Analysis On Surface Texturing Design for Wear Protection of Automotive Engine Part

NOR SHAZWAN AZRUL BIN NORAZNI B041110082 BMCA Email: kechik_azrul27@yahoo.com

Draft Final Report Projek Sarjana Muda II

Supervisor: PN SUSHELLA EDAYU BT MAT KAMAL

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

ANALYSIS ON SURFACE TEXTURING DESIGN FOR WEAR PROTECTION OF AUTOMOTIVE ENGINE PART

NOR SHAZWAN AZRUL BIN NORAZNI

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering with Automotive Engineering

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

C Universiti Teknikal Malaysia Melaka

'I hereby declare that had read this work and for my/our opinion this work is adequate in terms of scope and quality for receiving the Bachelor of Mechanical Engineering (Automotive)'

Signature	·
Supervisor	: Sushella Edayu bt Mat Kamal
Date	·

I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature	:
Author	: Nor Shazwan Azrul Bin Norazni
Date	·

This report was done specially for Puan Sushella Edayu Mat Kamal, Norazni Bin Abdul Hamid, Aini Binti Mat Hassan and Beloved Family.

ACKNOWLEDGEMENT

It is greatest pleasure to acknowledgement many people who contributed their support, time and physic energy ti this thesis. First, I would like to express my sincerest gratitude to my main supervisor, Pn Sushella Edayu Binti Mat Kamal for her guidance, patience in giving me advices and support throughout the whole process of this study. I gratefully acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for their financial support in this research activity.

Besides that, I would like take this opportunity to thank my colleagues at the Faculty of Mechanical Engineering, UTeM for their outstanding collaboration for being a very good sharing during my research. I also want to say thanks towards all my course mate, my friends because they give me courage and assistance throughout the whole semester which have help me a lot during completing the analysis.

Finally, my deepest grateful and thanks go to my parents in giving continuous prays and moral support that brought me here. Last but not least, I would like to thank those who helped me in this thesis but not mentioned here. I would like to ask forgiveness because forget to acknowledge them.

ABSTRACT

Surface texturing is used as the quality indicator for the machined surfaces after undergoes manufacturing process. These characteristic is the important factor that effect on several properties such as wear resistance, fatigue strength, coefficient of friction, lubrication, wear rate and corrosion resistance of the machined parts. The texture on the material surface alters the properties itself during sliding conditions which to reduce friction and wear of material. However, it still depends on the pattern or shape of the texture on the surface of material under certain sliding condition. For the design of surface texturing, the surface texture with thousands of micro-dimples used to improve the tribological performance in order to reduce the friction and analysis using ANSYS FLUENT and CFD in order to study effect of surface texturing using dimpled texture. In this research, the dimples with a circle and elliptical shape were investigated according to the sets of diameter size with fix depth and dimple density.

ABSTRAK

Penteksturan permukaan digunakan sebagai penunjuk kualiti untuk permukaan yang dimesin selepas menjalani proses pembuatan. Ciri-ciri ini merupakan faktor penting yang mempengaruhi beberapa sifat seperti rintangan kepada haus, pekali geseran, pelinciran, kadar kepada haus dan rintangan terhadap karat pada bahagian yang dimesin. Tekstur pada permukaan bahan mengubah sifatsifat itu sendiri dalam keadaan gelongsor untuk mengurangkan geseran dan kehausan bahan. Walau bagaimanapun, ia masih bergantung kepada corak atau bentuk tekstur pada permukaan bahan. Bagi reka bentuk penteksturan permukaan, tekstur permukaan dengan ribuan mikro lubang-lubang kecil digunakan untuk meningkatkan prestasi tribological bagi mengurangkan geseran dan haus di antara dua bahan yang bergesel. Kajian ini berkait dalam menjalankan simulasi dan analisis menggunakan ANSYS FLUENT dan CFD untuk mengkaji kesan penteksturan permukaan dan bentuk elips disiasat mengikut set saiz diameter dengan kedalaman dan ketumpatan yang tetap.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iv
	ACK	NOWLEDGEMENT	v
	ABS	TRACT	vi
	ABSTRAK TABLE OF CONTENT		
	LIST	FOF FIGURE	xii
	LIST	Г OF TABLE	xiv
	LIST	F OF SYMBOL	xvi
CHAPTER I	INTI	RODUCTION	1
	1.0	Introduction	1
	1.1	Research Background	1
	1.2	Problem Statement	2
	1.3	Objectives	3
CHAPTER II	LITI	ERETURE REVIEW	4
	2.0	Introduction	4
	2.1	Surface Finish	4
	2.2	Dimpled Surface Texture	5
		2.2.1 Tribological Effect of Dimpled Surface	6
	2.3	Texture Design Consideration	8
		2.3.1 Geometry	8

	2.3.2	Parameter	8
		2.3.2.1 Influence of Dimple Density Area,	9
		Diameter and Quantity	
	2.3.3	Shape	10
		2.3.3.1 Optimization of the Geometry	11
		of Texture Shape	
		2.3.3.2 Comparison of Different Texture	12
		Shape	
	2.3.4	Pattern	12
		2.3.4.1 Influence of Dimple Pattern	13
2.4	Frictio	n Influence	15
2.5	Surfac	e Texture Influences	15
	2.5.1	Effect of Tribological Characteristic	15
2.6	Govern	ning Equation	17
	2.6.1	Conservation of Energy	17
	2.6.2	k-e Turbulent Model	17
	2.6.3	Heat Transfer	18
	2.6.4	Hydrodynamic Lubrication	20
	2.6.5	Skin Friction	22
2.7	Summ	ary	24
METI	HODOI	LOGY	26
3.1	Metho	dology Planning	26
3.2	Design Specification of the Texture		26
3.3	Project Workflow		
3.4	Prelim	inary Studies	28
	3.4.1	Dimpled Texture	28
		3.4.1.1 Dimple Parameter Based On Ajm	28
		3.4.1.2 Dimple Shape Based On Optimized	28
		Geometry	
	3.4.2	Boundary Condition	29
3.5	Design	and Analysis Using Computer Software	30
	3.5.1	Dimple Distribution for Analysis	30

CHAPTER III

	3.6	Analy	rsis Step	31
		3.6.1	Analysis Procedure	31
		3.6.2	Analysis Parameter	32
	3.7	Proble	em Solving	34
		4.1.1	Unit	34
		4.1.2	Geometry	34
	3.8	Work	bench Modeller for Meshing	35
	3.9	Fluen	t As a Solver	37
		3.9.1	Define Model	37
		3.9.2	Define Material	38
		3.9.3	Boundary Condition	39
			3.9.3.1 Velocity Inlet	39
			3.9.3.2 Pressure Outlet	39
			3.9.3.3 Wall	39
			3.9.3.4 Fluid	40
		3.9.4	Solution	41
		3.9.5	Display	43
CHAPTER IV	RES	ULT AN	ND DISCUSSION	44
	4.1	Analy	sis Result	44
		4.1.1	Parameter Configuration	44
		4.1.2	CFD Analysis	45
			(Contour of Temperature)	
		4.1.3	CFD Analysis	49
			(Contour of Pressure)	
		4.1.4	CFD Analysis Result	53

CHAPTER V	CONCLUSION AND RECOMMENDATION		57	
	5.0	Introduction	57	
	5.1	Conclusion	57	
	5.2	Recommendation	58	

REFERENCES

APPENDIX

xi

LIST OF FIGURE

FIGURE

TITLE

PAGE

2.1	A Modified Stribeck Curve on Automotive Engine Part	6
2.2	Average Wear Rate for the Polished and Different Dimple	9
	Diameters	
2.3	Relationship of Dimple Diameters and Densities to Friction	10
	Coefficient	
2.4	Dimple Produced By AJM and LBM	14
2.5	Textured Surface Morphology	14
2.6	Variation of Friction Coefficient of the Polished and Dimpled	16
	Specimen with Different Diameters	
2.7	Schematic of Heat Transfer	18
2.8	Two Contacting Surface with Relative Sliding Velocity	20
2.9	Schematic of Positive Pressure from Cavitation	22
3.1	Flow Chart	27
3.2	Sample Model of Dimples Distribution	31
3.3	Mesh Model of Dimple Distribution	35
3.4	Contour Interface of Dimple Distribution	43

C Universiti Teknikal Malaysia Melaka

4.1	Temperature Contour of Conventional Surface	45
4.2	Temperature Contour of Circle Shaped (40µm Diameter,	46
	30 % Distribution, And 5 µm Depth)	
4.3	Temperature Contour of Rectangle Shaped (40µm Diameter,	47
	30 % Distribution, And 5 µm Depth)	
4.4	Temperature Contour of Ellipsoidal Shaped (40µm Diameter,	48
	30 % Distribution, And 5 µm Depth)	
4.5	Pressure Contour of Conventional Surface	49
4.6	Pressure Contour of Circle Shaped (40µm Diameter,	50
	30 % Distribution, And 5 µm Depth)	
4.7	Pressure Contour of Rectangle Shaped (40µm Diameter,	51
	30 % Distribution, And 5 µm Depth)	
4.8	Pressure Contour of Ellipsoidal Shaped (40µm Diameter,	52
	30 % Distribution, And 5 µm Depth)	
4.9	Average Temperature for Conventional and Dimpled Surface	54
	With Different Dimple Shape	
4.10	Skin Friction Coefficient for Conventional and Dimpled Surface	54
	With Different Dimple Shape	
4.11	Hydrodynamic Pressure for Conventional and Dimpled Surface	56
	With Different Dimple Shape	

xiii

LIST OF TABLE

TABLE

TITLE

PAGE

2.1	Regime of Lubrication Characteristic	7
2.2	Geometry of Texture Shape	11
2.3	Optimized Geometry	12
2.4	Features of Surface Texture	13
2.5	Friction Factor	15
2.6	Information Summarized	24
3.1	Dimple Parameter Set Up	28
3.2	Minimum Friction Coefficient	29
3.3	Lubricant Technical Properties	29
3.4	Piston Condition at Steady State	30
3.5	Parameter Summarized	33
3.6	Analysis Unit	34
3.7	Analysis Geometry	34
3.8	Mesh Analysis	35
3.9	Mesh Control	36
3.10	Analysis Setting	37

3.11	Material Setting	38
3.12	Boundary Condition Setting	40
3.13	Solution Method Setting	41
3.14	Steady State Flow Solution	41
3.15	Steady State Flow Solution Information	41
3.16	Steady State Flow Solution Result	42
4.1	Parameter Configuration Check List	44
4.2	Result of CFD Analysis	53

XV

LIST OF SYMBOL

Α	=	Reference Piston Body Area
b	=	Cylinder Characteristic Length or Bore
C_p	=	Specific Heat at Constant Pressure
g_i	=	Body Force Term
h	=	Heat Transfer Coefficient
k	=	Gas Thermal Conductivity
L	=	Length of the Body That the Flow Travels Across
р	=	Pressure
q	=	Overall Heat Transfer
S_h	=	Radiation Sources
Т	=	Temperature
$\Gamma_{\rm h}$	=	Exchange Coefficient
U	=	Characteristic Gas Velocity
V	=	Velocity of the Flow
v	=	Kinematic Viscosity of the Fluid

LIST OF APPENDICES

NO.	TITLE	PAGE

А	PSM 1Gantt Chart	62
В	PSM 2 Gantt Chart	63
С	Mesh Model of Conventional Surface	64
D	Mesh Model of Circle Shape	64
Е	Mesh Model of Rectangle Shape	65
F	Mesh Model of Ellipsoidal Shape	65

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

In this chapter, there are discusses about the introduction in this project. In order to make the reader understand about this project, a research background of the surface texturing design is explains more detail. In this chapter also, there are include of the objectives of the project, scopes and the problem statement while doing this project.

1.1 RESEARCH BACKGROUND

In many applications, materials are subjected to vibrating, impact or oscillating forces. The behavior of materials under such load conditions differs from the behavior under a static load. Because the material is subjected to contacted surface in actual use, designers are faced with predicting wear resistance, which is defined as the frictional energy losses under specified loading conditions.

Wear is defined as an interaction between surfaces which material will removal and deform on a surface as a result of mechanical action of the opposite surface (Qiu et al, 2013). The definition of wear may include loss of dimension from plastic deformation if it is originated at the interface between two sliding surfaces. Wear can also be defined as a process where interaction between two surfaces or bounding faces of solids within the working environment results in dimensional loss of one solid, with or without any actual decoupling and loss of material. In practice a real component from a machine or structure will generally have various surface finishes and different mechanical properties.

One of the main methods to enhance the performance of mechanical seals studied and discussed in the literature of tribology is surface texturing. Many theoretical and experimental studies showed the benefit of surface texturing on the mechanical and automotive part performance. The types of dimple texture have been particularly studied by (Erdemir, 2005). Density and depth ratio are the main parameters studied and optimized to enhance lubrication. However, in recent years, studies have shown that geometric shape and distribution of dimples have an obvious influence on the performance of textured surfaces (Qiu et al, 2013).

The automobile industry is experiencing in competition due to rapid technological improvements and advances. Thus, it is necessary to have a better understanding of the effect of friction and wear in automotive part in order to meet competitive durability goals in the automobile industry. For this reason, surface modification be a good and effective way to improve the tribological characteristics of mechanical components. Hence, surface texturing is important on improving the on reducing friction and wear was depended considerably on the shape, size, density, and pattern of dimples.

1.2 PROBLEM STATEMENT

Wear is a complex phenomenon that is affected by a number of factors, such as the surface finish of the component, environmental effects, heat treatments, presence of stress concentration factors, etc. Therefore, it is important to carefully analyses components that subjected to fluctuating loads so the desired reliability can be built into these components and over-designed or under-designed components can be avoided. It is well known that wear resistance generally initiate from the surface and the performance of the component or part dependent on the surface finish produced by machining or other manufacturing processes. Surface texturing is used as the critical quality indicator for the machined surfaces and has influence on several properties such as wear resistance, fatigue strength, coefficient of friction, lubrication, wear rate and corrosion resistance of the machined parts (Etsion, 2009). Nowadays, developing more fuel efficient and compact automobile engine with reduced environmental impact is one of the biggest challenges that tribologists are facing in this era. The friction loss in an internal combustion engine is a major factor in determining the engine efficiency, performance and fuel economy of the vehicle (Etsion, 2009). Hence, surface texturing is used to increase hydrodynamic pressure and reduce friction and wear between two surfaces by creating patterned microstructure on the mechanical contact surface. The shape, geometry and distribution pattern play a key role to the tribological behavior of that surfaces in contact. Thus, investigating of surface texturing important for enhancing tribological properties of mechanical components in order to improve wear protection and enhance fatigue or toughness indirectly to increase the lifetime of components.

1.3 OBJECTIVE

This research aims to design parameter of surface texturing for dimples and to investigate the influence of surface texturing on the lubricant flow. It is intended that the research finding will contribute to conduct the simulation and analysis using ANSYS FLUENT and CFD.

These above aims raise the following core research objective:

1. To investigate the effects of the shape of surface texturing for dimples by using simulation.

2. To evaluate the distributions of the geometry of surface texturing for dimples.

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

In this chapter there are consists of all previous studies related to this project and explains more detail and deeper history of the surface texturing design and performance aspect of surface texture. However, to investigate the effect of the shape and the distribution of geometry of dimples, the background of the study should be exposed. The early section of this part will be explaining some of the literature review about surface texture of dimples. The other part involves on elaborating in design consideration of texture and the surface influences on lubricant flow.

2.1 SURFACE FINISH

Surface finish, or texture, can be viewed from two very different perspectives which is result from the manufacturing process. Texture can be changed by altering the process while by changing the surface finish specification; the functionality can be enhanced and be improved. Today, various forms and geometric features of surface texturing for tribological applications are carried out widely. There are have a various texturing techniques in these studies including machining, photoetching, etching techniques, ion beam texturing, and laser texturing. In engineering fields, surface texturing as a means for enhancing tribological properties of mechanical components is well known since many years. It is the most familiar and earliest commercial application of surface texturing in engineering. In most cases, surface finish control starts in the drafting room. The designer has the responsibility of specifying a surface that will give the maximum performance and surface life at the lowest cost.

There are two principal reasons for surface control which is to reduce and control friction and wear in order to extend the lifetime oh mechanical systems, to improve their efficiency and reliability, to conserve scarce material resources and energy, and to improve safety. The degree of friction is expressed as a coefficient of friction μ , which is expressed as the ratio of force required to initiate or sustain relative motion to the normal force that presses the two bodies together. Two modes of friction may occur either in sliding or rolling friction. In friction reduction, surface texture created a film of lubricant between two moving parts and the surface irregularities must be small enough so they will not penetrate the oil film under the most severe operating conditions.

2.2 DIMPLED SURFACE TEXTURE

Dimples texture is a surface texturing form by micro or nano scale cavities or pockets in an arrayed pattern on one of the sliding surfaces. Several fabrication techniques can be used to manufacture this type of texture, such as vibro-rolling, reactive ion etching, abrasive jet machining, LIGA, vibro mechanical texturing and laser surface texturing (Etsion, 2009). In recent years, surface texturing has been surfaces lift that contact increase successfully in many applications to improve the tribological properties of sliding surfaces, such as golf ball, engine cylinder, modern magnetic storage device, sliding bearing and mechanical seal, and slider and disc of hard disc driver (Wakuda et al, 2000).

In surface engineering, surface texturing of dimples be the most advanced methods for tribological application. Different patterns have also been used either being linear grooves, crossed grooves, or circular dimple-like depressions (Qiu et al, 2013). These patterns are useful for effective lubrication between contact by providing micro-hydrodynamic bearing, lubricant reservoirs and traps for wear debris in both lubricated and non-lubricated application, which protect the surface from scratching. In cases of mixed lubrication, micro-scale dimple can create an asymmetric pressure distribution that can change hydrodynamic and boundary lubrication, thus reducing both friction and wear. At this stage, pressure increase in the thin lubricant film to separating the sliding surfaces, so that the additional pressure will increases the separation between the sliding surfaces and correspondingly reduces the friction and wear.

2.2.1 Tribological Effect of Dimpled Surface

According to (Amanov, 2013), they found that a dimpled pattern reduced the coefficients of friction, whereas a grooved pattern increased. They observed that laser surface texturing could reduce the friction on components operating in a boundary-lubricated regime. This study included different sized dimples, but its more focused on the tribological behavior rather than the effects of the dimple dimensions. Figure 2.1 shows that texturing the surface reduced the coefficient of friction, and the transition from the hydrodynamic regime to the mixed or boundary lubrication regime increase in the wear lifetime.

Figure 2.1: A Modified Stribeck Curve On Automotive Engine Part (Amanov et al, 2013)

C) Universiti Teknikal Malaysia Melaka