

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF A CONCEPT FOR PHYSICAL RECONFIGURABLE CONVEYOR SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotics & Automation) (Hons.)

by

ONG FUI YEE B 051110187 910921-05-5448

FACULTY OF MANUFACTURING ENGINEERING 2015

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of a Concept for Physical Reconfigurable Conveyor System SESI PENGAJIAN: 2014/15 Semester 2			
Saya ONG FUI YEE			
	ran PSM ini disimpan di Perpustakaan Universiti Teknikal gan syarat-syarat kegunaan seperti berikut:		
 Perpustakaan Universiti Te tujuan pengajian sahaja de 	membuat salinan laporan PSM ini sebagai bahan pertukaran		
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)		
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)		
TIDAK TERHAD			
	Disahkan oleh:		
Alamat Tetap:	Cop Rasmi:		
No 69 Jalan Pulai Jaya 2/7			
Bandar Pulai Jaya			
81110 Kangkar Pulai Johor			

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled –Development of a Concept for Physical Reconfigurable Conveyor System" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics and Automation) (Hons.). The member of the supervisory is as follow:

(Dr.-Ing. Azrul Azwan Bin Abdul Rahman)

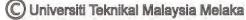
ABSTRAK

Kebanyakan industri pembuatan menggunakan aplikasi pengendalian bahan pada masa sekarang. Penghantar adalah salah satu peralatan yang penting dalam pengendalian bahan. Penghantar dapat memindahkan sesuatu produk dari satu tempat ke tempat lain. Satu konsep tentang fizikal sistem penghantar pembentukan-semula telah dihasilkan untuk memenuhi permintaan pasaran dengan kos yang berpatutan dan menurunkan kos dan kerja penyelenggaraan. Konsep fizikal sistem penghantar pembentukan-semula telah dikaji dan reka bentuk konsep untuk sistem ini telah dimodelkan dan disahkan dengan menggunakan perisian reka bentuk. Perisian reka bentuk yang digunakan dalam projek ini adalah SolidWorks. Susun atur yang berbeza disusun dengan menggunakan komponen modular yang telah direka. Sebanyak lima keperluan telah dicadangkan dalam proses menghasilkan konsep system tersebut iaitu ketinggian boleh dilaraskan, kunci magnet laras, modulaliti, penukaran dan masa pertukaran susun atur yang pendek. Semua lukisan terperinci telah direka dan reka bentuk dianalisis dijalankan dengan menggunakan perisian Kejuruteraan Bantuan Komputer (CAE). Objektif projek tersebut telah tercapai.

ABSTRACT

Most of the manufacturing industries now deal with material handling applications. Conveyor is one of the most important material handling equipment which able to transfer the product from one place to another. A concept of the physical reconfigurable conveyor system is developed in order to meet the market responsiveness at a reasonable cost with less maintenance cost and work. The concept of physical reconfiguration of the conveyor system is studied and the design of the concept for the physical reconfigurable conveyor system is modeled and verified by using design software. The design software that used in this project is SolidWorks (solid modeling CAD software). Different layouts are arranged by using the designed modular components. There are five requirements of the reconfigurable conveyor system had been proposed which are adjustable height, adjustable magnet lock, modularity, convertibility and short layout changeover time. All the detail drawings of the reconfigurable conveyor system are generated and the design is analyzed by using Computer Aided Engineering (CAE) software. In future, the prototype of the concept for the reconfigurable conveyor system can be developed in order to get a realistic result.

DEDICATION


To my beloved parents, lecturers and friends whose have guided and inspired me through this education journey and also thanks to their fully support, belief and motivation.

ACKNOWLEDGEMENT

I would like to thank you for all who have helped in completing this report. A very special thanks to my kind and helpful supervisor Dr.-Ing. Azrul Azwan Bin Abdul Rahman for his guide and willingness to share his knowledge. Besides that, it would not have been possible without the kind and fully support from my beloved parents. Gratitude to all my friends for the support and sharing of knowledge and partially anticipated in this project. I would like to extend my sincere thanks to all of them.

I am highly indebted to the Robotic and Automation department for their guidance and constants supervision as well as for providing necessary information regarding this project and also for their support in completing this report.

TABLE OF CONTENT

Abs	trak			i
Abs	tract			ii
Ded	ication			iii
Ack	nowled	gement		iv
Tab	le of Co	ontent		V
List	of Tabl	es		viii
List	of Figu	res		ix
List	of Abb	reviations	s, Symbols and Nomenclatures	xi
CH	APTEF	R 1: INTF	RODUCTION	1
1.1	Back	ground of	Study	1
1.2	Probl	em Stater	nent	2
1.3	Objec	tives		3
1.4	Scope	es		3
1.5	Thesi	s Structur	re	3
CH	APTEF	R 2: LITE	ERATURE REVIEW	6
2.1	Mater	rial Handl	ling	6
	2.1.1	Materia	l Handling Equipment-Conveyor	7
	2.1.2	Convey	or Components	8
		2.1.2.1	Conveyor Belt	8
		2.1.2.2	Motor	9
		2.1.2.3	Actuator	11
		2.1.2.4	Sensor	13
	2.1.3	Types o	of Conveyor	14
		2.1.3.1	Flat Belt Conveyor	14
		2.1.3.2	Roller Conveyor	14
		2.1.3.3	Chain Conveyor	15

		2.1.3.4	Turntable	16
	2.1.4	Convey	or System Layout	16
	2.1.5	Life Cy	cle of Conveyor System	18
2.2	Recor	nfigurabil	ity	20
	2.2.1	Differer	ntiate between Flexibility and Reconfigurability	21
	2.2.2	Compar	ison of Physical Configuration and Logical Configuration	22
2.3	Recor	nfigurable	e Conveyor System	23
	2.3.1	Charact	eristic	23
		2.3.1.1	Modularity	23
		2.3.1.2	Customization	24
		2.3.1.3	Convertibility	24
2.4	State	of Art of	RMHS	25
	2.4.1	Current	State of Commercial and Research	25
		2.4.1.1	Reconfigurable Modular Conveyor	25
		2.4.1.2	Modular Conveyor System	26
		2.4.1.3	Model-driven Performance Analysis of Reconfigurable	
			Conveyor Systems used in Material Handling Applications	27
		2.4.1.4	Reliability Evaluation of Reconfigurable Conveyor	
			Systems	27
CHA	APTER	3: MET	HODOLOGY	29
3.1	Projec	et Implem	nentation	29
32	Tools	– Softwa	re Requirements	32

J. _	10015	Software Requirements	52
	3.2.1	SolidWorks	32
		3.2.1.1 Design and Drawing	32
		3.2.1.2 Design Analysis	33
3.3	Propo	sed Specifications for Reconfigurable Conveyor System	34
	3.3.1	Pneumatic Cylinder with Turntable	34
	3.3.2	Adjustable Height	35
	3.3.3	Short Changeover Time	36
	3.3.4	Modularity	36
	3.3.5	Convertibility	37

CHA	APTER	4: RESULT AND DISCUSSION	38
4.1	Detail	ed Drawing	38
	4.1.1	Adjustable Steel Combine Stand	39
	4.1.2	Adjuster Wheel	39
	4.1.3	Magnet Locking Mechanism	40
	4.1.4	Modules of The Reconfigurable Conveyor System	42
		4.1.4.1 Module 1 - Pneumatic Cylinder With Turntable	43
		4.1.4.2 Module 2 - Single Straight Line Belt Conveyor	44
4.2	Desig	n Analysis And Discussion	45
	4.2.1	Procedure to Create Module Layout	45
	4.2.2	Possible Module Layouts of Reconfigurable Conveyor System	46
4.3	Layou	t Changeover Time Analysis	50
	4.3.1	MOST Analysis	55
4.4	Real I	Life Applications of The Concept for Reconfigurable Conveyor	
	System	n	60
CHA	APTER	5: CONCLUSION	62
5.1	Concl	usion	62
5.2	Recor	nmendation	63
REF	EREN	CES	64

APPENDICES

А	Gantt Chart PSM 1 and PSM 2
В	MOST Work Measurement System Data Card

LIST OF TABLES

1.1	Activities of the project for five chapters.	5
2.1	Comparison of system features for RMS and FMS	22
4.1	Specifications of different types of magnet	41
4.2	Features of NdFeB magnet	41
4.3	Detail information of NdFeB magnet	42
4.4	Specifications of pneumatic cylinder with turntable	44
4.5	Comparison between existing conveyor system and conceptual	
	reconfigurable conveyor system	54
4.6	The sequence model and phases of the general move and tool use	
	with their parameters	55
4.7	MOST analysis of the existing conveyor system	56
4.8	MOST analysis of the conceptual reconfigurable conveyor system	57
4.9	Comparison of the total time needed to assembly the L-shape layout	
	between the existing conveyor system and conceptual	
	reconfigurable conveyor system	59

LIST OF FIGURES

2.1	A Simple Example of Material Handling System.	7
2.2	Belt and Pulleys	8
2.3	AC Induction Motor	9
2.4	Brushless DC Motor	10
2.5	Geared Stepper Motors	10
2.6	Geared Servo Motors	11
2.7	Electric Actuator	12
2.8	Mechanical Actuators	12
2.9	Fluid Power Actuators	13
2.10	Flat Belt Conveyor	14
2.11	Roller Conveyor	15
2.12	Chain Conveyor	15
2.13	Cylinder with Turntable	16
2.14	Single Line Layout	18
2.15	U-Shape Layout	18
2.16	Closed Loop Layout	18
2.17	Conventional Life Cycle of Conveyor System	19
2.18	Life Cycle of Reconfigurable Conveyor System	20
2.19	Reconfigurable Modular Conveyors	26

3.1	Overall Flow Chart of The Project	31
3.2	Example of SolidWorks Software.	33
3.3	Example of Time Based Motion Analysis	34
3.4	Adjustable Steel Combine Stand	35
4.1	Design drawing of adjustable steel combine stand.	39
4.2	Design drawing of adjuster wheel	40
4.3	Adjustable Magnet Lock	41
4.4	Design drawing of pneumatic cylinder with turntable	43
4.5	Design drawing of single straight line belt conveyor	45
4.6	Overall procedures to create module layout	46
4.7	Straight line layout arrangement	47
4.8	L-shape layout arrangement	48
4.9	U-shape layout arrangement	48
4.10	Closed loop layout arrangement	49
4.11	Full assembly layout arrangement	50
4.12	The changeover layout operations flow chart of the conceptual	
	reconfigurable conveyor system	52
4.13	The changeover layout operations flow chart of the	
	existing conveyor system	53

26

4.14 Support stand and the locking mechanism of the

existing conveyor system

C Universiti Teknikal Malaysia Melaka

54

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AGV	-	Automated Guided Vehicle
CAD	-	Computer Aided Design
CAE	-	Computer Aided Engineering
FMHS	-	Flexible Material Handling System
FMS	-	Flexible Manufacturing System
DMS	-	Dedicated Manufacturing System
RMS	-	Reconfigurable Manufacturing System
MCE	-	Modular Conveyor Express
PSM	-	Projek Sarjana Muda
RMHS	-	Reconfigurable Material Handling System
VS	-	Versus
MOST	-	Maynard Operation Sequence Technique
TMU	-	Time Measurement Unit
min	-	Minutes

CHAPTER 1

INTRODUCTION

This chapter gives an overview about this project entitled –Development of a Concept for Physical Reconfigurable Conveyor System". Problem statement, objectives, scopes and thesis structure will be discussed in the following section.

1.1 Background of study

Manufacturing industry plays an important role and made a large influence in the country's economic growth. However, the manufacturing industry needs to face unpredictable, high-frequency market changes, and other challenges due to globalization in this 21st century. These companies must possess new types of manufacturing systems in order to stay competitive to each other the new manufacturing system should be cost-effective and very responsive to all these market changes (Koren et al., 1999). A new conveyor system should be implements first instead of possess a new manufacturing system. This is due to conveyor is a composed of material handling system which occurred in most of the manufacturing system. A conveyor system is a common type of mechanical handling equipment which transfers and moves materials from one place to another (Dematic, 2014).

Reconfigurability, the ability to change and rearrange the behaviors of a system by only changing its configuration in a cost-effective way (Setchi et al., 2004). This new engineering technology able to react and change. Reconfigurable conveyor system has the ability to arrange n rearrange a wide variety of module with different layout by the engineer without any additional cost for purchase a brand new conveyor and losing the conveyor's behaviors. It can be reconfigured over and over again (Jill Batka, 2011). Timm Ducey (2011) states that a truly reconfigurable conveyors are likes LEGOs which provide ultimate reconfigurability. We cannot mess up the reconfigurable systems actually. The changes of a reconfigurable conveyor can be made simply by just swapping out the modules with the release of a few bolts and nuts and snapping the modules in or out (Jill Batka, 2011). A reconfigurable conveyor system is comprised from the combination of physical and logical configuration. Physical conveyor unit is the hardware of the conveyor such as conveyor components, conveyor types, and system design layout whereas logical conveyor unit is the controller which control the movement of the transport item through the conveyor system (Wentzel et al., 2012).

1.2 Problem Statement

The current manufacturing systems are mainly dominated by Dedicated Manufacturing system (DMS) and Flexible manufacturing system (FMS). Due to some problems occurred in this manufacturing system such as dynamic nature and complexities in the mining manufacturing environment in terms of space available, kind of mining operations and the risks involved, unable to meet the market responsiveness requirements at a reasonable costs and longer changeover time, some improvements or new system is needed in order to meet customer's requirements. A new type of manufacturing systems which are cost-effective and very responsive to all these market changes needed in order to stay competitive with other industry. Reconfigurable conveyor system offers significant flexibility, making efficient use of available space (An et al., 2011) able to reconfigured over and over again and low

maintenance costs. A concept for this reconfigurable conveyor system need to be developed.

1.3 Objectives

- To develop a concept of physical reconfigurable conveyor system.
- To model and verify a reconfigurable conveyor system concept by using experimental or Computer Aided Engineering (CAE) software.

1.4 Scopes

The scopes of this project are :

- a) To study and understand the concept of reconfigurable conveyor system especially in the concept of physical reconfiguration.
- b) Focus on the study and understanding of belt conveyor.
- c) The design of the concept for the physical reconfigurable conveyor system is going to be model and verify by using design and CAD software.
- d) The proposed specifications of the layout changeover time is going to analyse by using predetermined time system method MOST analysis method.

1.5 Thesis Structure

This PSM report consists of five chapters that will explain details about this project. Table 1.1 shows the activities of the project for five chapters. The first chapter of this report is about the introduction of the project which includes background of study,

problem statement, objectives, and scopes. It is then followed by Chapter 2 which provided a literature review on the prior researchers on the reconfigurable conveyor system, material handling approaches, type of existing conveyors and conveyor system layout. Next, Chapter 3 is the methodology that covered the descriptions and procedures while doing the project including methods applied system, software and flow charts of the project. In Chapter 4, the result and discussion of the project is covered. The detailed design drawing, design study and analysis and layout changeover time analysis will be discussed. The last chapter which is Chapter 5 will covered the conclusion and future improvement of the project.

Chapter	Activity
1. Introduction	Background of Study, Problem Statement, Objectives, Scopes.
2. Literature Review	 Material Handling (conveyor components, types of conveyor, conveyor system layout and life cycle of conveyor system.) Reconfigurability (flexibility vs reconfigurability and physical configuration vs logical configuration) Reconfigurable Conveyor System (characteristic – modularity, customization and convertibility) State of Art of RMHS (current state of commercial and research)
3. Methodology	 Project Implementation (flow chart) Tools Used (SolidWorks – design drawing and animation) Proposed Specifications for Reconfigurable Conveyor (turntable, adjustable height, short changeover time)
4. Result and Discussion	 Detailed Drawing (Adjustable Steel Combine Stand, Adjuster Wheel, Adjustable Magnetic Lock and Modules of the reconfigurable conveyor system) Design Study and Analysis (Procedure to create module layout and Possible module layout arrangements) Layout Changeover Time Analysis (MOST Analysis Method)
5. Conclusion and Recommendation	Conclusion and future improvement

Table 1.1: Activities of the project for five chapters.

CHAPTER 2

LITERATURE REVIEW

The literature review undertaken as a part of development of a concept of physical reconfigurable conveyor system project. This project was focused on material handling especially conveyor, system reconfigurability, characteristic of reconfigurable conveyor system and current state of the art reconfigurable material handling system (RMHS).

2.1 Material Handling

Material handling refers to the movement, storage, protection and control of products and materials throughout the processes of manufacturing, disposal, distribution and consumption of all related materials and goods (Kardex Remstar, 2014). Material handling industry manufactures and distributes the equipment and system required to implement the material handling systems. The material handling process will incorporates a wide variety of either manual, semi-automated or fully automated equipment and systems that support import and export of materials and make the supply chain work (MHI, 2014).

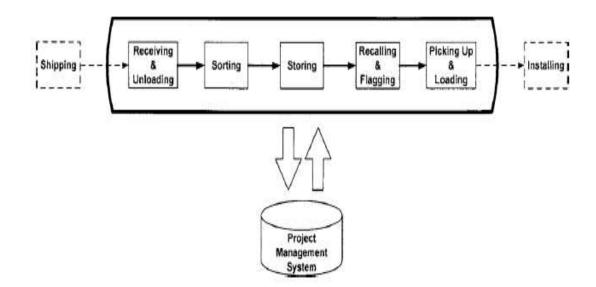


Figure 2.1: A simple example of material handling system.

2.1.1. Material Handling Equipment – Conveyor

Material handling equipment normally is used for the storage and movement of material within a facility or manufacturing industry. Material handling equipment can be classified into five major categories which are transport equipment, positioning equipment, unit load formation equipment, storage equipment and identification and control equipment (MHE Taxonomy, 1999). The availability of manual, semi-automated and fully automated material handling equipment and technologies able to support the material handling equipment which include conveyors, industrial robot, Automated Guided Vehicle (AGVs) and others (MHI, 2014).

We will focus and discuss more on conveyor equipment since the objective of this project is to develop a concept of physical reconfigurable conveyor system. Conveyors are another form of material handling. They used to move materials,

products or goods throughout a manufacturing or distribution facility. Conveyors can be horizontal, inclined or vertical which are powered by hydraulic or pneumatic or electric power. Conveyors are especially useful in applications which involve in the transportation of heavy or bulky materials. Conveyors have the ability to reduce labor costs by eliminating non-value-added travel time because they enable large quantity of materials to be moved rapidly through a process or facility (MHI, 2014). Conveyors consist of several types with different system layout.

2.1.2 Conveyor Components

2.1.2.1 Conveyor Belt

Belt is an important component for a conveyor system which made up of one or more layer of rubber. Belt normally combined with two or more pulleys with continuous and closed loop as carry medium. The belt will move and the material on the belt will move forward also when one or both of the pulleys are powered. The powered pulley is called the drive pulley where the unpowered pulley is called the idler pulley.

Figure 2.2: Belt and Pulleys