C. A stress-relieving treatment can be carried out after machining and prior to boronizing to minimize distortion. Other heat treatment before boronizing, such as quench-hardening, should not be perform, since the boronizing process removes the results of a preheat treatment. Where dimensional accuracy is paramount, the boride layer will add 20-30% of its thickness to the size of the part and the workpiece must be undersized during manufacturing. (R.Davis ,2002)

Boronizing is used successfully for general wear resistance of carbon steel components, combined with the broad range of compatible substrates and the cost-effective nature of the process due to wear/performance benefits provided by the boronized layer. Boronizing is also a good choice for certain tooling applications due to its temperature and wear resistance (R.Davis ,2002). Table 1.1 shows the typical part for boronizing and benefit of boronizing.

Typical parts for boronizing	Benefits of Boronizing
Moulds for glass bottle production	Increased tool and mold life
Steam turbine blades, tri-pin blades	Good resistance to abrasive, sliding
and nozzle rings	and adhesive wear
Oil & gas field tubing (OCTG)	Reduced use of lubrication
Plungers and rollers	Can be polished to a high finish
Gears and shafts	Reduced tendency to cold weld
Burner nozzles	Low coefficient of friction
Pump and valve components	

Table 1.1 : Typical part for boronizing and the benefit of boronizing (R.Davis ,2002).

1.2 OBJECTIVE

The objective of this study are :

- 1. To propose automotive parts which are suitable to be treated by pack boronizing.
- 2. To design and fabricate a suitable container for powder pack boronizing procedure.
- 3. To develop pack boronizing process and investigate the hardness of the part using FKM, UTeM facilities.
- 4. To determine factors that influence boronizing process on stainless steel materials.

1.3 SCOPE

The scope of this study includes the followings :

- 1. Experimental works of a proposed boronizing procedure on several automotive parts.
- 2. Analysis of hardness for the boronized part.
- 3. Analysis on the influence of the boronizing powder concentration to the hardness of materials.

1.4 PROBLEM STATEMENT

In numerous automotive applications, surface solidifying treatment is important to create a high surface hardness on a steel part with the goal that it can oppose wear and scraped area. In this project, the boronizing applicability to some automotive parts is studied and the effects of boronizing on the hardness of the parts are analyzed.

CHAPTER 2

LITERATURE REVIEW

2.1 BORONIZING

Boronizing, or boriding, is a thermochemical treatment that diffuses boron through the surface of metallic substrates. As boron is a component of generally tiny size, it diffuses into a mixture of metals; including ferrous, nickel and cobalt combinations, metal-reinforced carbides and most refractory alloys (Glukhov,1990). The procedure gives the metallic boride layer that the ensuing metallic boride layer yields the extraordinary properties of high hardness, great wear and consumption safety (Suwattananont,2004). The procedure includes warming pre-cleaned material in the temperature range of 700 to 1000 °C (1300-1832 F) for 1 to 12 hour, in contact with boronaceaus solid (boronizing compound), glue, fluid, or gaseous medium (Sinha,1991).

Other advancement of thermochemical boronizing incorporate plasma boronizing, beat plasma boronizing, and fluidized-couch boronizing. Boron atoms diffuse and subsequently absorb into the metallic lattice of the component surface during boronizing. As a result, an interstitial boron compound is formed with either a single-phase boride or a poly-phase boride layer(Sinha,1991). Most ferrous materials, with the exception of aluminium and silicon bearing steels, e.g. structural steels, case hardened, tempered, tool and stainless steels, cast steels, ductile and sintered steels and also air hardened steels can be carried out by boronizing. In addition, materials such as nickel-based alloys, cobalt-based alloys and molybdenum can be boronized. A boronized Nickel alloy produce an extreme hard surface wear

resistance. Nitrided steels, leaded and resulfurised steels are not suitable for boronizing (Sinha,1991).

Material Selection for Boronizing :

- Non alloyed and low alloyed steels
- Stainless steels
- cast iron, casted steel
- Cold work, hot work, and HSS steel
- Powder metallurgical steel
- Cobalt based materials
- Cemented carbides
- Nickel-based alloys

A few trademark peculiarities of borides layers, including morphology, growth, and phase composition which can influence the alloying components in the base material demonstrate in Table 2.1

Table 2.1: Microhardness of Different Boride Phases Formed after Boriding ofDifferent Substrate Materials (Sinha,1991).

Substrate	Constituent phases in the boride layer	Microhardness of layer, HV or Kg/mm ²
	FeB	1900 - 2100
Fe	Fe ₂ B	1800 - 2000
	CoB	1850
Со	Co ₂ B	1500 - 1600
	СоВ	2200 (100g)
Co-27.5 Cr	Co ₂ B	~1550 (100g)
	Ni ₄ B ₃	1600
Ni	Ni ₂ B	1500
	Ni ₃ B	900
Inco 100		1700 (200g)
	Mo ₂ B	1660
Мо	Mo_2B_5	2400 - 2700
	W_2B	
W	WB	~2700 (overall
	W_2B_5	hardness)
	TiB	2500

Ti	TiB ₂	3370
Ti-6A1-4V	TiB TiB ₂	3000 (100g) (overall hardness)
Nb	Nb_2B_2 NbB_4	2600 - 3000 (overall hardness)
Та	$\begin{array}{c} Ta_2B\\ TaB_2 \end{array}$	3200 - 3500 2500
Zr	ZrB_2 Zr_2B	2300 - 2600 (overall hardness)
Re	ReB	2700 - 2900

Boride layers have various trademark characteristics with unique points of interest over conventional case hardened layers. Boride layers have greatly high hardness values (somewhere around 1450 and 2000 HV) with high liquefying purposes of the constituent stages (Sinha,1991). The common surface hardness estimations of boride steels compared others medicines and other hard materials are recorded shown in Table 2.2. This obviously outlines that the hardness of boride layers produced on carbon steels is much greater than that are delivered by any others conventional surface solidifying treatment.

Table 2.2: Typical Surface Hardness of Boronized Steels Compare with Others

Treatment and Hard Materials (Sinha, 1991).

Material	Microhardness kg/mm ² or HV
Boride mild steel	1600
Borided AISI H13 die steel	1800
Borided AISI A2 steel	1900
Quenched steel	900
Hardened and tempered H13 die steel	540-600
Hardened and tempered A2 die steel	630-700
High-speed steel BM42	900-910
Nitrided steels	650-1700
Carburized low-alloy steels	650-950
Hard chromium plating	1000-1200
Cemented carbides, WC + Co	1160-1820 (30 kg)
$Al_2O_3 + ZrO_2$ ceramic	1483(30 kg)
$Al_2O_3 + TiC + ZrO_2$ ceramic	1738 (30 kg)
Sialon ceramic	1569 (30 kg)
TiN	2000
TiC	3500
SiC	4000
B₄C	5000
Diamond	>10,000

2.1.1 Boronizing of Ferrous Materials

Either a single phase or double-phase of boride layer shaped on iron and steel can be of corresponding to a definite composition from Fe-B, Fe₂B acquired for the single-stage layer, while the double-phase layer comprises of an outside period of FeB and inner part phase of Fe₂B with is a saw-tooth structure as the morphology of the boride layer The saw-tooth structure helps improving the mechanical adherence at the Fe₂B /substrate interfaces. (Suwattananont,2004).

The formation of Fe₂B stage is expectedly favored than that of FeB stage, express that FeB stage is more brittle than Fe₂B stage. Also, it is observed that FeB forms a surface under the high tensile stress while Fe₂B form a surface under the high compressive stress. The boronizing process cause to the break arrangement at the FeB which avoids from having the coincidence of Fe₂B and FeB stages. Fe₂B interface of double phase layer. The separation of double phase layer under the applied mechanical strain or the thermal/mechanical shock and the crack formation leads to the spalling. After boronizing treatment, annealing process can decrease the occurrence of FeB phase. (Sinha,1991).

Typical properties of the FeB phase are (Sinha, 1991):

- a) Microhardness of about 19-20 GPa.
- b) Modulus of elasticity of 590 GPa.
- c) Density of 6.75 g/cm3
- d) Thermal expansion coefficient of 23 x 10-6 /C between 200-600 oC
- e) Composition with 16 to 16.2 wt% boron.
 Lattice parameters: a= 4.053A, b=5.495A, and c=2.946A.

The typical properties of Fe2 B phase are (Sinha, 1991) :

- a) Microhardness of about 18-20 GPa.
- b) Modulus of elasticity of 285 to 295GPa.
- c) Density of 7.43 g/cm3
- d) Thermal expansion coefficient of 7.65 x 10-6 / °C between 200-600°C
- e) Composition with 8.8 wt% boron.
- f) Lattice parameters: a = 5.078A, and c = 4.249A

2.1.2 Boronizing Reactions

The boronizing procedure involves two reactions. The first reaction is the beginning stage happens between component boron medium and surface. Boronizing temperature and time and are followed by the growth of boride layer are structured as the function of the cores. Fe₂B cores are initially formed and grow as a thin boride layer at the defect point of the metal surface if there should be an occurrence of ferrous materials. The rich boron product stage on the off chance that the active boron medium is excess for example FeB will form and grow on the Fe₂B phase. (Chatterjee,1989)

The second stage is a diffusion-controlled process, which the thickness of bride layer is formed under an parabolic time law:

$$x^2 = kt$$
 [Equation 2.1]

where x as the thickness of the bride layer, t as the boronizing time and k as an constant relying upon the temperature, (Chatterjee,1989). Boron molecules diffuse in the crystallographic direction and form the body-focused tetragonal in the case of ferrous materials grid of Fe_2B to accomplish the greatest nuclear thickness along this direction. The growth of Fe_2b is columnar totals of crystals, which shows the saw-tooth structure. The columnar growth of FeB grow (Sinha,1991) in the crystallographic direction and the saw-tooth structure of FeB is lower than that of Fe_2B for the double phase, (Palombarini. and Carbucicchio, 1984)

2.1.3 Influence of Alloying Elements

The prominent saw-tooth structure of boride layer is decently seen in pure iron, unalloyed low-carbon steel, and low alloy steels. The thickness of the boride layer is decreased at the point when the alloying components and/or carbon substance in the substrate steel are expanded. An alternate impact of alloying components (aside from nickel, cobalt, and manganese), which retard the boron diffusion into the substrate, is to increase the proportion of FeB constitution (Dearnleyand Bell,1985).