FORMATION OF IRON OXIDE NANOWIRES BY USING THERMAL OXIDATION OF IRON

NUR SYAFINI BINTI SA'AD B051110092

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

C Universiti Teknikal Malaysia Melaka

B051110092 BACHELOR OF MANUFACTURING ENGINEERING (ENGINEERING MATERIALS) (HONS.) 2015 UTeM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FORMATION OF IRON OXIDE NANOWIRES BY USING THERMAL OXIDATION OF IRON

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials)(Hons.)

by

NUR SYAFINI BINTI SA'AD B051110092 920522-11-5350

FACULTY OF MANUFACTURING ENGINEERING 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Formation of Iron	Oxide Nanowires by Using Thermal Oxidation of Iron		
SESI PENGAJIAN: 2014/15 Semester2			
Saya NUR SYAFINI BINTI S	SA'AD		
mengaku membenarkan Lap Teknikal Malaysia Melaka (U	ooran PSM ini disimpan di Perpustakaan Universiti JTeM) dengan syarat-syarat kegunaan seperti berikut:		
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Silatandakan (✓) 			
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)		
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)		
TIDAK TERHAD)		
	Disahkanoleh:		
AlamatTetap:	Cop Rasmi:		
Lorong Mesin Padi			
Kampung Alor Limbat			
21400 Marang, Terengganu			
Tarikh: 30 Jun 2015	Tarikh: 30 Jun 2015		
**Jika Laporan PSM ini SULIT atau T berkenaan dengan menyatakan sek SULIT atau TERHAD.	FERHAD,sila lampirkan surat daripada pihak berkuasa/organisasi ali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai		

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Formation of Iron Oxide Nanowires by Using Thermal Oxidation of Iron" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NUR SYAFINI BINTI SA'AD
Date	:	<u>30 Jun 2015</u>

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) (Hons.). The member of the supervisory is as follow:

.....

(Project Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Oksida ferum nanowires digunakan secara meluas dalam pelbagai aplikasi, termasuklah fotopemangkinan. Konvensional, oksida ferum nanowires dihasilkan oleh teknik-teknik seperti; proses sol-gel, kaedah templat, penguraian terma, proses Walau bagaimanapun, teknik-teknik ini mahal dan rumit. Oleh itu, hidroterma projek ini bertujuan untuk menghasilkan oksida ferum nanowires dengan menggunakan pengoksidaan terma ferum. Beberapa paremeter telah disiasat seperti kesan masa pengoksidaan, suhu pengoksidaan dan keadaan pada substrat. Morfologi dan fasa Fe₂O₃ nanowires yang dibentuk telah disifatkan. Pemerhatian FESEM telah menunjukkan bahawa Fe₂O₃ struktur nanowires telah terbentuk pada kepingan Fe tulen. XRD dan spektroskopi Raman mengesahkan fasa fasa: α- Fe₂O₃, FeO dan Fe₃O₄ terbentuk selepas process pengoksidaan manakala EDX digunakan untuk memastikan nanowires yang terhasil mempunyai oksigen dan ferum. Raman spektroskopi telah digunakan untuk menyokong morfologi dan fasa yang diperoleh dari analisis SEM dan XRD. Sampel (pengoksidaan pada 180 min, 500 °C, dalam udara tanpa menitikkan asid sulfurik) adalah tertakluk kepada ujian degradasifoto di bawah cahaya UV. Hasil daripada degradasifoto ini menunjukkan semakin lama masa larutan methyl orange terdedah kepada cahaya UV, semakin pudar larutan itu. Untuk memastikan larutan itu mempunyai perubahan warna, analisis menggunakan UV visible digunakan. Berdasarkan keputusan yang diperoleh, maka boleh disimpulkan bahawa larutan itu berlaku proses degradasi apabila masa pendedahan kepada cahaya semakin menigkat.

ABSTRACT

An iron oxide nanowire is used widely in a range of applications, which include photocatalysis. Conventionally, iron oxide nanowires are produced by techniques such as; sol-gel process, template method, thermal decomposition, hydrothermal process However, these techniques are costly and complicated. Hence, this project serves to fabricate the iron oxide nanowires by using thermal oxidation of iron. Several parameters were investigated such as the effect of oxidation time, oxidation temperature and condition on the substrate. The morphologies and phases of Fe₂O₃ nanowires formed were characterized. FESEM observation showed that Fe₂O₃ nanowires structure was successfully formed on pure Fe foil. XRD and Raman spectroscopy confirmed variant phase: a- Fe₂O₃, FeO and Fe₃O₄ occurred after oxidizing while EDX was used to confirm that the nanowires consisted of oxygen and iron. Raman spectroscopy was used to support the morphologies and phases observed by SEM and XRD. The samples (oxidized at 180 min, 500°C, in air without dropping sulphuric acid) were subjected to photodegradation testing under UV light conditions. The result obtain from this photodegradation shows that, as increase the time of methyl orange solution exposed to UV light, the solution is become fades. To ensure that the solution has changed color, UV visible analysis is used. Based on the results obtained, it can be concluded that the solution was effective degradation process when the time of exposure to light progressively increase.

DEDICATION

Dedicated to my beloved family members especially my parents, lecturers, and also to all my friends.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratefulness and gratitude to those who have rendered their valuable advice, support and guidance to me during the long journey of completing this research. First and foremost, I would like to thank my supervisor Dr. Syahriza Ismail for her relentless support, advice and guidance throughout the entire project. Not to forget the research members: Azreen and Nadia for all the assistance and guidance provided all this while. I am greatly touched by the commitments and dedications they have shown. Without the support and guidance, I would not be able to complete this research. Besides, without the moral support and understanding from my family especially my father, En Saad Talib and my late mother, Pn Kelsom Musa, it would be impossible for me to complete this research. I wish to express my biggest gratefulness and love to my family members. Finally, I wish to say that I treasure very much the friendship of my friends who have been very supportive in providing all necessary help and advice during the journey of completing this research.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	V
List of Tables	viii
List of Figures	ix

CHAPTER 1: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	5
1.3	Research Objective	6
1.4	Scopes of Work	6
1.5	Project Outline	6

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	on to Nanostructure	8
2.2	Metal Val	ve Oxide-iron Oxide: Polymorphs and Properties	10
2.3	Technique	e to Produce Nanowires	14
	2.3.1 Hy	vdrothermal process	14
	2.3.2 So	l-gel process	15
	2.3.3 Te	mplate-assisted electrodeposition	15
	2.3.4 Th	ermal decomposition	16
	2.3.5 Th	ermal oxidation	17
2.4	Applicatio	on of Iron Oxide Nanowires	21
	2.4.1 Ca	talyst	21

2.4.2	Photoelectrochemical cells	2	2
2.4.3	Photocatalyst	2	4

CHAPTER 3: METHODOLOGY

~-

3.1	Introduction	27
3.2	Materials	29
3.3	Design of Experiment	29
	3.3.1 Substrate preparation and cleaning	29
	3.3.2 Thermal oxidation process	30
	3.3.3 Thermal oxidation parameter	31
3.4	Characterization	31
	3.4.1 Morphology characterization	32
	3.4.1.1 Scanning electron microscopy	32
	3.4.2 Structural characterization	32
	3.4.2.1 X-ray diffraction	32
	3.4.2.2 Electron dispersive X-ray	33
	3.4.2.3 Raman spectroscopy	34
	3.4.3 Photodegradation testing	34
	3.4.3.1 UV lamp chamber	34

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1	Fe ₂ O ₃ Nanowires Formation by Thermal Oxidation Process	36
	4.1.1 Effect of growth time	37
	4.1.2 Effect of sulphuric acid on the morphology of samples	39
4.2	Mechanism of Fe ₂ O ₃ Nanowires Formation	41
	4.2.1 Mechanism of Fe_2O_3 nanostructure in air	41
	4.2.2 Mechanism of Fe_2O_3 nanostructure in air by dropping H_2SO_4	43
4.3	X-Ray Diffraction (XRD)	43

	4.3.1	Different time effect	44
	4.3.2	Influence of H ₂ SO ₄ on the samples	45
4.4	Ran	an Spectroscopy Analysis	47
	4.4.1	Effect of growth time	47
	4.4.2	Effect of sulphuric acid (H ₂ SO ₄)	49
	4.4.3	Effect of temperature	49
4.4	Pho	todegradation Testing	51
	4.5.1	Mechanism of photodegradation	53
CHA	PTER	5: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Con	clusions	55

REFERENCES

57

LIST OF TABLES

2.1	Physical and Magnetic Properties of Iron Oxide	11
3.1	The List of Materials Used in the Research	29
3.2	List of Changing Parameter	31
4.1	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 300 °C, for 60 min	48
4.2	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 300 °C, for 180 min	48
4.3	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 300 °C, for 300 min	48
4.4	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 180 min, for 300 °C	50
4.5	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 180 min, for 500 °C	51
4.6	Raman shift of variant phases iron oxide that match Raman shift of iron oxide nanowires at 180 min, for 700 °C	51
4.7	Sample used for photodegradation of methyl orange	51

LIST OF FIGURES

1.1	Morphology of single nanowires	2
1.2	Schematic diagram of single nanowires array	2
1.3	Various synthesized method of nanowires	3
1.4	Application of hematite nanowires	4
1.5	Photocatalytic process	4
2.1	Type of Nanomaterials structure (A) 0D spheres and clusters, (B) 1D nanofibers, wires, and rods, (C) 2Dfilms, plates, and networks, (D) 3D nanomaterials	8
2.2	Typical SEM image of different types of 1D nanostructure, (A) nanowires, (B) nanorods, (C) nanotubes, (D) nanobelts, (E) nanoribbons, and (F) hierarchical nanostructure	10
2.3	Crystal structure of magnetite (Fe ₃ O ₄)	12
2.4	Crystal structure of hematite (α –Fe ₂ O ₃)	13
2.5	Crystal structure of maghemite (γ- Fe ₂ O ₃)	13
2.6	Schematic diagram of hydrothermal process	14
2.7	Schematic diagram of sol-gel process	15

2.8	Schematic diagram of template-assisted electrodeposition method	16
2.9	Schematic diagram of thermal decomposition method	17
2.10	Schematic diagram of thermal oxidation process	18
2.11	Step of iron oxide nanowire growth mechanism: 1)oxygen adsorption, 2)surface oxidization to form nuclei, 3)nuclei arrangement and 4)formation of nanowires	19
2.12	The image of Fe substrates oxidize at two different temperatures, (a) 400 °C and (b) 600 °C and the different type of layer form	20
2.13	The general catalytic cycle.	22
2.14	The change in activation energy brought about by a catalyst.	22
2.15	Mechanism of phoelectrochemical (PEC) cells	23
2.16	Mechanism of photocatalyst reaction	25
3.1	Flow chart of the experimental work.	28
3.2	Vacuum furnace setup tor thermal oxidation process	30
3.3	Field emission SEM machine	32
3.4	X-Ray diffraction (XRD) machine	33
3.5	Equipment set-up for photodegradation of methyl orange	35

4.1	FESEM images of Fe ₂ O ₃ nanowires formed by thermal	37
	oxidation process within time (a) 60 min, (b)180 min and (c) 300	
	min at 300 °C in air	
4.2	EDX spectra of Fe ₂ O ₃ nanowires formed	39
4.3	FESEM images of samples synthesized by reaction of H_2SO_4	40
	with Fe at time (a) 60 min, (b) 180 min and (c) 300 min at 300	
	°C in air	

- 4.4 Schematic stress-driven mechanism of Fe₂O₃ nanowires growth 42 via diffusion
- 4.5 XRD patterns for Fe substrate formed by thermal oxidation 44 process with time (a) 60 min, (b) 180 min and (c) 300 min at 300 °C in air
- 4.6 XRD patterns for Fe substrate formed by thermal oxidation 45 process with pattern focused region of graph $2\Theta=20-50^{\circ}$
- 4.7 XRD patterns for Fe substrate formed by thermal oxidation $_{46}$ process with time at 300 °C in air by dropping H₂SO₄
- 4.8 XRD patterns for Fe substrate formed by thermal oxidation $_{46}$ process with pattern focused region of graph $2\Theta=20-50^{\circ}$.
- 4.9 Raman spectrum for iron oxide nanowires formed by thermal 47 oxidation process with time at 300 °C in air.
- 4.10 Raman spectrum for iron oxide nanowires formed by thermal 49 oxidation process with time at 300 °C in air. by dropping H₂SO₄

4.11	Raman spectrum for iron oxide nanowires formed by thermal	50
	oxidation process with temperature at 180 min in air	
4.12	Methyl orange solution degrade as time exposed to UV light	52
4.13	UV-visible analysis at different time exposed to UV light.	53

CHAPTER 1 INTRODUCTION

This chapter describe the introduction of the project. In this project, thermal oxidation process was used to form iron oxide nanowires. This chapter also include background, problem statement, objective, scope and project outline of the study.

1.1 Background

Nanostructure refers to materials system with at least one dimension is in the range of ~1-100nm. In a nanostructure, electrons are freely move in other dimension eventhough there are confined in nanoscale dimension. As compared to individual atom and molecules, the nanostructure is mostly unique.

Nanowires and nanobelts are semi one dimensional nanostructure based oxides, they have pulled in much consideration lately. They show unordinary optical, electronic, attractive and mechanical properties as contrasted with those of mass materials. It is because of the huge surface related deformity starting from the high surface to volume degrees. Moreover, some paramount properties of one dimensional nanostructured based oxide are great high temperature steadiness, oxidation safety and stable electric properties. Thus, it demonstrates their potential basic building blocks for new classes of environmentally conscious electronics (Yang *et al.*, 2010). Since the nanowires is studied, some paramount is important which are the control of morphology, size and growth direction. Figure 1.1 shows the morphology of nanowire (Hiralal *et al.*, 2008a) while Figure 1.2 shows the schematic diagram of single nanowire arrays (Rahim *et al.*, 2014). In addition, the different of

morphologies get will affect the properties with unique application. A suitable alignment of substrate is needed for an ensemble of nanowires (Wen *et al.*, 2005).

Figure 1.1: Morphology of single nanowires (Hiralal et al., 2008).

Figure 1.2: Schematic diagram of single nanowire array (Rahim et al., 2014).

Recently, nanowires have been synthesized by several different methods, such as the hydrothermal process, the template method, the vapour–solid process, sol–gel technique and thermal decomposition (Liu *et al.*, 2008). Nevertheless, thermal oxidation in various oxidizing atmosphere is a most simple, cheap and direct

procedure to form iron oxide nanowires (Grigorescu *et al.*, 2012) shows in Figure 1.3.

Figure 1.3: Various synthesized method of nanowires.

The growth of nanowires on the surface of iron is depending on the condition. Under typical condition, layer oxide will be formed, as hematite, magnetite and wustite. Hematite is formed at outer layer while magnetite as an intermediate layer and wustite layer form on iron iron substrate. As n-type semiconductor, which has bandgap 2.1 eV, hematite is environmental friendly, not poisonous, corrosion resistant and also the cost is low. Figure 1.4 shows the usage of hematite.

Figure 1.4: Application of hematite nanowires

Among of these application, one of interesting is as photocatalyst (Figure 1.5). Photocatalytic reactions promoted by aqueous suspensions of nano sized transition metal oxides have been subject of abundant number of resent research (Bakardijeva *et al.*, 2007) with the semiconductor performance, iron oxide is use in solar photoelectrolysis cells. Hematite is a good catalyst for photooxidation of sulphite. The details on this iron oxide will be reviewed in chapter 2.

Figure 1.5: Photocatalytic process (Ctibor et al., 2013)

1.2 Problem Statement

Since the time that Fujishima and Honda reported in 1972, TiO₂ photoelectrode methodology is utilized to create hydrogen from water. Ways and intends to utilize daylight as an essential vitality hotspot for hydrogen fuel era has been an exceptionally examined point in science and engineering, with a specific end goal to accomplish an upgraded daylight reaction, materials must have a suitably low band crevice and ready to part water, and additionally have suitable band edge positions in respect to the red-ox capability of water. Subsequently, hematite, with band hole of 2.1 eV has recovered solid examination enthusiasm to be utilized as terminal water part for hydrogen generation. These are because of the cost, less advanced yet plentiful materials.

Moreover, because of the looked into that had being carried out, it demonstrated that, the examination about arrangement of iron oxide nanowires by utilizing warm oxidation system was very constrained. It is accepted that nanowires develop from tip while reactant (metal) diffuse by means of the surface from the metal substrate. However the accurate instrument of development is a long way from clear. All the more as of late, different gatherings have returned to the spontaneous development of oxide nanowires by warm oxidation of metallic substrates (Fe, Zn and Cu), despite the fact that a definite orderly study is needing.

Photocatalytic response advanced by watery suspensions of nano estimated move metals oxide have been subject plenteous number of exploration (Bakardijeva *et al.*, 2007). Iron oxide has been concentrated on broadly for utilization in sunlight based photoelectrolysis cells. Bamba *et.al.*, (2006) considered the photocatalytic oxidation of a few dangers at TiO₂ and Fe₂O₃, surfaces. They found that TiO2 powder is dynamic photocatalyst for cyanide oxidation, while no oxidation was watched for Fe₂O₃. Recently a few studies exhibited the confirmation for photograph reactant arrangement of OH radicals. The era of OH radicals is attained through the usage of costly oxidants such ozone and H₂O₂ often in mix, with or without UV radiation. Nonetheless, in this theory, the photocatalytic action of iron oxide got by warm oxidation technique which is this system is basic and immediate method.

1.3 Research Objectives

This research is about the formation of iron oxide nanowires and followings are the objectives for this work:

- a) To produce the iron oxide nanowires formed by thermal oxidation
- b) To study the mechanism of iron oxide nanowires by thermal oxidation
- c) To study the photocatalysis of iron oxide formed by thermal oxidation

1.4 Scopes of Work

This research covered the study on the formation of Fe_2O_3 nanowires. For the synthesis of Fe_2O_3 nanowires, thermal oxidation process was selected. For thermal oxidation process, the effect of temperature, condition on the substrate and time were studied. Besides, the photocatalytic application was also considered.

Phase and morphology characterization on the Fe₂O₃ nanowires was examined by using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Electron Dispersive X-Ray Spectroscopy (EDX), Raman Spectroscopy, UV Visible Spectrometry and UV lamp chamber.

1.5 Project Outline

This project was conducted to form the iron oxide nanowires structure by thermal oxidation process. This process was performed in vacuum furnace at temperature $300 \text{ }^{\circ}\text{C} - 700 \text{ }^{\circ}\text{C}$ to form the nanowires. The photocatalytic ability of the formed oxides it tested by using the UV light irradiation.

Chapter one is the introduction for this whole project while in the chapter two is explain about nanostructure materials, thermal oxidation process and also the