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ABSTRACT  
 

 

 

 Vibration energy harvesting is an attractive technique for potential powering 

of wireless sensor and low power devices. But, in research showed that most harvesters 

are work efficiently only with limited bandwidth near their resonant frequencies. Thus, 

strategies to increase the bandwidth of the vibration energy harvesters become one of 

the most critical issue before these harvesters can be widely deployed in practical. This 

report represents the linear resonant device, a electromagnetic energy harvester that 

can convert transverse vibration energy to electrical energy. It will first introduced 

with analytical study and the solutions that have been done by past researchers. Next, 

for the methodology, the method used for conducting the experiment is 

electromagnetic. The apparatus are mainly consists of a steel beam, a permanent 

magnets, copper coils, voltmeter, resistor decade box, shaker and analyzer. There are 

four types of experiments which including free vibration, quasi-static experiment, 

dynamic testing and calculation for the maximum power harvested among various 

resistance. The solution to widen the bandwidth is by altering the resister of the system. 

The power harvested is calculated and it shows that 50 Ω of resistance produced the 

highest power but not 200 Ω. In addition, the main problem in this experiment is that 

excitation frequency of 20 Hz was not able to produce any voltage at all. The 40 mm 

of steel beam was also gave the wrong data and results. The reasons were analyzed 

and investigated and discuss in the report. On the other hand, 36 mm of steel beam 

gave the best result as the linear generator successfully to wide its band obviously and 

it also showed that the open circuit reach the highest peak. At last, the trend of the 

experimental study will be compared with the analytical study of the project. 
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CHAPTER 1 

 

 

 

 INTRODUCTION  

 

 

 

1.0 INTRODUCTION 

 

1.1 Background  

 

Energy is everywhere in the environment surrounding us which is available in 

the form of light energy, thermal energy, wind energy, mechanical energy and so on. 

From these natural-occurring energy sources, energy can be harvested by the process 

of capturing the minute amount of energy sources, accumulate and store it, and lastly 

supply it in a form that can be performed. Nowadays, harvesting energy from 

vibrations is one of the most promising technologies. The example of vibrations 

source can be from the floor or wall, machine, tall buildings, ocean waves and even 

human motions. (Zuo & Tang 2013) 

Vibration energy harvesting is an attractive technique for potential powering 

of wireless sensors and low power devices. While the technique can be employed to 

harvest energy from vibrations and vibrating structures, a general requirement 

independent of the energy transfer mechanism is that the vibration energy harvesting 
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device operates in resonance at the excitation frequency (Challa et al. 2008).So far, 

the battery is the main power source for sensor applications. But, due to its limited 

lifespan, expensive cost and also containing harmful chemical, the energy harvesting 

can become a perfect replacement for delivering power to the sensor applications. 

This statement is supported by Mitcheson et al. (2004) who stated that energy 

harvesting is a topic of substantial and increasing research attention. He has analyzed 

practical miniature device to substitute the batteries in medical, and many others for 

low power applications. On the other hand, we can also classify the main energy 

harvesting technologies by the hierarchy shown in Figure 1.1 below:  

 

Figure 1.1 Hierarchy of main energy harvesting technologies 

(Source : Caliò et al., 2014) 

In the past experiment, the vibration sources for small scale power generation 

mostly done by electrostatic, electromagnetic or piezoelectric method. All vibration 

energy conversion mechanisms use a linear mechanical oscillator to resonate 

naturally according to the excitation frequency presents in the environment. There 

are lots of different strategies that have been investigated and reported to develop 

energy harvesters from low frequency limitations. But, most vibration based energy 

harvesters are designed as linear resonators that only work efficiently with limited 

bandwidth near their resonance frequencies. Thus, to increase the bandwidth of 



3 
 

vibration energy harvesters has become one of the critical issues before these 

harvesters can widely deployed.  

In this project, the research of getting the maximum power of wideband linear 

resonant generator is investigated and hopefully more ideas can be generated to 

improve the research from its limitations. 

 

 

1.2 Problem Statement 

 

Linear energy harvesting device is introduced to convert the vibrations to 

electrical energy. But, most harvesters are work efficiently only with limited 

bandwidth near their resonant frequencies. Thus, increasing the bandwidth of the 

vibration energy harvesters become one of the most critical issues before these 

harvesters can be widely deployed in practical. Hence, ways to enhance the 

performance of vibration is the main focus for this research.  

 

 

1.3 Objective 

 

a) To study the characteristics of a linear resonant generator  

b) To fabricate a wideband resonant generator  

c) To investigate the performance of the proposed device.  

 

 

1.4 Scope of Project 
 

The scope of the project involves the theoretical mechanical modelling of the 

resonant generator using a mass-spring-damper model. A device will be fabricated 

and experiment will be conducted. The research on what governs the good properties 

of the resonant generator and also the limitations of the devices will be figure out and 

analyzed. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW  

 

 

 

2.0 LITERATURE REVIEW 

 

2.1 Background Study 

 

Most vibration-based generators generated the maximum power when the 

resonance frequency of the generator matches the frequency of the ambient vibration. 

If there is difference between these two frequencies, it can directly cause in very 

huge decreased in power output. This issue will limit its performance in real 

applications. 

In recent years, there are lots of research on solutions to overcome the problems 

of low frequency limitation and narrow bandwidth of the energy harvester device. 

Research on strategies to the possible solution includes the periodic turning of 

resonant frequency of the generator so that it matches the frequency of the ambient 

vibration at all times or by widening the bandwidth of the generators. The periodic 

tuning can be achieved using mechanical and electrical methods. On the other hand, 
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bandwidth widening can be achieved by using a generator array, a mechanical 

stopper, nonlinear springs and bi-stable structures. 

 

 

2.2 Limitations of Generator 

 

In research showed that there are two important factors that limit its efficiency 

which are the narrow bandwidth and low frequency density. In addition, the design 

of the generator and loss of energy during damping will also affect the overall power 

output. 

 Williams & Yates (1995) stated that when the generator operates at the 

resonance, the power generated is inversely proportional to the transducer damping 

factor. In principle, when damping factor of zero would generate infinity power at 

resonance. But, in practical, this is impossible to happen. Thus, the damping factor 

must be more than zero.  

They also concluded that the main limitations on the power output of the 

generator are its size. Size limits the magnitude of the seismic mass and the 

maximum distance that the mass can be travel. The greater the size, the higher the 

power generated. The design rules for optimum power for the design device are: 

(i) The mass and extend of the mass should be as large as possible within the 

available volume of the device. 

(ii) The spring, k should be designed so that the resonance frequency of the 

device matches the vibration frequency of the applications. 

(iii) The damping factor should be design small enough to make the mass 

move to the limits of its range. 

(iv) The unwanted damping, 0 should be minimized. 

In further research of Stephen (2006), he described that the maximum power is 

delivered to an electrical loads when its resistance is equal to the sum of the coil 

internal resistance and the electrical analogue of the mechanical damping coefficient. 
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Thus, the coil internal resistance and mechanical damping should be minimized to 

harvest more energy.  

 

 

2.3 Frequency Tuning  

 

Zhu et al. (2010) defines that the tuning methods can be classified into 

intermittent (passive) tuning which is the power consumed periodically to tune the 

device. This approach only consumes power during the tuning operation and uses 

negligible energy once the generator is matched to the frequency of the ambient 

vibrations. As for the second one is called the continuous (active) tuning which 

defined as a tuning mechanism that is continuously applied even if the resonant 

frequency equals the ambient vibration frequency. As both tuning are compared, 

continuous tuning consumes more energy than intermittent tuning as it is applied 

constantly to the generator. 

 Roundy and Zhang (2005) also concluded that generators using a continuous 

tuning mechanism can never produce a net increase in the power output as the power 

required to tune the resonant frequency will always exceed the increase in output 

power resulting from the frequency tuning. On other words, the intermittent tuning 

consumes less energy than continuous tuning because it switched off once the device 

is at resonance.  

 

 

2.3.1 Mechanical Tuning Methods 

 

Most vibration energy harvesting devices are based on cantilever with a mass 

shown in Figure 2.1. The mechanism tunings are achieved by changing dimensions, 

moving the center of gravity of the proof mass, variable spring stiffness and straining 

the structure. 
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Figure 2.1: Cantilever with a mass (Source: Beeby et al., 2006) 

 

(i) Changing the dimensions 

The approach requires the cantilever base clamp be released 

and reclamped in new locations along the length of the beam thereby 

by changing the effective length. The study showed that the shorter 

the beam, the higher the normalized resonant frequency. 

 

(ii) Moving the center of gravity of the proof mass 

 

 

Figure 2.2: Side view of the cantilever structure (Source: Beeby et al., 2006) 

The Figure 2.2 showed that the side view of the cantilever 

structure with a mass on the free end. The further the center of gravity 

on the proof mass, the lower the resonant frequency. 

 

 




