WEARABLE ANTENNA FOR 2.4GHz FREQUENCY FOR WLAN APPLICATION

NUR RAFEDAH BINTI SATAR

This report is submitted in partial fulfilment of requirements for the award of Bachelor of Electronic Engineering (Wireless Communication) With Honours

Faculty of Electronic Engineering and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2014

C Universiti Teknikal Malaysia Melaka

MALAYSIA MEL	UNIVERSTI TEKNIKAL MALAYSIA MELAKA
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
	BORANG PENGESAHAN STATUS LAPORAN
	PROJEK SARJANA MUDA II
	able Antenna for 2.4GHz Frequency for WLAN
Sesi Pengajian :	
SayaNU SATAR	
mengaku membenarkan Lapoi syarat kegunaan seperti beriku	(HURUF BESAR) ran Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- it:
1. Laporan adalah hakmilik	Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan	membuat salinan untuk tujuan pengajian sahaja.
 Perpustakaan dibenarkan pengajian tinggi. 	membuat salinan laporan ini sebagai bahan pertukaran antara institusi
4. Sila tandakan ($$) :	
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
	Teknikal Malaysia Melaka dan tandatangan penyelia)

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author's Name	: Nur Rafedah binti Satar
Date	:

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of bachelor of Electronic Engineering (Wireless Communication) with honours."

Signature:Supervisor's Name: Mdm. Mas Haslinda binti MohamadDate:

For my dearest father and mother

(Mr. Satar bin Abu Bakar, Mrs. Rafeah binti Abdul Kadir)

ACKNOWLEDGEMENT

In The Name of Allah, Most Gracious, Most Merciful

Thanks to Allah the All Mighty, All Sovereign and All Supreme for giving me good health to undergo this project.

I would like to take this opportunity to express my deep gratitude and appreciation to those people who have helped me to complete my Final Year Project course, and to individuals to whom I am very much indebted and who, without their support, this achievement would not have been possible. First of all, special thanks to my supervisor, Madam Mas Haslinda binti Mohamad and my co-supervisor Dr. Mohd Sa''ari bin Mohamad Isa for their great guidance, advice and encouragement. My greatest appreciations and thanks are dedicated for my parents, Satar bin Abu Bakar and Rafeah binti Abdul Kadir for whom I have taken the lesson of life and always pray for my success. I am very proud of them.

Also, many thanks to my friends with whom I have shared so much fun and so many good times over the past few years in campus life especially Athirah Nur binti Harun, Nadia binti Awaludin, Norhamizah binti Abdul Rahman and Wan Nurul Ain binti Wan Mamat for their suggestion and help to excellence in all aspects of my project. Although I cannot mention them all by name, I am grateful to all of them and wish them all the best. Finally, special thanks to the members of my family for the warm and kindness they always offer, thank you very much.

ABSTRACT

Nowadays, wearable antenna becomes a quite popular study in technology field. The idea of this project is to develop an antenna which can be patched on the human's cloth. This project is built for the Wireless Local Area Network, (WLAN) that operate at 2.4GHz. Since the existing antenna provides low coverage with small gain, thus the new antenna is develop in order to give higher gain to extend the coverage. The aims of this project are to design a wearable antenna with high gain and to reduce the radiation to the user by apply Electromagnetic Band Gap, (EBG). The detail design for this kind of project is doing by using formula and parameter study using CST Microwave Studio 2011 software. The output of this project is the wearable antenna with 2.4GHz center frequency and return loss less than -10dB. Besides, the gain of the antenna must be greater than 3dB. Not only that, the antenna produce must have minimum back radiation to prevent radiation effect to user.

ABSTRAK

Pada masa kini, antena yang dipakai pada pakaian menjadi satu kajian yang agak popular dalam bidang teknologi. Idea projek ini adalah untuk mereka cipta sebuah antena yang boleh ditampal pada pakaian. Projek ini dibina sesuai untuk Wireless Local Area Network, (WLAN) yang beroperasi pada frekuensi 2.4GHz. Antena sedia ada memberi luas liputan yang rendah dengan menyediakan pulangan yang agak rendah. Tujuan projek ini adalah untuk mereka bentuk antena yang dapat dipakai dengan pulangan yang tinggi dan mengurangkan radiasi kepada pengguna dengan megaplikasikan "Elektromagnetic Band Gap", (EBG). Reka bentuk terperinci untuk projek ini adalah dengan menggunakan formula dan kajian parameter dengan menggunakan perisian CST Microwave Studio 2011. Output projek ini adalah antena yang boleh dipakai dan dapat berfungsi pada frekuensi 2.4GHz dan pulangan balik kurang daripada -10dB. Selain itu, pulangan antena hendaklahlebih besar daripada 3dB. Bukan itu sahaja, hasil antena mesti mempunyai radiasi yang minimum untuk mencegah kesan radiasi kepada pengguna.

CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
DECLARATION	iii
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF FIGURES	xiii
LIST OF FLOW CHARTS	xvii
LIST OF TABLES	xviii

I INTRODUCTION

1.1	INTRODUCTION OF THE PROJECT	1-2
1.2	PROJECT BACKGROUND	2-3
1.3	PROBLEM STATEMENT	3
1.4	OBJECTIVES	3
1.4	SCOPE	4
1.5	OUTLINE OF THESIS	4-5

II LITERATURE REVIEW

2.1	OVERVIEW	6
2.2	INTRODUCTION ON ANTENNA	6-7
2.3	TYPE OF ANTENNA	7-9
2.4	ANTENNA PROPERTIES	9-10
2.5	MICROSTRIP PATCH ANTENNA	10
2.6	ADVANTAGES AND DISADVANTAGES	
	OF MICROSTRIP ANTENNA	11
2.7	FEEDING TECHNIQUE	11

2.8	RADIATION MECHANISM	12
2.9	REVIEWS ON THE EXISTING ANTENNA	12-15

III METHODOLOGY

3.1	PROJECT OVERVIEW	16
3.2	RESEARCH METHODOLOGY	17
3.3	FLOW CHART	18
3.4	ANTENNA DESIGN	19
3.5	MATERIAL	20
3.6	DESIGN AND SIMULATION	20-24
3.7	ELECTROMAGNETIC BAND GAP	24-25

IV RESULT AND DISCUSSION

4.1	DESIGN OF ANTENNA	26-29
4.2	ANALYSIS OF ANTENNA	29-38
4.3	SIMULATION OF ANTENNA	39-41
4.4	ELECTROMAGNETIC BAND GAP	
	4.4.1 Simulation of Single Cell	41-44
4.5	FINAL DESIGN	45

C Universiti Teknikal Malaysia Melaka

4.6	SIMULATION RESULT	46
4.7	COMPARISON OF SINGLE ANTENNA WITH	
	ANTENNA WITH EBG STRUCTURE	
	4.7.1 Gain	47
	4.7.2 Back Radiation	48
4.8	MEASUREMENT RESULT	
	4.8.1 Return loss and centre frequency	49
	4.8.2 Farfield	49
4.9	COMPARISON BETWEEN SIMULATIONS	
	AND MEASUREMENT RESULT	
	4.9.1 Return loss and centre frequency	51
	4.9.2 Farfield	52-53

V	CONCLUSION	
	CONCLUSION	54-55
	REFERENCES	56-58

LIST OF FIGURES

NO	TITLE	PAGE
2.3.1	Helix antenna	8
2.3.2	Horn antenna	8
2.3.3	Microstrip antenna	9
3.1	Wearable antenna	16
3.6.1	CST Microwave Studio 2011 software	20
3.6.2	Antenna (Planar) template	21
3.6.3	Layout workspace of the simulation	21
3.6.4	Create a brick layout	22
3.6.5	Transient Solver Parameter layout	21
3.6.6	Filed Monitor layout	23

3.6.7 S-Parameter result layout	23
3.6.8 Impedance calculation layout	24
3.7.1 Antenna with EBG	25
4.1.1 View of antenna	28
4.2.1(a) Antenna with full copper plane	30
4.2.1(b) Return loss	30
4.2.2(a): Antenna with quarter remove	31
4.2.2(b): Return loss	31
4.2.3(a): Antenna with two parts removed	32
4.2.3(b): Return loss	32
4.2.4(a): Antenna with three parts removed	33
4.2.4(b): Return loss	33
4.2.5(a): Antenna with feeder at the bottom	34
4.2.5(b): Return loss	34
4.2.6(a): Antenna with half ground	35
4.2.6(b): Return loss	35
4.2.7(a): Antenna half side leg	36
4.2.7(b): Return loss	36
4.2.8(a): Antenna with feeder at the side	37
4.2.8(b): Return loss	37
4.2.9(a): Antenna with quarter ground	38

4.2.9(b): Return loss	38
4.3.1: View of the Simulated Antenna	39
4.3.2: Return loss and center frequency of the antenna	39
4.3.3: Gain	40
4.3.4: Farfield gain in polar form	40
4.3.5: Z impedance of the antenna	41
4.4.1.1: Single cell of EBG	42
4.4.1.2: S-Parameter of single cell (linear form)	43
4.4.1.3: S-Parameter of single cell (phase form)	43
4.4.1.4: Multicell of EBG	44
4.4.1.5: S-Parameter of multicell	44
4.5.1: View of antenna	45
4.6.1: S-Parameter of antenna with EBG	46
4.6.2: Gain of the antenna with EBG structure	46
4.7.1.1: Gain of single antenna	47
4.7.1.2: Gain of antenna with EBG structure	47
4.7.2.1: Back view of single antenna	48
4.7.2.2: Back view of antenna with EBG structure	48
4.8.1: Return loss and frequency of antenna with EBG	49
4.8.2.1: Farfield in H-Plane	49
4.8.2.1: Farfield in E-Plane	50

4.9.1: Return loss and center frequency	51
4.9.2.1(a): Simulation of E-Plane	52
4.9.2.1(b): Measurement of E- Plane	52
4.9.2.2(a): Simulation of H-Plane	52
4.9.2.2(b): Measurement of H- Plane	52

xvi

LIST OF FLOW CHARTS

NO TITLE

PAGE

3.3 Workflow Overview of project 18

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO	TITLE	PAGE
4.1.1	List of parameters	29
4.4.1.1	Dimension of EBG	43

CHAPTER 1

INTRODUCTION

Nowadays, telecommunication is an important thing in our daily life. Every single time people will communicate to each other either to find out the latest news or to strengthen the relationship. Antenna is the main element in communication system since it is a device that used to radiate and receive radio waves. Without antenna, the world will have its own boundary since everyone cannot communicate with each other.

The antenna is being developed due to the need in a wireless communication system and device. Antenna is applied on the traditional radio, television and wireless devices. Antenna is a metallic device used to radiate or receive radio waves and otherwise. There are various type of antenna such as horn antenna, lens antenna, aperture antenna and others. Patch antenna is a type of antenna which can be mounted on a flat surface or grounded surface [1] Patch antenna is a quite popular because it is easy to fabricate, simple and also inexpensive to fabricate by using modern printed-circuit technology. Even it is a simple antenna, however it can be mounted on the surface of the high performance aircraft, satellites, cars and spacecraft [1]. Patch antenna is always subjected to rough and harsh use since it is will be bend, twisted and turned [3].

Nowadays, there is variety of shapes of the patch antenna produced. The produce antenna is focus on the specification that needs to be upgraded based on their operating frequency. There is various type of antenna that operates at variant frequencies for different applications. The operating of the antenna depends on the frequency band which it is represent such as 2.4GHz for Local Area Network, (LAN) and 3.3GHz for Worldwide Interoperability for Microwave Access, (Wimax) application.

As explained before, the patch antenna is an antenna that can be mounted on a flat surface such as FR4 board. Here, the project is focus on the antenna that can be implemented on a piece of cloth or fabric. The wearable antenna is a patch antenna that is stick on a piece of fabric such as jeans, cotton or polyester. Here, the jeans is used as the main element because it has a good strength and easy to handle [13].

1.1 Project Background

With the growing of technology, many products are developed in order to make life easy. The product produced not only gives an advantage to the user but the most important is it is easy to handle. In this new era, the communication becomes vital in our daily life. However, the communication will become quite complex due to few problems such there is a very limited coverage of the internet access.

This project is focused on the wearable antenna developed for the Wireless Local Area Network, (WLAN) medium that specialised for the frequency of 2.4GHz. Nowadays, internet has played an important role in human life. That is why the wearable antenna is determined to be built in order to make life easy.

To get a quite strong of signal, an antenna is used since it functions to receive the radio waves or signal. The main idea of this project is to implement a type of patch antenna on a piece of cloth. Before, it can be seen that the antenna is implemented at the car, in telephone and other devices to get the efficient signal. Here, the question is can an antenna be embedded on the user's cloth so that the communication network can be improved? Thus, this project is basically designed for all people and focused on WLAN application.

Jeans is used as the main material of this project. Jeans is chose because, nowadays many types of cloths used jeans as the fabric. This is due to the good strength provided by this fabric. Besides, it is easy to sew and manage. Thus, this project is predicted to be developed.

1.2 Problem Statement:

Most users use Wi-Fi as their main medium of communication to link with others. Thus, the antenna with centre frequency of 2.4GHz is a demanding antenna nowadays. Microstrip patch antenna has been widely used because of its advantages and most of them are produced for the WLAN application. However the existing microstrip antenna provides low coverage area with low gain. The use of wearable antenna is widely been studied for the use of WLAN application. Since it is the antenna that patched on the cloth, thus it will provide back radiation to the users.

1.3 Objectives

The objectives of this project are:

- 1) To produce wearable antenna that can cover 2.4GHz WLAN application
- 2) To increase the coverage of the antenna by provide higher gain
- To design an antenna and simulate by using CST Microwave Studio 2011 software
- 4) To increase gain of antenna by using electromagnetic gap, EBG
- 5) To reduce back radiation by using electromagnetic gap, EBG

1.4 Scope

This final year project begin with the literature study of the regarding topic. It focuses on the development of the wearable antenna by using jeans fabric that can be used in 2.4GHz.

The scope of this project is to build a wearable antenna that can operate in a frequency which is 2.4GHz. The antenna design should be used in Local Area Network, (LAN) application. The return loss of the designed antenna should be less than -10dB. The wearable antenna is a patch antenna that is stick on a piece of fabric such as jeans, cotton or polyester. Here, the jeans is used as the main element because it has a good strength and easy to handle and sew.

The antenna that had been chosen as the design is an inverted F-shaped patch antenna. Patch antenna is selected to be used in this project due to a few of advantages such low cost, easy to fabricate and light in weight. The size of the antenna will be reduced to a small size in order to make it more compact. The compact size of the antenna will make the coverage greater since it will improve the bandwidth and gain.

The chosen antenna then will be designed and simulate by using CST Microwave Studio 2011 software.

1.5 Outline of Thesis

This thesis consists of five chapters. Chapter 1 will give brief introduction on the antenna, the lists of objectives of the project including scope on the design. Not only that, this chapter also summarized what is the project is all about.

Chapter 2 contain the literature review on the antenna. This section gives some outline on the research that has been done before that brought to the existing antenna. The overview of the existing antenna also indicates the features provided including the disadvantages of the antenna produced.

Move to chapter 3 that shows the methodology used in this project. To be more simple and straight to the point, the flow chart of the design process is also provided. The flow chart shows the steps or sequences taking while doing this project.

Chapter 4 is about the result including the discussion of this project. It involves the result of simulation and measurement of the antenna.

The last chapter which is chapter 5 conclude the finding including the suggestion for the future study.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter will contain brief overview of the antenna. Besides, the antenna family also being explain here. In addition, the review on the antenna design also will be representing in this chapter.

2.2 Introduction on the Antenna

Antenna is a root of telecommunication system. Without antenna, there will be no signal transmitted and received. Antenna is also known as the transitional structure between free space and a guiding device. This antenna is used to transport electromagnetic energy from the transmitting source to the receiver. That is how an antenna works.

Antenna can be defined as a device that used for receiving or radiating radio waves [10]. According to Webster's Dictionary, antenna can be described as "a