ANALYSIS OF PNEUMATIC VALVE CONTROL SYSTEM

NOR SURIYANTI BINTI OSMAN B051110084

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ANALYSIS OF PNEUMATIC VALVE CONTROL SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotics and Automation) (Hons).

by

NOR SURIYANTI BINTI OSMAN B051110084 920101-04-5518

FACULTY OF MANUFACTURING ENGINEERING 2015

DECLARATION

I hereby, declared this report entitled Analysis of Pneumatic Valve Control System is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NOR SURIYANTI BINTI OSMAN
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) (Hons.). The member of the supervisory is as follow:

.....

(Project Supervisor)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Analysis of Pneumatic Valve Control System			
SESI PENGAJIAN: 2014/20	15 Semester 2		
Saya Nor Suriyanti Binti (Osman		
U	poran PSM ini disimpan di Perpustakaan Universiti JTeM) dengan syarat-syarat kegunaan seperti berikut:		
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (✓) 			
 SULIT TERHAD TIDAK TERHAD 	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:		
Alamat Tetap: Batu 10, Bertam Hulu,	Cop Rasmi:		
76450 Melaka			
Tarikh:	Tarikh:		
	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai		

ABSTRAK

Projek ini menerangkan kajian teori dan eksperimen terhadap pneumatik DCV yang digunakan dalam sistem pneumatik dan memberi tumpuan kepada sistem kawalan yang asas. Sistem kawalan pneumatik DCV ditakrifkan dengan sistem kawalan terbuka. Persamaan matematik dikembangkan dengan menggunakan asas undangundang fizik dan prinsip-prinsip iaitu Kirchoff's current dan undang-undang Newton pada pneumatik DCV. Selain itu, persamaan yang diperolehi membantu dalam membina graf seperti step response dan nyquist, di mana analisis seperti masa tindak balas pergerakan, peratus lebihan pergerakan, nilai kestabilan dan kesalahan, kestabilan dan tindak balas kekerapan telah dijalankan. Teknik simulasi (MATLAB) komputer telah digunakan untuk menguji dan mendapatkan keputusan hasil teori sistem kawalan. Eksperiment terhadap sistem pneumatik dijalankan dan keputusan direkodkan. Dengan membuat perbandingan terhadap kedua-dua keputusan, kita dapat melihat keadaan pneumatik tersebut sama ada dalam keadaan baik atau tidak. Implikasi projek ini adalah untuk memberikan pemahaman terhadap sistem injap kalawan pneumatik yang bertujuan untuk meningkatkan prestasi injap pneumatik yang sedia ada.

ABSTRACT

This project describes the theoretical and experimental study of a pneumatic valve utilized in the pneumatic system, focusing on its fundamental control system. The pneumatic valve control system is defined as an open loop control system. Mathematical equations are evolved by applying fundamental physical laws and principles namely Kirchhoff's current and Newton's law, on the pneumatic valve. Furthermore, the derived equations assist in developing curves like step response and nyquist where analysis such as rise and settling time, percent overshoot, steady value and error, stability and frequency response were carried out. MATLAB programming has be used in this project in order to test and get the theoretical result for the control system. Pneumatic system experiment are conducted and result are recorded. By comparing the theoretical and experimental result, we can see the behavior of the pneumatic valve either in a good condition or not. The implication of this project is for understanding the pneumatic valve.

DEDICATION

This report is dedicated to my lovely father and mother, family and my supervisor for being an internal spirit and continual support to give big and deep effects to me when this project was held. Thank you.

ACKNOWLEDGEMENT

First of all, I am grateful to The Almighty God for establishing me to complete this final year project.

I would like to express the deepest appreciation to all coordinators who give me the opportunity to do my final year project in Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia.

I place on record, my sincere gratitude to my principle supervisor, Dr. Ahmad Yusairi bin Bani Hashim, my project supervisor from Manufacturing Engineering (Robotic and Automation) Department for his constant encouragement. I am extremely grateful and indebted to him for his expertise, sincere and valuable guidance.

In addition, I would like to take this opportunity to record my sincere thanks to all lectures from UTeM, Melaka, Malaysia especially in Manufacturing Engineering (Robotic and Automation) Department, my senior; Miss Sufiah Akmala binti Ramdan, and all technician in UTeM for their help and encouragement.

A thank to my parents for their unceasing encouragement and support and lastly, I also place on record, my sense of gratitude to one and all who, directly or indirectly, have lent their helping hand along my final year project session.

TABLE OF CONTENTS

Abst	rak		i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledge	ement	iv
Table	e of Con	tent	v
List	of Tables	5	х
List	of Figure	25	xi
List .	Abbrevia	ations, Symbols and Nomenclatures	xiii
СНА	PTER 1	I: INTRODUCTION	1
1.1	Backg	ground	1
1.2	Proble	em Statement	4
1.3	Objec	tives	4
1.4	Scope	,	4
1.5	Organ	ization of Report	5
1.6	Gantt	Chart	5
	1.6.1	Project Schedule 1	5
	1.6.2	Project Schedule 2	6
	1.6.3	Project Schedule For Entire Project (Project 1 and 2)	6
1.7	Conc	luding Remarks	7
CHA	APTER 2	2: LITERATURE REVIEW	8
2.1	Pneun	natic System	8
	2.1.1	Air Compressor	10
	2.1.2	Electrical Motor	10
	2.1.3	Air Receiver	10
	2.1.4	Pressure Switch	10
	2.1.5	Safety Valve	10
	2.1.6	Auto Drain	10

	2.1.7	Check Valve	11
	2.1.8	Pressure Gauge	11
	2.1.9	Air Dryer	11
	2.1.10	Air Filter	11
	2.1.11	Air Service Unit or F-R-L Unit	11
	2.1.12	Directional Control Valve	12
	2.1.13	Air cylinder	12
2.2	Pneun	natic Valve	13
	2.2.1	Control of Pressure	13
	2.2.2	Control of Flow Rate	14
	2.2.3	Control of Actuator Direction	15
2.3	Direct	ional Control Valve	16
	2.3.1	Internal Construction Approaches	16
		2.3.1.1 Poppet/Piston Type	16
		2.3.1.2 Spool Type	17
	2.3.2	Flow Paths Approaches	18
		2.3.2.1 Two-Way Directional Valve	18
		2.3.2.2 Three-Way Directional Valve	18
		2.3.2.3 Four-Way Directional Valve	19
		2.3.2.4 Five-Way Directional Valve	19
	2.3.3	Position Approaches	20
	2.3.4	Actuation Approaches	20
	2.3.5	Operation Approaches	20
		2.3.5.1 Spring Offset	20
		2.3.5.2 Normally Open and Normally Closed Valves	21
		2.3.5.3 Detents	21
	2.3.6	Additional Valve Types	21
		2.3.6.1 On/Off Solenoid Valves	22
		2.3.6.2 Proportional Valves	22
		2.3.6.3 Servo Valves	22
2.4	Install	ation of Pneumatic System	22
2.5	Contro	ol System	24
	2.5.1	Classification of Control System	24

		2.5.1.1 Natural Control System	24
		2.5.1.2 Manmade Control System	24
		2.5.1.3 Combinational Control System	24
		2.5.1.4 Time Varying and Time Invariant Systems	25
		2.5.1.5 Linear and Nonlinear Systems	25
		2.5.1.6 Continuous Time and Discrete Time Control Systems	25
		2.5.1.7 Deterministic and Stochastic Control Systems	25
		2.5.1.8 Lumped Parameter and Distributed Parameter Control	25
		Systems	
		2.5.1.9 Single Input Single Output (SISO) and Multiple Input	26
		Multiple Output (MIMO)	
		2.5.1.10 Open Loop and Closed Loop System	26
	2.5.2	Basic Steps to Design a Control System	26
	2.5.3	Mathematical Model of Control System	27
		2.5.3.1 Magnetic Circuit	27
		2.5.3.2 Mechanical Subsystem	29
		2.5.3.3 Valve Flow Ability	31
2.6	MAT	LAB	32
2.7	Concl	uding Remarks	33
СНА	PTER 3	3: METHODOLOGY	34
3.1	Collec	cting Internet Article and Journal	34
3.2	Readi	ng Books	34
3.3	Overa	ll Report Methodology	34
3.4	Phase	1: Identification of the DCV Basics	35
	3.4.1	Step 1: The Type of Pneumatic DCV Used	36
	3.4.2	Step 2: The Working Principle of Pneumatic DCV	36
	3.4.3	Step 3: The Pneumatic DCV Construction	36
	3.4.4	Step 4: The Parameter for both Electromagnetic and	37
	Mecha	anical Subsystem	
3.5	Phase	2: Modelling the Control System of the DCV	37
	3.5.1	Step 1: The Block Diagrams of Pneumatic DCV	37
	3.5.2	Step 2: The Free-Body Diagram (FBD) Used for this Project	37

	3.5.3 Step 3: Mathematical Models for Transfer Functioon of	38
	Electromagnetic and Mechanical Subsystem	
3.6	Phase 3: Evaluation the DCV Control System	38
	3.6.1 Step 1: MATLAB Evaluation Measurement	39
	3.6.2 Step 2: MATLAB Input Program	39
	3.6.2.1 Transient Response Analysis	39
	3.6.2.2 Frequency Response Analysis	39
	3.6.3 Step 3: Data Analysis	40
	3.6.4 Step 4: Summary	40
3.7	Concluding Remarks	40
СНА	PTER 4: RESULTS AND RECOMMENDATION	41
4.1	Identification the Basics of DCV	41
	4.1.1 Valve Description	41
	4.1.2 Working Principle	42
	4.1.3 DCV Construction	43
4.2	Modeling the Control System of the DCV	43
	4.2.1 Electromagnetic Subsystem	44
	4.2.2 Mechanical Subsystem	47
4.3	Evaluation the DCV Control System	49
	4.3.1 Electromagnetic Response	49
	4.3.2 Mechanical Response	50
	4.3.3 Experimental Results	53
	4.3.3.1 Air Flow Rate	56
	4.3.3.2 Pressure-Response Time	57
	4.3.3.3 Voltage-Current-Actuate Rate	58
4.4	Concluding Remarks	59
СНА	PTER 5: CONCLUSION	61
5.1	Conclusions	61
5.2	Recommendations	62
REF	ERENCES	63

APPENDICES	66
A. Pneumatic Symbols	67
B. Common Command	73
Matrix Operators	
Relational and Logical Operators	
Special Characters	
C. Experiment 1- Identification the DCV Basics	76
Experiment 2 - Modelling the Control System of DCV	
Experiment 3 - Evaluation of DCV Control System	
Experiment 4 - Pneuamtic Test Procedure	
D. MATLAB Program	84
Air Flow Rate Calculation	
E. 5/2 Way Double Solenoid Valve Drawing	94
F. Pneumatic Training Set Specification	97

LIST OF TABLES

1.1	Developments on pneumatic valve	2
1.2	Pneumatic valve issues	3
1.3	Input and output signal parameter	3
2.1	Power and signal element components	23
4.1	Specification of Pneumatic Valve	42
4.2	List of Pneumatic Valve Part	43
4.3	Electromagnetic Subsystem Parameter of 5/2-Way Double Solenoid	
	Valve	48
4.4	Mechanical Subsystem Parameter of 5/2-Way Double Solenoid Valve	48
4.5	Specification of Pneumatic Valve	54
4.6	Pneumatic Valve Performance	55
A.1	Graphical Symbols Of Cylinders	67
A.2	Symbol of Air Preparation Units, Pneumatic Valves	68
A.3	Actuation Variation with Symbols	70
A.4	Symbol of Lines and Functions	71
B.1	MATLAB Commands and Predefined Functions	74
B.2	MATLAB Matrix Operators with Predefined Operations	75
B.3	Relational and Logical Operators that Used in MATLAB	75
B.4	Special Characters that Used in MATLAB	76
C.4	Pneumatic Valve Performance	81

LIST OF FIGURES

1.1	Project Schedule 1		5
1.2	Project Schedule 2		6
1.3	Project Schedule For Entire Project (Project 1 And 2)		6
2.1	Schematic of compressed air		9
2.2	Pneumatic components system		9
2.3	Pneumatic system		14
2.4	Needle valve with tapered nose		14
2.5	Double acting cylinder		15
2.6	Two directional control valve with extend condition		15
2.7	Two directional control valve with retract condition		16
2.8	Poppet type valve		17
2.9	Rotary spool type valve		17
2.10	Sliding spool type valve		18
2.11	Two-way directional valve		18
2.12	Three-way directional valve		19
2.13	Four-way directional valve		19
2.14	Five ported, 4-way directional valve		19
2.15	Position approaches		20
2.16	Spring offset symbol		21
2.17	Detent symbol		21
2.18	Schematic installation of the pneumatic system		23
2.19	Basic steps in designing of control system		27
2.20	Schematic diagram of the spool valve structure		29
3.1	Flow chart of overall report methodology		35
3.2	Main working principle of pneumatic		36
3.3	DCV Double solenoid, spool-sliding type valve will be	described	36
3.4	Basic mathematical characteristic of pneumatic DCV		38

4.1	Double Solenoid, Spool-Sliding Type Valve	41
4.2	Working Principle of DCV	43
4.3	Block Diagram of Electromagnetic Subsystem with Voltage (V) as	
	Input and Magnetic Force (F) as its Output	44
4.4	Block Diagram of Mechanical Subsystem with Magnetic Force, (F) as	
	Input and Spool Movement, (X) as its Output	44
4.5	Free Body Diagram of Electromagnetic Subsystem	45
4.6	Free Body Diagram of Electrical System	45
4.7	Free Body Diagram of Magnetic System	45
4.8	Free Body Diagram of Mechanical Subsystem	47
4.9	Free Body Diagram of Mechanical Subsystem	47
4.10	Step Response of 5/2-Way Pneumatic Valve using Transfer Function	- 0
	in Electromagnetic Subsystem	50
4.11	Step Response of 5/2-Way Pneumatic Valve using Transfer Function	50
	in Mechanical Subsystem	52
4.12	Nyquist of 5/2 Way Pneumatic Valve using Transfer Function in	
	Mechanical Subsystem	52
4.13	Air flow rate of 5/2 Way Double Solenoid Valve with Three Different	
	Pressure: 29.01, 43.51 and 58.02 PSIA	57
4.14	Response Rate of 5/2 Way Double Solenoid Valve with Three	50
	Different Pressure: 29.01, 43.51 and 58.02 PSIA	58
4.15	Voltage-Current-Response Rate with the Different Voltage Used from	50
	0 to 24V	59
Appe	endix C Pneumatic System	82
Appe	endix E 5/2-Way Double Solenoid Valve Construction	94

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

DCV	-	Directional Control Valve
FYP	-	Final Year Project
FBD	-	Free Body Diagram
FRL	-	Filter, Regulator and Lubricator
Max	-	Maximum
MIMO	-	Multiple Input Multiple Output
SISO	-	Single Input Single Output
SCFM	-	Standard Cubic Feet Per Minute
PSIA	-	Pounds Per Square Inch Absolute

CHAPTER 1 INTRODUCTION

This chapter describes the introduction of the project of pneumatic valve control system. Begin with the introduction to current issues, followed by translation of the problem statement from the questions and identification of project objectives. Next, project scope and report organization will be discussed. Lastly, Gantt chart will be covered in this chapter.

1.1 Background

Pneumatic is one of the power sources that is widely used in automated machine equipment in performing various automation projects. Most of the industries prefer to use pneumatic because it is simple, cheap, easy to handle and maintenance and possesses a high level of controllability. In addition, pneumatic medium; the air are widely available and compressible (Majumdar, 1996).

In pneumatic system, pneumatic valve is a vital mechanical component. The Romans first founded the valve concept. They used bronze plug as cock in their aqueducts (Borden, 1998). In general, valve consists of a body and a moving part which control air passages within the body. The moving part is essential in controlling system pressure, direction of flow and rate of flow in the system.

Pneumatic valves are available in several types. The valve type depends on the internal construction, number of the flow path in the valve, number of position or square in the valve body, actuation and operation type (Lansky, 1986).

The evolution of complex processes in industries and necessity to reduce production cost, a study approach is required to monitor the valve operating condition. Thus, it is important for engineers to analyze significant issues of the pneumatic valve to prevent the pneumatic valve from the damaged working condition. Several new methods have been implemented to maintain the pneumatic valve in good condition.

Table 1.1: Developments	s on pneumatic valve
-------------------------	----------------------

No.	New Development	References
1.	Unconstrained vibrational pneumatic valve	(Uehara & Hirai, 2005)
2.	Flow control valve using a vibration motor	(Akagi et al., 2008)
3.	Pneumatic valve with biomorph type PZT actuator	(Yun et al., 2006)
4.	Pneumatic actuator control system using PZT impact force	(Liu & Jiang, 2007)
5.	New flow control valve is driven by PZT vibrator	(Hirooka et al., 2009)
6.	Design and control of direct drive servo-valve operated by the piezostack actuator	(Jeon, Nguyen, & Choi, 2013)
7.	Design of a High-Speed Electromagnetic Control Valve Using the Numerical Analysis	(Han, 2014)

Uehara and Hirai invented an unconstrained vibrational pneumatic valve that has an orifice 2.0 mm in diameter and a metal poppet 6.0 mm in diameter (Uehara, & Hirai, 2005), Akagi invented a flow control valve utilising a vibration motor (Akagi, Dohta, Katayama, & Engineering, 2008), Yun invented a pneumatic valve along with biomorph type PZT actuator (Yun, Lee, Kim, & So, 2006), Liu et al. invented a pneumatic actuator control system using PZT impact force (Liu & Jiang, 2007) and Hirooka, Suzumori and Kanda developed a new flow control valve driven by PZT vibrator (Hirooka, Suzumori, & Kanda, 2009). Furthemore, Jeon, Nguyen and Choi designed and controlled direct servo-valve by piezostack actuator (Jeon, Nguyen, & Choi, 2013) and Han designed a high speed electromagnetic control valve using numerical analysis (Han, 2014). Refer Table 1.1.

Table 1.2: Pneumatic valve issue	s
----------------------------------	---

No.	Issues	References
1.	Size, weight, safety	(Akagi et al., 2008) and (Hirooka et al., 2009)
2.	Flow capacity, dirty air, vibration, leaking, controllability	(Hirooka et al., 2010)
3.	Performance	(Yun et al., 2006), (Liu & Jiang, 2007) and (Akagi et al., 2008)

However, there is problem on size, weight, safety (Akagi et al., 2008) and (Hirooka et al., 2009), flow capacity, dirty air, vibration, leaking, controllability (Hirooka, Suzumori, & Kanda, 2010) and performance in pneumatic valve system (Yun et al., 2006), (Liu & Jiang, 2007) and (Akagi et al., 2008) as stated in Table 1.2.

Analyzing pneumatic valve control system has attracted considerable work to enhance its responsiveness based on the design of pneumatic valve and input signal parameter in this project. The pneumatic valve control system will be studied by utilizing basic information and control system of pneumatic valve and evaluation using both MATLAB and experiment.

Table 1.3: Input and output signal parameter

No.	Input Signal Parameter	Output Signal Parameter
1.	Electrical Supply, I	Magnetic Force, F
2.	Magnetic Force, F	Spool Movement, X
3.	Supply Pressure, P	Response Rate, t

Continuation to this, analyzed data will be used further in controlling and monitoring the operation of the pneumatic valve to prevent the pneumatic valve from the damage operating condition. Table 1.3 above indicates the important parameters for input and output (performance) signal for this project.

1.2 Problem Statement

Directional control valve (DCV) has been widely used in industry in various applications. The increasing of the complex process and the necessity to scale down production cost has increased the demand on the good quality valve. Hence, it is important for engineers or designers to develop new methods of managing pneumatic valve issues. Size, weight, current capacity, dirty air, vibration, leaking, controllability and performance are the most frequently recorded issue on the pneumatic valve. This project intends to analyze the pneumatic valve control system to get an advance understanding in several typical valve issues that may cut system setup time and attain more precise motion.

1.3 Objectives

The objectives of this project are to:

- a) Identify the DCV,
- b) Model the control system of the DCV, and
- c) Evaluate the DCV control system.

1.4 Scope

This project is about analyzing the pneumatic DCV control system. It analyzes the stability issues by using a basic mathematical model of pneumatic DCV, control system, suitable MATLAB program and input parameter. This project will focus on the 5/2 way double solenoid-spool-sliding type valve and three primary operations; actuation valve, internal (spool movement) and emission gaseous operation. The basic mathematical model of the magnetic circuit, mechanical subsystem, and the air flow path will be encompassed in this project. Transient and frequency response, air flow rate, cylinder response rate, and power supply response will be used as evaluation measurement.

1.5 Organization of Report

The beginning chapter of this report describes the introduction of the pneumatic valve control system. It is followed by the description of the literature review. Next, this report proceeds with the explanation of the methodology used. Subsequently, the next chapter elaborates the results and discussion. In the end, the last chapter discusses the conclusions and recommendations of this report.

1.6 Gantt Chart

This project consists of two phases that are Final Project (FYP) 1 and FYP 2. The time allocated for completion of each stage of the project is one semester that equivalents to 14 weeks (Figure 1.1 and 1.2). Meanwhile, the time allocated for the entire project is equivalent to two semesters of 28 weeks, excluding semester break (Figure 1.3).

1.6.1 Project Schedule 1

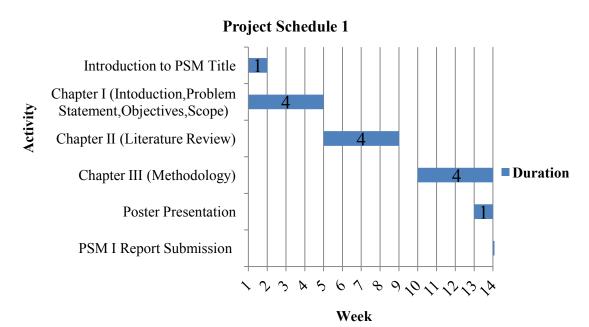


Figure 1.1: Project Schedule 1

1.6.2 Project Schedule 2

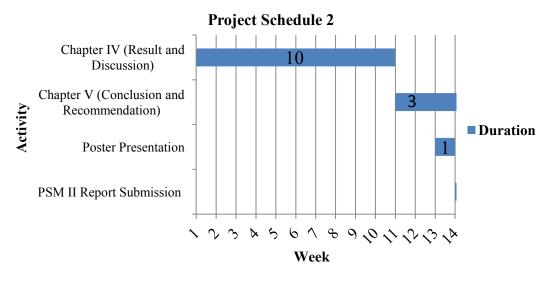
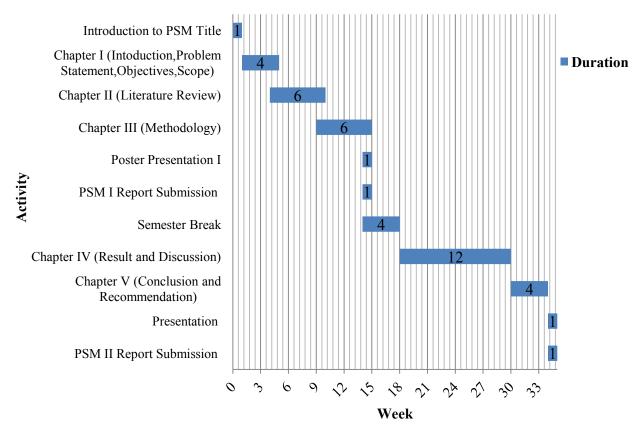



Figure 1.2: Project Schedule 2

1.6.3 Project Schedule for Entire Project (Project 1 and 2)

Project Schedule for Entire Project (Project 1 and 2)

Figure 1.3: Project Schedule For Entire Project (Project 1 and 2)