

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECT OF HCI CONCENTRATION, ANODIZATION VOLTAGE AND TIME ON MICROSTRUCTURE, PHASE AND PHOTOCATALYSIS ACTIVITY OF TITANIUM DIOXIDE FILM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

NURUL ZAFIRAH BINTI ZULNIZAM

B051110356

901028-01-5334

FACULTY OF MANUFACTURING ENGINEERING

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Effect of HCl Concentration, Anodization Voltage and Time on Microstructure, Phase and Photocatalysis Activity of Titanium Dioxide Film" is the results of my own research except as cited in the references.

Signature	:
Author"s Name	: Nurul Zafirah binti Zulnizam
Date	: 02 Jun 2015

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material) (Hons.). The members of the supervisory committee are as follow:

.....

(Dr. Shahriza binti Ismail)

.....

(Dr. Lau Kok Tee)

ABSTRAK

Titanium dioksida (TiO₂) telah digunakan secara meluas untuk aplikasi fotopemangkinan. Secara konvensional, TiO₂ dihasilkan oleh teknik seperti proses sol-gel dan kimia wap pemendapan. Walau bagaimanapun, teknik ini sama ada mahal, rumit, atau menghasilkan filem TiO₂ dengan sifat-sifat mekanikal yang lemah. Oleh itu, projek ini adalah bertujuan untuk membuat filem TiO₂ dengan penganodan daripada foil Ti. Parameter penganodan seperti voltan, masa dan kepekatan HCl adalah penting untuk menghasilkan filem TiO₂ yang sesuai untuk aplikasi tertentu. . Objektif projek ini adalah, mensintesis filem TiO₂ oleh penganodan foil titanium, mencirikan filem morfologi TiO₂ mikrostruktur dan permukaan mencirikan sifat-sifat fotopemangkinan filem TiO₂. Raman Spectra menunjukkan anatase dan rutil lebih sukar untuk membentuk dalam HCl elektrolit pada voltan yang lebih tinggi dan masa penganodan yang lebih lama. Bidang Pelepasan Mengimbas mikroskopi elektron Keputusan menunjukkan tiada nanopore diperhatikan dalam mikrostruktur permukaan tidak seragam sampel. Filem TiO₂ dikesan foil Ti dan telah disahkan oleh tenaga spektroskopi serakan. Mikroskop imbasan elektron menunjukkan peningkatan voltan dan penganodan gunaan masa, menyumbang kepada kekasaran permukaan yang lebih tinggi pada sampel penganodan. Sampel menunjukkan peningkatan dalam kekasaran permukaan. Didapati sampel penganodan di 10 min dan 5 V menunjukkan prestasi fotopemangkinan lebih rendah berbanding sampel anodized pada masa yang lebih lama (iaitu 20 min). Parameter terbaik untuk filem TiO2 disintesis oleh penganodan foil Ti adalah lebih rendah voltan 5 V dan lebih pendek tempoh masa 10 min.

ABSTRACT

dioxide (TiO₂) is used for wide photocatalysis Titanium applications. Conventionally, TiO₂ was produced by techniques such as sol-gel process and chemical vapor deposition. However, these techniques are either costly, complicated, or produces TiO₂ film with poor mechanical properties. Hence, this project was serves to fabricate the TiO₂ film by anodization of titanium foil. Anodization parameters such as voltage, time and HCl concentration were important to produce TiO₂ film that suits to particular applications. The objectives of this project is, to synthesize TiO_2 film by anodization of titanium foil, characterize the microstructure, phase composition and photocatalysis properties of the photocatalysis TiO₂ film. Raman Spectra show anatase and rutile are more difficult to form in HCl electrolyte at higher voltage and longer anodization time. Field Emission Scanning electron microscopy (FESEM) results showed no nanopore observed in the non-uniform surface microstructure of the sample. Nanothickness TiO₂ film was detected Ti foil and was verified by energy dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) result showed an increase of applied voltage and anodization time, contributed to higher surface roughness on the anodized samples. Samples exhibited an increase in surface roughness. It was found the sample anodized at 10 min and 5 V exhibited lower photocatalytic performance as compared to samples anodized at longer time (i.e. 20 min). Hence, the best parameter for TiO₂ film synthesized by anodization of Ti foil was in lower voltage 5 V and shorter time duration 10 min.

DEDICATION

Dedicated to my beloved family members especially my parents, lecturers, and also to all my friends.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim,

I would like to convey my gratitude to Allah S.W.T for giving me strength and Willingness to be able to completed this final year project report. I am indebted with many people during this research. I would like to express my special gratitude, appreciation and thanks to Dr Lau Kok Tee as my first supervisor in this project where he taught me lot of knowledge that is new for me, helping me upon the completion of this research and assist me all the time. Not forgetting my second supervisor Dr.shariza, master student Miss Zurianie, my best friend Mohamad Rafie bin Markam and friends that involved upon completing this report.

Last but not least, I would like to say thousand thanks to my parent, Mr Zulnizam bin Mohd Said, and Pn Fazlina binti bakhtiar where without them, I won't be here. Their love and care are always in my heart.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Figures	viii
List of Table	xi
List Abbreviations, Symbols and Numenclatures	xii

CHAPTER 1: INTRODUCTION

1.1	Background History and Application	1
1.2	Application	3
1.3	Problem statement	4
1.4	Objective	5
1.5	Scope	5

CHAPTER 2: LITERATURE REVIEW

2.1	Gener	al materials properties	6
	2.1.1	Raman spectra of TiO ₂ films	9

2.2	Micro	structure of titanium dioxide	10
	2.2.1	Titanium dioxide (TiO ₂) nanowire/nanofibers	10
	2.2.2	Titanium dioxide (TiO ₂) nanorods	11
	2.2.3	Titanium dioxide (TiO ₂) nanotubes	12
2.3	Photo	catalysis of Titanium Dioxide (TiO ₂)	13
	2.3.1	Reaction Cycles Of TiO ₂ Photocatalyst	14
	2.3.2	Methylene Blue of Titanium Dioxide	15
	2.3.3	Photocatalytic effect	16
2.4	Synthe	esis methods for TiO ₂ film	17
	2.4.1	Anodization	17
	2.4.2	Spin coating	19
	2.4.3	Physical Vapor Deposition	20
	2.2.4	Comparison of anodizing with other method	22

CHAPTER 3: METHODOLOGY

3.1	Introd	uction	23
3.2	Prepar	ation of Titanium Foil	25
3.3	Anodi	zation of Titanium film	25
	3.3.1	Experimental Setup	25
	3.3.2	Anodization Parameters	26
3.4	Charao	cterization	28
	3.4.1	Surface Microstructure, Thickness Measurement and Elemental Analysis	28

3.4.2	Raman (Phase) Characterization	28
3.4.3	Photocatalytic Characterization	29

CHAPTER 4: RESULT AND DISCUSSION

4.1	Visual Inspection	30
4.2	Raman Spectra of Anodized Ti Foil	31
4.3	Surface and Cross-sectional Microstructure of Titanium Dioxide Film	39
4.4	Photocatalytic Performance	42
	4.4.1 SEM Results for Surface Microstructures of Anodized Ti Foil Before and After Photocatalytic Degradation of Methylene Blue (MB)	45

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	48
5.2	Recommendation	50

REFERENCE

APPENDICES

LIST OF FIGURES

1.1	Anti-fogging effect of automobile side-view mirror: conventiona mirror (left) and TiO ₂ -coated mirror (right)	2
1.2	Jubilee Church of Rome, Exterior made from Italcementi Concrete Containing TiO ₂	2
2.1	Crystal structure of: (a) Rutile, (b) Anatase, and (c) Brookite (Grey coloured atoms – Titanium	7
2.4	Raman spectra of TiO_2 films at: (a) Anatase phase, (b) Anatase and rutile phase	9
2.3	FESEM image of TiO ₂ nanowire	10
2.4	FESEM image of TiO ₂ nanorods	11
2.5	FESEM image of TiO ₂ nanotubes	12
2.6	Photocatalysis process and analogy with photosynthesis	13
2.7	Mechanism of Photocatalysis	14
2.8	Structure of methylene blue (MB)	15
2.9	Time dependent photocatalytic degradation UV–vis spectra of TiO_2	16
2.10	Schematic Diagram of Anodic Oxidation System	17
2.11	Key stages of spin coating process	19
2.12	PVD processing techniques	20

3.1	Methodology's Flow Chart	24
3.2	Experimental Setup for Iodization's Methodology	25
3.3	UV box	29
4.1	TiO ₂ Coated Ti foil Substrate	31
4.2	Raman spectra of sample anodized at 10 min and 5 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	32
4.3	Raman spectra of sample anodized at 10 min and 10 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	33
4.4	Raman spectra of sample anodized at 10 min and 12 V in different HCl concentration: 1.0 and 1.5 M	34
4.5	Raman spectra of sample anodized at 20 min and 5 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	35
4.6	Raman spectra of sample anodized at 20 min and 10 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	36
4.7	Raman spectra of sample anodized at 20 min and 12 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	36
4.8	Raman spectra of sample anodized at 30 min and 5 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	37
4.9	Raman spectra of sample anodized at 30 min and 10 V in different HCl concentration: 1.0, 1.5, 2.0, 2.5 and 3.0 M	38
4.10	Raman spectra of sample anodized at 30 min and 12 V in different HCl concentration: 1.0 M	38
4.11	FESEM image of the surface microstructure a) 10000 magnification b) 50000 magnification	39
4.12	EDS results on (i) granular and (ii) flat surface regions	40

4.13	Surface image a) 10000 magnification b) Cross section 50000	41
	magnification of sample 20 min, 2.5 M and 5 V	
4.14	UV-vis results of methylene blue degradation after UV exposure at	43
	0 to 120 min, obtained from photocatalytic reaction with sample	
	anodized at 10 min and 5 V in 2.5 M HCl min	
4.15	UV-vis results of methylene blue degradation after UV exposure at	43
	0 to 120 min, obtained from photocatalytic reaction with sample	
	anodized at 20 min and 5 V in 2.5 M HCl min	
4.16	UV-vis results of methylene blue degradation after UV exposure at	44
	0 to 120 min, obtained from photocatalytic reaction with sample	
	anodized at 10 min and 10 V in 2.5 M HCl min	
4.17	UV-vis results of methylene blue degradation after UV exposure	44
	at 0 to 120 min, obtained from photocatalytic reaction with sample	
	anodized at 20 min and 10 V in 2.5 M HCl min	

LIST OF TABLES

1.1	Applications of TiO ₂	3
2.1	Crystallographic and Physical Properties of Rutile, Anatase & Brookite.	8
2.2	Raman peak positions for rutile and anatase	9
2.3	The advantages and disadvantages of PVD	21
2.4	Comparison of anodize, spin coating and PVD methods	22
3.1	List of Available Sets of Parameters	26
4.1	SEM images of surface microstructures of anodized samples	45
	magnification	
4.2	SEM images of surface microstructures of anodized samples	46
	before and after photocatalytic degradation of MB 5000× magnification	

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

CO	-	Carbon Monoxide		
Cr	-	Chromium		
EDS	-	Energy Dispersive Spectroscopy		
Fe	-	Iron		
FESEM	-	Field-emission scanning electron microscopy		
HCl	-	Hydrocloric Acid		
Hg	-	Mercury		
H_2	-	Hydrogen Gas		
H ₂ O	-	Water		
H_2S	-	hydrogen Sulfide		
Ti	-	Titanium		
TiO ₂	-	Titanium Dioxide		
TiO ₆	-	Titanium octahedron		
UV	-	Ultraviolet		
М	-	Molarity		
MB	-	Methylene blue		
Ni	-	Nickel		
N_2	-	Nitrogen		

NO ₂	-	Nitrogen Dioxide	
NO	-	nitric Oxide	
PVD	-	Physical Vapor Deposition	
S	-	Sulfur	
SEM	-	Scanning Electron Microscopy	
SO_2	-	Sulphur dioxide	
Ti	-	Titanium	
Å	-	Angstrom	
λ	-	Wavelength	
3	-	Strain	
ω	-	Omega	
α	-	Alpha	
β	-	Beta	
γ	-	Lambda	
e	-	Negative electron	
h^+	-	Positive hole	

CHAPTER 1 INTRODUCTION

1.1 Background History and Application

Photocatalyst can be in form such powders and coating. In 1938 there are a report on photobleaching of dyes where it was happen when the UV absorption produces an active oxygen species on the TiO_2 surface (Hashimoto et al; 2005).

In 1970's, TiO₂ was used to produce hydrogen gas (H₂) using photocatalytics. TiO₂ was used in form of electrode where it was contributed to the production sites of the H₂ and O₂ gases, and then recombine back into water (Hashimoto et al; 2005). By the mid 1980's, H₂ production by TiO₂ photocatalyst became unattractive as other semiconductors were better suited for future research and development (Hashimoto et al; 2005).

In early 1990s, TiO₂ film photocatalysis have been investigated under weak UV light for photocatalytic cleaning, antibacterial, and hydrophilic characterization. Photocatalytic antibacterial effect decomposition reaction of photocatalytic can be applicable to microorganisms. In fact, Escherichia coli (E. coli) cells can completely eliminated by photocatalysis of TiO₂ after about one week under a UV irradiation of 1 mW/cm² (Hashimoto et al; 2005).

Figure 1.1: Anti-fogging effect of automobile side-view mirror: conventional mirror (left) and TiO₂coated mirror (right) (Hashimoto et al; 2005).

The design of nanostructure of TiO_2 was introduced in 21^{st} century (Hashimoto et al.; 2005). Sensitivity of TiO_2 was extended to visible light range by substituting. Cr, Fe or Ni for Ti site, but the method was not accepted wider due to the lack of reproducibility and chemical stability (Hashimoto et al; 2005). Commercial cements containing TiO_2 that was introduces to reduce surface pollution. The notable Italcementi's projects is the Jubilee church in Rome, shown in Figure 1.2 and constructed using white cement containing TiO_2 (Hashimoto et al; 2005).

Figure 1.2: Jubilee Church of Rome, Exterior made from Italcementi Concrete Containing TiO₂ (Hashimoto et al; 2005)

1.2 Applications

Application	Explanation / Applications		
White pigments	Used in paint, plastic, inks, paper, leather, textiles		
	and cosmetic products		
Metal oxide semiconductor	High dielectric constants ($\epsilon = 100$)		
field effect transistor			
(MOSFET)			
Varistors	Used in ceramic and electric devices		
Gas sensors	As humidity control		
	To control the air/fuel mixture in car engines		
	Utilized in determination of oxygen and CO at high		
	temperatures (>600°C)		
Biomaterials	Bone implant coatings		
	As bone substituent		
	As reinforcing mechanical support		
Photo-assisted degradation of	Purification of waste water		
organic molecules	Used in operating rooms in hospital		
	Self-cleaning coating on car windshields		
Anti cancer treatment	Photochemical treatment		
As thin film optical	Antireflective coating		
interference coating	Dielectric mirrors for lasers		
	Metal mirrors with enhanced reflection		
	Filters		
As a protective coating	Corrosion resistant barriers		
Photocatalysts (solar cells)	Used in the production of hydrogen and electric		
	energy		
	As anti-reflection coatings		
Sunscreen	As UV absorber in sunscreen cream with high sun		
	protection factors		

 Table 1.1: Applications of TiO2 (Abdullah & Sorrell; 2010)

Food	Foodstuff, food colouring (E-171)	
Pharmaceuticals	As tablet coating, toothpaste	
As catalysts	Selective reduction of NOx to N ₂ , Hydrogen	
	production by gas shift production, CO oxidation by	
	O ₂ , H ₂ S oxidation to S, Reduction of SO ₂ to S by	
	CO, NO_2 storage	
Used in fluxes and ceramics	Raw materials	
Li-based batteries	Anatase form is used as anode material	
Electrochromic devices	Thin film coating	

1.3 Problem Statement

Photocatalytic degradation is an effective way of transforming organic pollutants into harmless end products at ambient conditions using light and photocatalyst. TiO_2 shows different characteristics and properties in different phases. Anatase, brookite, and rutile are three different phases (crystalline forms) of TiO_2 . There have different thermal stability, crystal size, and reactive surface area. Surface area and microstructure of TiO_2 easily affect its photocatalysis properties (Hanaor & Sorrell; 2010). An increases of total surface area increases the pollution reduction potential of TiO_2 as it increases the surface area for reaction with pollutants (Hanaor & Sorrell; 2010).

Suitable processing method and parameters are important to produce TiO_2 film that suits to particular applications. Nevertheless, the choice of synthesis method is determined by cost control, quality of product, safety issues, etc. Current available production synthesis such as physical vapour deposition method is costly or involving complicated process (Erol et al; 2014). Anodization is a less expensive electrochemical method to produce TiO_2 film. TiO_2 film synthesized by this technique has anti-galling and wear resistant properties. The film is continuous and does not flake off in highly stressed areas and has increase in fatigue strength increase of 15-20% due to its homogeneous surface treatment.

1.4 Objective

The purpose of this research is to synthesize TiO₂ thin film on titanium substrates using anodization method. Below are the specific objectives for this research;

- a) To synthesize TiO_2 film by anodization of titanium foil.
- b) To characterize microstructure and phase composition of the TiO₂ film.
- c) To characterize photocatalysis property of the TiO₂ film.

1.5 Scope

Investigation of the relationship between anodization parameters, phase composition and microstructure of TiO_2 film were conducted. Effect of three anodization parameters: voltage, anodizing duration and HCl acid concentration were studied. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) are used to characterize the microstructure of TiO_2 film. Raman spectroscopy is used to characterize phase composition of the TiO_2 film. The decomposition rate of methylene blue is used to asses the photocatalytic activity of the TiO_2 film.

CHAPTER 2

LITERATURE REVIEW

The literature review of the titanium dioxide (TiO₂) was discussed in this chapter. The TiO₂ material and its general physical properties and crystallography is discussed in the first section. Next, the photocatalyst properties are reviewed in relationship to TiO₂ is being used as the thin film coating on titanium. Anodization is discussed and compared with other fabrication techniques.

2.1 General Materials Properties

 TiO_2 exists in three different polymorphous structures: Anatese, rutile, and brookite. Anatase and brookite appear as metastable phases compared to more stable rutile phase (Hanaor & Sorrell; 2010).

Rutile has a tetragonal cystalline stucture (refer Figure 2.1(a)), anatase has a tetragonal cystalline stucture (refer Figure 2.1(b)), and brookite has an orthorhombic cystalline stucture (refer Figure 2.1(c)) (Pavemaintenance, 2014). Details of crystallographic and physical properties of the rutile, anatase and brookite are summarized in Table 2.1.

Figure 2.1: Crystal structure of: (a) Rutile, (b) Anatase, and (c) Brookite (Grey coloured atoms – Titanium, Red coloured atoms – Oxygen) (Pavemaintenance; 2014)

Polymorphs	Structure	Rutile	Anatase	Brookite
Chemical Fo	rmula	TiO ₂	TiO ₂	TiO ₂
Crystal Syste	em	Tetragonal	Tetragonal	Orthorhombic
Point group according to Schonflies		D _{2h}	D _{2d}	C1
Unit cell	а	0.459	0.536	0.915
parameter	b	0.459	0.536	0.544
(nm)	с	0.296	0.953	0.514
Moh"s Hardness		7.00-7.25	5.5-6.0	5.5-6.0
Density (g/cm^3)		4.13	3.79	3.99
Refractive Index (25°C) ($\lambda = 5893$ Å)		2.61	2.56	2.58
(