
i

CUSTOMIZABLE ASSEMBLER DESIGN FOR DYNAMIC INSTRUCTION SET

ARCHITECTURE (ISA)

MOHAMAD HAZARI BIN ZINAL IBIADIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ii

CUSTOMIZABLE ASSEMBLER DESIGN FOR DYNAMIC INSTRUCTION SET

ARCHITECTURE (ISA)

MOHAMAD HAZARI BIN ZINAL IBIADIN

This report is submitted in partial fulfillment of requirements for the Bachelor

Degree of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2014

iii

Dedicated to my beloved family especially father & mother, lecturer and to all my

beloved friends.

vi

ACKNOWLEDGEMENT

Thank God, because of His grace, I have been able to implement this project

successfully and I want to take this opportunity to express my appreciation to all

those who helped me a lot in completing this FYP. I would like to express appreciate

to my family because support me to continue my study in computer engineering.

They also support me in term of moral, fund and transportation in my university life.

I appreciate to Mr. Sani Irwan bin Md Salim, because he created and

introduced this project title to me. I appreciate to Pn. Nur Fatihah bt Azmi, because

she was willing to supervise and give comments in my project.

Finally, I would like to thank to my friends, who always ready to serve and

help me. I express my gratitude and hope that God will repay you well.

vii

ABSTRACT

In the development of processor architecture, one of the crucial parts is the

creation of a compatible assembler to the processor's instruction set architecture

(ISA). Reconfigurable processor such as UTeMRISC03 requires a flexible assembler

design in order to accommodate the modification being made to its ISA. The

objectives of this project are to design a customizable assembler for dynamic

instruction set architecture and to verify the assembler is compatible with the

UTeMRISC03 processor architecture. In order to meet the objectives, a new

assembler has been designed using Visual Basic (VB). The designed software is user

friendly because it is able to modify according to any design requirement. The new

assembler is capable in converting an assembly language program to its instruction

word dictated by the processor's opcode file. The correct object file is also generated

in line with the selected ISA width determined by the users. The object file is

successfully loaded to the processor architecture in the FPGA platform in order to

verify its compatibility. With the customizable feature achieved in this assembler

design, the assembler would be beneficial as the main tool in the development of a

complete package in a reconfigurable processor development in the future.

viii

ABSTRAK

Dalam pembangunan seni bina pemproses, salah satu bahagian penting ialah

penciptaan satu penghimpun serasi bagi seni bina set suruhan pemproses. Pemproses

boleh dikonfigurasi semula seperti UTeMRISC03 memerlukan satu penghimpun

fleksibel mereka supaya menampung pengubahsuaian dibuat ke senibina set arahan

nya (ISA). Objektif projek ini akan mereka satu penghimpun yang menyesuaikan

untuk suruhan dinamik seni bina tetap dan mengesahkan penghimpun serasi dengan

seni bina pemproses UTeMRISC03. Untuk mencapai objektif, satu penghimpun baru

telah direka bentuk menggunakan Visual Basic (VB). Perisian bercorak ramah

pengguna kerana ia mampu mengubah suai menurut mana-mana keperluan reka

bentuk. Penghimpun baru berkebolehan dalam menukar satu bahasa perhimpunan

merancang kepada kata suruhannya diperintah oleh fail opkod pemproses. Fail objek

betul juga dijana seiring dengan kelebaran ISA terpilih berazam oleh pengguna. Fail

objek berjaya memuatkan kepada seni bina pemproses di platform FPGA supaya

mengesahkan keserasiannya. Dengan ciri yang menyesuaikan dicapai dalam mereka

penghimpun ini, penghimpun akan menguntungkan sebagai alat penting di

pembangunan satu pakej lengkap di pembangunan pemproses boleh dikonfigurasi

semula pada masa akan datang.

ix

TABLE OF CONTENT

CHAPTER TITLE PAGE

PROJECT TITLE i

REPORT STATUS VERIFICATION FORM ii

STUDENT’S DECLARATION iii

SUPERVISOR’S DECLARATION iv

DEDICATION v

ACKNOWLEDGEMENT vi

ABSTRACT vii

ABSTRAK viii

TABLE OF CONTENT ix

LIST OF TABLE xii

LIST OF FIGURE xiii

LIST OF ABBREVIATIONS xv

LIST OF APPENDIX xvi

 I INTRODUCTION 1

 1.1 Overview 1

 1.2 Objectives 2

 1.3 Problem Statement 2

 1.4 Scope 2

 1.5 Report Structure 2

 II LITERATURE REVIEW 4

x

2.1 Reconfigurable Processor or Soft-Core Processor 5

2.2 Relationship ISA into Microprocessor 5

2.3 UTeMRISC03 Processor 6

2.4 What is an Assembler 7

2.4.1 Main component and operation of assembler 7

2.4.2 One Pass assembler 8

2.4.3 Two Pass Assembler 11

2.4.4 Comparison Two Type Bits Processor Architecture 13

2.5 Visual Basic Software 13

 III PROJECT METHODOLOGY 15

3.1 Project Activities 15

3.1.1 Basic Compilation Techniques 16

3.1.2 Project Design 17

3.1.3 Code Assembly Procedure 18

3.2 Instruction Set Architecture Design 19

3.3 Test Program File 21

3.4 Hardware Simulation 23

3.4.1 COE file in ROM Module 23

3.5 Visual Basic Code 24

 IV RESULTS AND DISCUSSION 27

4.1 Introduction 27

4.2 Assembler Interface 27

4.3 Operation 28

4.3.1 Load Assembly File 28

4.3.2 Load Opcode File 31

xi

4.3.3 Button Functionality 31

4.4 Hardware Simulation 32

4.4.1 Xilinx Software 32

4.4.2 Load to UTeMRISC03 Processor 33

4.4.3 Run Simulation in ISim 33

4.4.4 Output or Result Simulation 34

4.5 Discussion 37

 V CONCLUSION AND RECOMMENDATION 39

5.1 Introduction 39

5.2 Conclusion 39

5.3 Recommendation 40

REFERENCES 41

APPENDIX A 43

APPENDIX B 44

APPENDIX C 45

xii

LIST OF TABLE

NO. TITLE PAGE

Table 1 Comparison Between 8-Bit And 16-Bit Processor Architecture[6] 13

Table 2 Table Equivalent to Fix Generated COE File 38

xiii

LIST OF FIGURE

Figure 2.1 Utemrisc03 Processor Development[6] 6

Figure 2.2 Main Component And Operation Of Assembler[2] 7

Figure 2.3 One Pass Assembler Part 1(A)[2] 8

Figure 2.4 One Pass Assembler Part 1(B)[2] 9

Figure 2.5 One Pass Assembler Part 2(A)[2] 10

Figure 2.6 One Pass Assembler Part 2(B)[2] 10

Figure 2.7 Two Pass Assembler Part 2(A)[2] 11

Figure 2.8 Two Pass Assembler Part 2(B)[2] 12

Figure 2.9 Graphical User Interface Using Visual Basic 14

Figure 3.1 Typical Compilation Process Flow 16

Figure 3.2 Flow Chart Of Project 17

Figure 3.3 Assembly Procedure 18

Figure 3.4 Isa Format A) Byte-Oriented Operation, B) Bit-Oriented

Operation, C) Literal And Control Operation. 19

Figure 3.5 16-Bit Instruction Set Architecture 20

Figure 3.6 22-Bit Instruction Set Architecture 20

Figure 3.7 Assembly File Are Used 21

Figure 3.8 Opcode File Are Used 22

Figure 3.9 Utemrisc03 Processor Architecture[6] 23

Figure 3.10 Convert To Binary Code 24

Figure 3.11 Convert To Hex Code 25

NO. OF

FIGURE
TITLE PAGE

xiv

Figure 3.12 Set Up The Width Of Operand 25

Figure 3.13 Set F, B And D Size 26

Figure 3.14 Set Literal Value 26

Figure 4.1 Assembler Interface Using Visual Basic 28

Figure 4.2 Load File View 29

Figure 4.3 Load Assembly Program File For 16 Bit Isa 30

Figure 4.4 Load Assembly Program File For 22 Bit Isa 30

Figure 4.5 Load Opcode File 31

Figure 4.6 Function Of All Button Used 31

Figure 4.7 Radio Button Design 32

Figure 4.8 Xilinx Software Interface 32

Figure 4.9 Load Output File 33

Figure 4.10 Simulation In Isim 34

Figure 4.11 Output 16_Bits.Coe File 35

Figure 4.12 Result Simulation For Output 16_Bit.Coe File 35

Figure 4.13 Output 22_Bit.Coe File 36

Figure 4.14 Result Simulation For Output 22_Bit.Coe File 36

Figure 4.15 Listing File 37

xv

LIST OF ABBREVIATIONS

FPGA – Field Programmable Gate Array.

ROM – Random Access Memory

FKEKK – Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer.

IEEE – Institute of Electrical and Electronics Engineers

ISA – Instruction Set Architecture.

RISC – Reduce Instruction Set Computer.

UTeM – Universiti Teknikal Malaysia Melaka

COE – Coefficient

LST – Listing

INT – Intermediate

FYP – Final Year Project

xvi

LIST OF APPENDIX

NO. TITLE PAGE

A ASCII Table 43

B Visual Basic Coding Interface 44

C Xilinx Software 45

1

1 CHAPTER I

INTRODUCTION

1.1 Overview

A reconfigurable processor is a processor core that with configurable internal

architecture in order to improve performance and efficiency. Within the internal

architecture, the instruction set architecture act as the intermediate module between

user program code (software) and hardware implementation. When instruction set

architecture was modified, the processor's assembler must adhere the changes. The

assembler is design using visual basic with two-pass assembly method and applies

the tokenization and lexical analysis procedure to perform assembling process. The

assembler‟s output is a listing file formatted as coefficient file (.coe) will used to

instantiate the ROM module during the FPGA implementation of the processor core.

2

1.2 Objectives

The objectives of this project are as follows:

i. To design a customizable assembler for dynamic instruction

set architecture.

ii. To verify the assembler‟s object file is compatible with the

UTeMRISC03 processor architecture.

1.3 Problem Statement

Processor‟s assembler is tied up to its architecture. In case of reconfigurable

assembler, the modification of the architecture will causes the existing assembler not

compatible with the processor. Any changes on processor‟s architecture such as new

instruction set, bus modification and memory expansion would alter the system

configuration. Hence, the machine code needs to comply with the latest version of

the architecture. Having a customizable assembler that capable in producing object

files that matched the processor architecture could solve this problem.

1.4 Scope

The assembler is developed using two-pass assembler approach. The dynamic

instruction set architecture is to be mode optional 16-bit and 22-bit.

1.5 Report Structure

This thesis delivery the concept applied, method used, problem solving, finding

analysis and result of visual basic. This thesis consists of five chapters and the

following briefly describe what contents each chapter has. But for this PSM 1 two

last chapter it not required to submit because the not yet the result.

3

In chapter 1, the purpose is to give reader an overall picture about what is

actually this project doing. Introduction, objectives, scope of project, problem

statement and summary of methodology are able to introduce this project to reader.

In chapter 2, the literature review of project is explained in detail. Study was

done for existing assembler and the disadvantages of existing assembler were found.

Then, the theoretical concept that applied in this project based on the Visual Basic

programming technique and target hardware also state in this chapter.

In chapter 3, the methodology of project is described. The processes of design

are shown step by step. There are four main functions need to be designed which are

load, tokenization, lexical analysis and decode to get the output. The assembler also

will explain on how the main functions of existing assembler working. Then, the

programming using the Visual Basic also will explain on how to design the new

interface assembler.

In chapter 4, all results from project are included. The results are majority

focus on assembler are using Visual Basic. That‟s mean the result assembler will

shown as Visual Basic interface. The COE file and LST file will generate after the

assembler is done. The file also will test at FPGA processor to verify the file is

creating well. That‟s the result will shown.

In chapter 5, a conclusion is made for the project that carried out in final year.

The conclusion included project discovering, analysis achieved and future

enhancement. Besides, the accuracy of project results will be concluded by

comparing with objectives and problem statement. Finally, the important of this

project to the target user will also describe

.

4

2 CHAPTER II

LITERATURE REVIEW

Based on the literature review, the assembler and visual basic is already

complete on study about the basic function and the step to use the software. For

creating the new assembler need to know the previous information like what

language and type are used. From the finding, the previous assembler is used Perl

language to create TINYASM [1] and also using eclipse. IEEE is the better website

to find the information journal and that is a more useful for this project information.

Based on the journal, the assembler is a translator that translates source instructions

in symbolic language into target instructions in machine language [2], on a one to

one basis. The reason is operation of an assembler reflects the architecture of the

computer. The assembler language depends heavily on the internal organization of

the computer. The features architectures such as memory word size, number formats,

internal character codes, index registers, and general purpose registers, affect the way

assembler instructions are written and the way the assembler handles instructions and

directives [2]. For visual basic part is used to design the interface of the assembler

and should know the all functions on the software.

5

2.1 Reconfigurable Processor or Soft-Core Processor

Reconfigurable processor or soft core processor is a programmable processor

already implement in to embedded computing systems. Example a soft core

processor is field programmable gate arrays (FPGAs) processor. A soft core FPGA

processor is a synthesizable processor mapped onto the FPGA fabric in contrast to a

hard core processor that is laid out next to the FPGA fabric[3]. A single instruction

set computer, a processor with a certain function itself can be reconfigured to another

processor with another function[4].

2.2 Relationship ISA into Microprocessor

Instruction set architecture is the structure of a computer that a machine

language programmer (or a compiler) must understand to write a correct (timing

independent) program for that machine[5]. The Microprocessor is a processor using

small instruction set to process the application in their control processing unit. The

instruction set architecture almost related into microprocessor because the instruction

set architecture is the part of the processor that is visible to the programmer or

compiler writer. The ISA serves as the boundary between software and hardware.

6

2.3 UTeMRISC03 Processor

Figure 2.1 UTeMRISC03 Processor Development[6]

In general, UTEMRISC03 processor is an inititive from researchers in UTeM

to develop a complete suite of reconfigurable processor design for specific

applications. The project involved several key aspect of processor design including

the architecture, instruction set extension, customizable assembler and the

architecture simulator.

As part of the UTeMRISC03 processor project, the customizable assembler

design is essential in order to accommodate any changes being made to the processor

architecture and also during the extension of the instruction set list. Being tightly-

coupled with the processor's ISA, the assembler design need to be flexible to

generate the correct object files based on the current ISA configuration.

7

2.4 What is an Assembler

An assembler is a translator that translates machines oriented languages into

machine languages[2]. The assembler consist are many block in process such as table

search procedure, opcode table, symbol table, directive table, source file, source line

buffer, lexical scan routine, error process, object code assembly area object file, pass

indicator and location counter. This block function is needed to run a main program

in an assembler. The type of an assembler is a one-pass assembler, a two-pass

assembler, a resident assembler, a macro-assembler, a cross-assembler, a meta-

assembler, a disassemble, a high level assembler, and a micro-assembler [2]. There

are many type of assembler, but the focus assembler type is two-pass assembler. A

two pass assembler also needs a one pass assembler to complete the sequence of

process.

2.4.1 Main component and operation of assembler

Figure 2.2 Main Component and Operation of Assembler[2]

