APPLICATION OF PLASTIC BOTTLE WASTE ON LIGHTWEIGHT COMPOSITE STRUCTURE MATERIALS

NURUL ASYILAH BINTI ZAKARIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged"

Signature	:	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••
Author	:	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	

Date :....

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design and Innovation)"

Signature	:
Supervisor	:
Date	:

Special for

my wonderful family.

ACKNOWLEDGEMENT

Alhamdulillah, I praise The Almighty, Allah for giving me the chance to finish up this Projek Sarjana Muda 2 report. I would like to thanks my supervisor, Dr. Mohd Ahadlin Bin Mohd Daud. He helped me a lot during this two semesters, gave supported, guided and cheering me up.

I love to say thank you to my parents for the continuous support given to me morally or technically. Next, thank you to all my friends for their cooperation and good luck to all of you too. I would like to mention my beloved friends whom I called them as Saujana9 and The Presidents. Without them, I might be dying for ideas and hopes.

For important people, the technicians, Encik Wan, Encik Faizol and others. They helped me a lot. They taught me how to use the big INSTRON machine. Lastly, thank you for all the people who helped me directly and indirectly.

ABSTRACT

This report presents the work on plastic bottle as an alternative material in construction as lightweight composite structure material. The alternative construction such as in wall partition, fence, pavement and pedestrian pathway. The conventional concrete or the common concrete are well known to be high in weight, low resistant to humidity and corrosion and higher heat conductivity. A study in this project was conducted to determine if Polyethylene Terephthalate (PET) is suitable to resolve this problems as an aggregate in lightweight concrete. Physical and mechanical properties of the lightweight PET aggregate concrete with various composition has been determined by analysis based on result obtained from relevant tests. The tests were based on regulation of American Society for Testing and Materials (ASTM) which is the test of the PET aggregate can been accepted if density below than 1800kg/m³. The Polyethylene Terephthalate (PET) nowadays, based on the recently studies, have been accepted as a successful building materials. Even though it offers less compression strength and flexibility compared to the basic concrete, PET offers high ductility. The finding revealed that PET can be adopted as it can reduces the uses of sand used in concrete and it also proved to be more economical. Plastic bottle or Polyethylene Terephthalate or PET or PETE or Polyester is knowingly as nonbiodegradable and very toxic.

ABSTRAK

Laporan ini menunjukkan satu alternatif yang mana menjadikan botol plastik sebagai salah satu bahan dalam struktur bahan komposit yang ringan. Alternatif ini boleh digunakan sebagai bahan gantian tembok, pagar dan jalan bagi penjalan kaki. Konkrit asal lebih dikenali dengan nilai berat yang agak tinggi, rendah daya halangan kepada lembapan dan hakisan serta juga tinggi tahap darjah kepanasan yang mampu ditanggung. Kajian ini dilakukan untuk membuktikan bahawa adakah sisa botol plastik atau Polyethylene Terephthalate atau PET atau PETE atau Polyester sesuai untuk masalah bahan gantian dalam struktur komposit ringan. Beberapa ujian telah dilakukan untuk menentukan bacaan fizikal dan mekanikal bagi komposit ringan. Ujian tersebut adalah berdasarkan American Society for Testing and Materials (ASTM) jika ketumpatan adalah berada di bawah paras 1800kg/m³ untuk dilabel sebagai komposit ringan. Kebelakangan ini, Polyethylene Terephthalate (PET) telah diterima sebagai salah satu bahan dalam industri pembinaan merujuk kepada kajiankajian yang telah dijalankan sebelum ini. Jika dibandingkan dengan kekuatan mampatan dan fleksibiliti adalah kurang sedikit berbanding dengan bahan asas pembinaan, namun, PET membuatkan komposit itu tinggi nilai kemulurannya. Kajian telah membuktikan, PET boleh mengurangkan penggunaan pasir dan juga lebih ekonomik. Botol plastik PET juga sukar dilupus dan sangat bertoksik.

TABLE OF CONTENT

CHAPTER TITLE PAG

	DEC	CLARATION	II
	SUP	ERVISOR DECLARATION	III
	DEL	DICATION	IV
	ACF	KNOWLEDGEMENT	V
	ABS	TRACT	VI
	ABS	TRAK	VII
	TAB	BLE OF CONTENT	VIII
	LIST	Г OF TABLES	XI
	LIST	Γ OF FIGURES	XIII
	LIST	Γ OF SYMBOLS	XVII
	LIST	Γ OF APPENDICES	XVIII
CHAPTER 1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objective	2
	1.4	Scope of Project	3

🔘 Universiti Teknikal Malaysia Melaka

CHAPTER 2	LITI	ERATU	RE REVIE	W	4
	2.1	Introd	uction		4
	2.2	Concr	rete		5
	2.3	Lightv	weight Cond	crete	7
	2.4	Polym	ner		8
		2.4.1	Plastic Bo	ttle and Polyethylene	10
			Terephtha	alate (PET)	
	2.3	Poros	ity, Density	and Microstructure	12
CHAPTER 3	МЕТ	THODO	LOGY		14
	3.1	Introd	uction		14
	3.2	Proble	em Identific	ation	15
	3.3	Flow	Chart of the	Project	15
	3.4	Metho	odology and	l	18
		Prepa	ration		
	3.5	Table	of Compos	ition	21
	3.6	Testin	ig Standard		23
		3.6.1	Physical F	Properties	23
			3.6.1.1	Densimeter and	
				Dino-Lite	23
		3.6.2	Mechanic	al Properties	25
			3.6.2.1 Co	ompression Test and	
			Те	ensile Test	25

CHAPTER

TITLE

PAGE

CHAPTER	TITI	ĿE		PAGE				
CHAPTER 4	RES	RESULT						
	4.1	Microstructure Observation						
		4.1.1	Microscopic Observation under					
			50X and 200X Magnification	27				
	4.2	Physic	cal Properties	38				
		4.2.1	Dimension and Density of					
			Specimen	38				
		4.2.2	Water Absorption	45				
	4.3	Mecha	anical Properties	46				
		4.3.1	Compression Test	46				
		4.3.2	Tensile Test	47				
CHAPTER 5	DISC	DISCUSSION						
	5.1	Physic	cal Properties	48				
	5.2	Mecha	anical Properties	55				
		5.2.1	Compression Test	55				
		5.2.2	Splitting Tensile Test	58				
	5.3	Factor	rs That Manipulate the Compression	1				
		and T	ensile Test	61				
CHAPTER 6	CON	CLUSI	ON AND					
	REC	OMME	NDATATION	62				
	6.1	Concl	usion	62				
	6.2	Recon	nmendation	64				
	REF	ERENC	ES	66				
	APPI	ENDIXI	ES	70				

LIST OF TABLE

NO	TITLE	PAGE
2.1	Table of resin codes	9
3.1	Table of Composition of Plastic Bottle and Concrete	21
	Mixture	
3.2	Table composition of conventional concrete	22
4.1	Dimension and Density of sample A1	39
4.2	Dimension and Density of sample A2	39
4.3	Dimension and Density of sample A3	40
4.4	Dimension and Density of sample B1	40
4.5	Dimension and Density of sample B2	41
4.6	Dimension and Density of sample B3	41
4.7	Dimension and Density of sample C1	42
4.8	Dimension and Density of sample C2	42
4.9	Dimension and Density of sample C3	43
4.10	Dimension and Density of conventional concrete	43
4.11	Average of all specimens	44

NO	TITLE	PAGE

4.12	Water absorption percentages of all specimens	45
4.13	Results data for compression test of all specimens	46
4.14	Results data of splitting tensile stress of all specimens	47
5.1	Data results for density and water absorption test along	49
	with compositions of specimens	
5.2	Table of compression strength (MPa), maximum load (kN)	55
	and composition of all specimens.	
5.3	Table of tensile strength (MPa), maximum load (kN) and	58
	composition of all specimens.	

LIST OF FIGURE

NO	TITLE	PAGE
2.1	Fly Ash	5
2.2	River Sand	6
2.3	Water	6
2.4	Plastic Bottles as the Example of Pet Product	10
2.5	Polyethylene Terephthalate (PET) Chemical Formula	11
2.6	Polyethylene Terephthalate (PET) Manufacturing Process	12
3.1	Problem Identification Flow	15
3.2	The flow chart of the overall project	16
3.3	Flow chart of the project manufacturing process	18
3.4	Illustration of the Mixture Project Flow Chart	19
3.5	Cable tie that used to tight hold the PVC pipe.	20
3.6	PVC pipe that used in this project	20
3.7	The Electronic Densimeter	24
3.8	Dino-Lite for magnification	24
3.9	The example of the machine of compression test	25

NO	TITLE	PAGE
4.1	Microstructure of 50X magnification (Sample A1; 10% PET,	
	10% additive, 40% sand)	28
4.2	Microstructure of 200X magnification (Sample A1; 10% PET,	
	10% additive, 40% sand)	28
4.3	Microstructure of 50X magnification (Sample A2; 11% PET,	
	9% additive, 40% sand)	29
4.4	Microstructure of 200X magnification (Sample A2; 11% PET,	
	9% additive, 40% sand)	29
4.5	Microstructure of 50X magnification (Sample A3; 12% PET,	
	8% additive, 40% sand)	30
4.6	Microstructure of 200X magnification (Sample A3; 12% PET,	
	8% additive, 40% sand)	30
4.7	Microstructure of 50X magnification (Sample B1; 7% PET,	
	8% additive, 45% sand)	31
4.8	Microstructure of 200X magnification (Sample B1; 7% PET,	
	8% additive, 45% sand)	31
4.9	Microstructure of 50X magnification (Sample B2; 8% PET,	
	7% additive, 45% sand)	32
4.10	Microstructure of 200X magnification (Sample B2; 8% PET,	
	7% additive, 45% sand)	32

C Universiti Teknikal Malaysia Melaka

NO	TITLE	PAGE
4.11	Microstructure of 50X magnification (Sample B3; 9% PET,	
	6% additive, 45% sand)	33
4.12	Microstructure of 200X magnification (Sample B3; 9% PET,	
	6% additive, 45% sand)	33
4.13	Microstructure of 50X magnification (Sample C1; 5% PET,	
	5% additive, 50% sand)	34
4.14	Microstructure of 200X magnification (Sample C1; 5% PET,	
	5% additive, 50% sand)	34
4.15	Microstructure 50X magnification (Sample C2; 6% PET,	
	4% additive, 50% of sand)	35
4.16	Microstructure 200X magnification (Sample C2; 6% PET,	
	4% additive, 50% of sand)	35
4.17	Microstructure of 50X magnification (Sample C3; 7% PET,	
	3% additive, 50% sand)	36
4.18	Microstructure of 200X magnification (Sample C3; 7% PET,	
	3% additive, 50% sand)	36
4.19	Microstructure of 50X magnification of pure concrete	37
4.20	Microstructure of 200X magnification of pure concrete	37
5.1	Comparison of density, water absorption and PET percentages	
	of group A	50

C Universiti Teknikal Malaysia Melaka

NO	TITLE	PAGE
5.2	Comparison of density, water absorption and PET percentages	
5.2	of group B	51
5.3	Comparison of density, water absorption and PET percentages	
	of group C	52
5.4	Comparison of density, water absorption and PET percentages	
	of all specimens	53
5.5	Voids happened outside the specimens	54
5.6	The graph of compressive strength of all specimens	56
5.7	The graph of stress against strain of compression test	57
5.8	The graph of splitting tensile strength of all specimens	59
5.9	The graph of stress against strain of tensile test	60

xvi

LIST OF SYMBOLS

ρ	=	density, kg/m ³
т	=	mass, kg
v	=	volume, m ³
r	=	radius, mm
d	=	Diameter of Specimen, mm
π	=	Pi
h	=	height, mm
k <i>N</i>	=	kilo Newton
MPa	=	Mega Pascal

LIST OF APPENDICES

NO	TITLE P.	AGE
1	Gantt chart for PSM 1	70
2	Gantt chart for PSM 2	71
3	INSTRON machine used for this project	72
4	Densimeter used for this Project	72
5	Blue Hill shows the graph data	73
6	The preparation of molds and shredded plastics bottles waste	73
7	The PVC pipes were prepared for desired mold dimension	74
8	The plastics bottles was added into the composition of concrete	74
9	During using the INSTRON machine	75
10	The position of specimens during compression test	76
11	The position of specimens during splitting tensile test	76
12	The conventional concrete rupture after splitting tensile test	77
13	The microstructure observation	77
14	The density test	78
15	The example of compression test result data and graph	79
16	The example of tensile test result data and graph	80

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Lightweight materials are importance for many countries for lots of reasons. Many research proves that, lightweight is a cross cutting for crucial performance such as energy, transportation and generals products. Lightweight material generally can be divided into a few groups, which are:

- Metal
- Composites
- Polymers

In this project, the objective is more to discuss about the plastic bottle on lightweight composite structure materials. This creates the potential for additional capabilities or resources to be added to a platform and the benefits for construction industry and economic. Concretes were used since ancient Romans, to prove, Egyptians also used to build the one of the Seven Wonders, pyramid. To conclude, concrete is the basic unit of building. As time flees, many building are built for high population demanding.

Since thousands of years ago, the environment has become a part of our lives. However, when the discoveries of science and technology get more attentions and become our lifestyles, environment is omitted. Pollutions nowadays not become our priority to protect.

1.2 PROBLEM STATEMENT

There are tons of plastics that ended up as wastes. For example is the plastic bottle. Plastic bottle waste nowadays is considered to be a major problem. This is an environmental issue as its takes thousand years to bio-degrade, involves processes either to recycle or to reuse and if incinerated, they will produce toxic fumes. This will affect human health beside increase the world temperature. Hence, this project studies the proper way to reuse the plastic bottle waste.

1.3 OBJECTIVE

The main objective in this project:

- To perform a study in concrete for manufacturing process by using Polyethylene Terephthalate (PET), plastic bottle as an aggregate.
- b. To determine the physical and mechanical properties of the lightweight concrete using plastic bottles waste.

1.4 SCOPE OF PROJECT

The scope of this project is concerned on the material used as alternative aggregate in lightweight concrete along with the classification of that as follows:

- Materials being used in the composition of lightweight concrete in this project is Polyethylene Terephthalate (PET), sand, cement, additive (fly ash) and water.
- The microstructure on the lightweight concrete structure.
- Analyse the mechanical properties of the lightweight concrete with different composition for compression strength and tensile strength.
- Analyse the physical properties of the lightweight concrete along with density and water absorption percentage.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This project presents the work on plastic bottles as an alternative construction material. According to Ramadevi and Manju (2012), plastic bottle waste or Polyethylene Terephthalate or PET or PETE or Polyester is known as non-biodegradable. This is one of the factors of environmental pollution. Today, the construction industry is in need of finding cost effective materials for increasing the strength of concrete and structures. This project deals with the possibility of using the plastics bottles wastes as the partially in concrete.

2.2 CONCRETE

Concrete can be described as a universal material. Peter (2010) finds concrete has been and continue to be a great for all types of constructions throughout the world and has been described as the most important construction material. Concrete is a mixture of cement, sand (aggregates) and water. Cement is an essential components because when it is hydrated or no more water excess, its binds the aggregates together to form the hard, strong and useful. Sometimes, fly ash (Figure 2.1) is added as an additive. The type of sand usually used for construction is the river sand. To make a strong concrete, the ratio of the materials should be correct.

The strength, toughness and other characteristics of the concrete is depending on the mixing composition, the method used and other control processes. However, for country like Malaysia, India, Indonesia and others, the normal strength of concrete is very much different from the west. This is because of the temperature and air humidity.

Figure 2.1: Fly ash.

5

Figure 2.2: River sand.

From Figure 2.2, river sand is used in this project as aggregates. Aggregates are inert granular materials such as sand, gravel or crushed stone that, along with water and cement, are essential ingredient in concrete. There are two types of aggregates, fine and coarse. Aggregates strongly influence concrete's properties as stated in Cement Concrete Basic. Figure 2.3 shows the water used.

Figure 2.3: Water.

Wang, et al. (2000) stated that it is most frequently used in construction material; however, it has low tensile strength, low ductility, and low energy absorption. An intrinsic cause of the poor tensile behaviour of concrete is its low toughness and the presence of defects. Therefore improving concrete toughness and reducing the size