MICRO-STRIPS ELLIPTICAL RING PATCH ANTENNA FOR UWB APPLICATIONS

SITI HADIJAH BINTI SANON

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SITI HADIJAH SANON S.M. KEJ ELEKTRONIK (E. WAYARLESS) (KEP.) 2014 UTeM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Fakulti kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Taintz Projetz	RO-STRIPS ELLIPTIC RING PATCH ANTENNA FOR 3 APPLICATIONS
syarat kegunaan seperti berikut 1. Laporan adalah hakmilik U 2. Perpustakaan dibenarkan n	(HURUF BESAR) In Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
4. Sila tandakan ($$) :	
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PI	ENULIS) (COP DAN TANDATANGAN PENYELIA)
Tarikh:	Tarikh:

	UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER			
UNIVERSITI TEKNIKAL MALAYS	A MELAKA BORANG PENGESAHAN PENERIMAAN LAPORAN PSM II			
Nama Pelajar	SITI HADIJAH BINTI SANON			
No Matrik	B 0 2 1 0 2 6 8 Kursus 4 B E N W			
Tajuk Projek	MICRO-STRIPS ELLIPTIC RING PATCH ANTENNA FOR UWB APPLICATIONS			
Saya mengesahkar	n penerimaan perkara-perkara berikut daripada pelajar seperti yang tercatat di atas:			
□ 2 Lapora	n PSM II Berjilid			
□ 1 Cakera	Padat Laporan Akhir			
□ Hasil Projek (sekiranya berkenaan)				
(7	Fandatangan JKPSM)			
Nama &				
Сор				
Nota: Dalas:	aldun et relation menti litetia koman			
Nota: Bahagian m	aklumat pelajar mesti ditaip kemas.			

MICRO-STRIPS ELLIPTIC RING PATCH ANTENNA FOR UWB APPLICATIONS

SITI HADIJAH BINTI SANON

This Report is submitted in Partial Fulfilment of Requirements for the Bachelor Degree of Electronic Engineering (Wireless Communication)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

JUNE 2014

C Universiti Teknikal Malaysia Melaka

"I acknowledge that this report is entirely my work except summary and passage I have cite the source"

Author's Name : SITI HADIJAH BINTI SANON

Date :

"I acknowledge that I have read this thesis and in my opinion this thesis is insufficient terms of scope and quality for the award of Bachelor of Electronic Engineering (Wireless Communication)"

Signature	:
Supervisor's Name	: DR MOHAMED SAEED JAWAD
Date	:

C Universiti Teknikal Malaysia Melaka

Special dedicate to my beloved and understanding family, my kindhearted supervisor Dr Mohamed Saeed Jawad and to all my dearest and helpful friends

ACKNOWLEDGEMENT

Alhamdulillah, first of all I would like to express my gratitude to God Almighty for giving me a chance and strength to finish my report. From the beginning of the way, there is so much guidance from many people.

My billion thanks to my supervisor, Dr Mohamed Saeed Jawad for his guidance, patience and encouragement along this whole course of this project. Thank you for the caring and patience in correcting my mistakes. It is my pleasure for his support and invaluable advice to make my project successfully done.

Last but not least, I would to express my appreciation towards my parents Mr Sanon Bin Katiman and Madam Jeminah Binti Jemiran for their support and courage me to go through this university life. They have shown a great understanding when I have to devote most of my time completing this project and thesis. Also all of my friends that keep supporting me and guide me a lot along this two semester taken this Final Year Project Subject.

There are many that have not been documented in this report but my memory would always capture my gratitude towards all.

ABSTRACT

This project is about to design a Micro-strips Elliptical Ring Patch Antenna at operating frequency 3.1GHz until 10.6GHz for Ultra Wideband (UWB) applications. UWB is a unique and new usage of recently legalized frequency spectrum. UWB radios can use frequencies from 3.1 GHz to 10.6 GHz - a band of 7.5 GHz wide. Each radio channel of UWB system can have a bandwidth of more than 500 MHz, depending on its centre frequency. This proposed antenna is consist an elliptical slot inside the half elliptical which is called as ring at the front of the substrate. While at the back of the substrate is the quarter ground plane. This proposed antenna is designed, fabricated and measured. To measure success of the design, the return loss, radiation pattern and gain is determined and compare to the specifications. The simulation results shows that the antenna can operate from frequency 2.9GHz until 10.9GHz while measured antenna is operate at frequency 3.5GHz until 6.8GHz and 8GHz until 9.8GHz yet still can operate at UWB frequency range.

ABSTRAK

Projek ini akan mereka "Mikro-strips Antena Bujur dengan Slot Cincin" beroperasi dijalur-jalur di frekuensi pengendalian 3.1GHz sehingga 10.6GHz untuk frekuensi yang sangat luas (UWB). UWB ialah satu penggunaan unik dan baru, baru-baru ini mengabsahkan spektrum frekuensi. UWB boleh menggunakan frequensi dari 3.1 GHz ke 10.6 GHz - satu kumpulan pancaragam 7.5 GHz luas. Setiap saluran radio sistem UWB boleh mempunyai satu lebar jalur lebih daripada 500MHz, bergantung di frekuensi pusatnya. Antena dicadangkan ini mengandungi satu slot bujur di dalam separuh bujur yang mana dipanggil sebagai cincin di depan substrat. Ketika di belakang substrat ialah satah bumi suku. Antena dicadangkan ini direka bentuk, dibina dan diukur. Untuk mengukur kejayaan reka bentuk, kehilangan balikan, pola sinaran dan keuntungan berazam dan berbandingan penentuan. Persembahan keputusan simulasi yang antena boleh beroperasi dari frekuensi 2.9GHz sehingga 10.9GHz ketika mengukur antena beroperasi di frekuensi 3.5GHz sehingga 6.8GHz and 8GHz sehingga 9.8GHz tetapi masih boleh dijalankan pada julat frekuensi UWB.

TABLE OF CONTENT

CHAPTER	ΤΟΡΙΟ	PAGE
	PROJECT TITLE	i
	DECLARATION	ii
	DECLARATION	iii
	DEDICATIONS	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	TABLE OF CONTENT	viii
	LIST OF TABLE	xiii
	LIST OF FIGURE	xiv
	LIST OF SYMBOL	xvi

1 INTRODUCTION

1.1 PROJECT	BACKGROUND 1
-------------	--------------

C Universiti Teknikal Malaysia Melaka

1.2	PROBL	EM STATEMENT	3
1.3	OBJEC	TIVE	3
1.4	PROJE	CT SCOPE	4
1.5	METHO	DDOLOGY	4
1.6	REPOR	T ORGANISATION	6
LIT	ERATUI	RE REVIEW	
2.1	DEFIN	ITION OF ANTENNA	7
2.2	IMPOTANCE OF ANTENNA PARAMETER		8
	2.2.1	Antenna bandwidth	8
	2.2.2	Directivity	9
	2.2.3	Gain	9
	2.2.4	Efficiency	10
	2.2.5	Radiation pattern	10
	2.2.6	Return Loss	11
2.3	ANTEN	INA TYPES	12
	2.3.1	Wire Antenna	12
	2.3.2	Array Antenna	13

2

	2.3.3	Aperture Antenna	14
	2.3.4	Micro-strips Antenna	15
		2.3.4.1 Advantages	16
		2.3.4.2 Disadvantages	17
2.4	CIRCUL	AR MICRO-STRIPS ANTENNA	17
2.5	TYPES OF FEED LINE		18
	2.5.1	Micro-strips Line Feed	19
	2.5.2	Coaxial Probe Feed	20
	2.5.3	Proximity Coupled Micro-strips Line Feed	21
2.6	PARAM	ETRIC AND CALCULATIONS	22

3 METHODOLOGY

3.1	DESIGN	N PROCESS	25
3.2	ANTEN	NA DESIGN	26
	3.2.1	Design Specifications	26
	3.2.2	Basic Structure	26
3.3	SIMULA	ATIONS PROCESS	28
3.4	FABRIC	CATION PROCESS	31

Х

3.5	MEASUREMENT PROCESS			31	
	3.5.1	Return L	OSS		32
	3.5.2	Radiatio	n Pattern		33
		3.5.2.1	Anechoic Chambers		33
	3.5.3	Gain			34

4 **RESULTS AND DISCUSSION**

4.1	SIMULATION RESULTS		35
	4.1.1	Return Loss	35
	4.1.2	Realized Gain and Directivity	39
	4.1.3	Surface current	43
	4.1.4	Radiation pattern	44
4.2	FABRI RESUL	CATED AND MEASUREMENT .TS	46
	4.2.1	Return loss	46
4.3	PARAM	METRIC STUDY	47
4.4	DISCU	SSIONS	47

5	CONCLUSION AND RECOMMENDATIONS			
	5.1 RECOMMENDATIONS	50		
	REFERENCE	51		
	APPENDIX	54		

LIST OF TABLE

NO	TITLE	P	AGE
NU		E A	AGE

3.1	Design specifications of the antenna	26
3.2	Parameter of the antenna design	27
4.1	Comparison of return loss	38
4.2	Comparison of antenna bandwidth	39
4.3	The performance of antenna gain and directivity	42
4.4	Comparison of radiation pattern	44

LIST OF FIGURE

1.1	Flow chart of the methodology	5
2.1	Radiation pattern of antenna	11
2.2	Patch antenna	13
2.3	Types of aperture antenna	14
2.4	Shapes of micro-strips antenna	15
2.5	Basic structure of micro-strips antenna	16
2.6	Circular micro-strips antenna	18
2.7	Micro-strips Line feed	19
2.8	Coaxial probe feed	20
2.9	Proximity coupled micro-strips line	21
3.1	Design of elliptic antenna	27
3.2	Basic step of simulation process	28
3.3	Waveguide port setting	29
3.4	Monitor setting	30
3.5	Spectrum analyzer	32
3.6	Anechoic chamber	33

NO TITLE

PAGE

Horn antenna used to measure gain	34
Design prototype	34
Basic elliptic antenna and return loss	36
Antenna design with partial slot	37
Antenna design with ring slot	38
Realized gain and directivity at frequency 3.5GHz	40
Realized gain and directivity at frequency 6.8GHz	41
Realized gain and directivity at frequency 9.8GHz	42
Surface current	43
Measured return loss	46

4.9	Parametric study towards size of feed line	47
1.7	i didification study to wards size of food fille	•

LIST OF SYMBOL AND ABBREVIATIONS

km Kilometer

mm

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Milimeter

XV

Er	Dielectric Constant
GHz	Giga Hertz
λ	Wavelength
RL	Return Loss
UWB	Ultra Wideband
Wi-Fi	Wireless Fidelity
LAN	Local Area Network
IEEE	Institute of Electrical and Electronics Engineers
Pr	Reflected Power
h	Substrate Thickness
Γ	Reflection Coefficient
dB	Decibel
G	Gain
D	Directivity
BW	Bandwidth
η	Efficiency
PSM	Projek Sarjana Muda (Final Year Project)
RL	Return Loss
f_c	Center Frequency

$\mathbf{f}_{\mathbf{h}}$	High Frequency
f_1	Low Frequency
L	Length
W	Width
С	Speed of Light
S ₁₁	Return Loss
CST	Computer Simulation Technology

xvii

CHAPTER 1

•

INTRODUCTION

This chapter introduce on some general information about background study of antenna and Ultra Wideband (UWB) applications and wireless communication systems. Others are problem statement, objectives, scope and methodology of the project to develop an antenna for UWB applications.

1.1 Background of the Project

Antennas are a fundamental component of modern communications systems. Antenna is define as a transducer between a guided wave in a transmission line and an electromagnetic wave in free space. Antenna showing the property known as reciprocal antenna will maintain the same characteristics regardless if it is transmitting or receiving. When the signal is fed to the antenna, will emit radiation are distributed in a certain way. Graphic displays of the relative distribution of radiation in space called the radiation pattern. [8]

UWB is broadly recognized as a modern generation of short-range wireless communications technology that will provide concurrently high data rate and low power consumption. UWB radios can use frequencies from 3.1 GHz to 10.6 GHz - wide band of 7.5 GHz. Each radio channel UWB system can have more bandwidth of 500 MHz depending on center frequency. The design of the antenna meet new challenges due to the distribution of a wide span of UWB band with special discharge mask. The need for a conventional antenna is used for UWB or impulse systems including a wide impedance bandwidth, transmit-receive transfer reactions are stable, and high radiation efficiency. [1-2]

UWB antenna used in UWB communications applications, the land penetrating radar, through wall radar, medical imaging, and precise location system There are many kinds of UWB antennas such as bow-tie, TEM horn, spiral, Vivaldi, and dielectric fit antennas way to design, dimensions of a single small electric and broadband antennas are covetable in its high-speed data communication system point-to-point, especially. Some planar UWB antenna has been developed to provide the wideband features. Elliptical-shaped planar monopole and dipole antenna is the most famous model of UWB applications in terms of suitable design, low cost, low profile, high radiation efficiency and better impedance stability. [3-5]

For microwave imaging radar-based, short pulse is transmitted from a single ultra wideband (UWB) antenna into the breast and any back scatter detected by the same antenna. This process will be repeated for different locations around the breast. The presence of tumour produces strong dispersion, and any reaction which may be construed to estimate the location of the tumour. Signal travel time at different locations recorded and gathered [6]. Like any other radar-based system, this system does not require complex image reconstruction algorithms, and thus offer more detailed information than the method of microwave tomography imaging.

The antenna is used as a transmitter and receiver for UWB signals can allow a high level of resolution. This requirement limits the class of antennas that can be used. Large fraction of the bandwidth, low side- lobes and coupling with low (i.e, when the two antennas are used for the operation of the system) is a factor that should also be considered characteristic. Existing antenna used to detect breast cancer need to be lumped load balance for a wider bandwidth. [7, 8] However, in any reality case, it is difficult to perform almost the same medium to surround a patient's breast. This paper presents a micro-strip antenna design compact RF tracking system for cancer cells in the breast tissue of human. Operating two elements including breast models have indicated. [9]

1.2 Problem Statement

In recent years, antenna has been received much attention to the researchers in wireless communications systems. An internal small antenna usually suffer from degradation in performance. Most antenna design is applicable for WLAN, WPAN applications. A good design for UWB applications need high cost.

1.3 Objective

The objectives of this project are:

- To design, simulate and fabricate an efficient elliptical patch antenna for UWB applications.
- To evaluate the performances of the antenna and analyse it uses in UWB frequency bands.