IMPLEMENTATION OF RISC ARCHITECTURE IN SIMULINK AND FPGA

MOHD RASHIDI BIN MD PUZI

This Report Is Submitted In Partial Fulfilment of Requirements For The Bachelor Degree of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

JUNE 2014

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MA]		ULTI K	EJURU DRANG	TEKNIKAL MALAYSIA MELAKA Iteraan elektronik dan kejuruteraan komputer G pengesahan status laporan DJEK SARJANA MUDA II
Tajuk Projek	•	IMP	LEM	ENTA D SIM		OF 1	RISC. PROCESSOR ARCHITECTUR
Sesi Pengajian		1	3	1	1	4	
Saya MOHI	RA	SHID	I MD	PUZI	a	HURU	JF BESAR)
mengaku men syarat-syarat l					ek Sar		Auda ini disimpan di Perpustakaan dengan
						nikal	Malaysia Melaka.
2. Perpustak	aan	dibena	arkan i	nembu	at salin	nan un	tuk tujuan pengajian sahaja.
 Perpustak institusi p 				nembu	at saliı	nan lap	poran ini sebagai bahan pertukaran antara
4. Sila tanda	akan	(√)	:				
	SL	LIT*			keper	ntingan	ungi maklumat yang berdarjah keselamatan ata Malaysia seperti yang termaktub di dalam AK ASMI 1972)
	TE	RHAI)**		**(M organ	engano iisasi/b	dungi maklumat terhad yang telah ditentukan o adan di mana penyelidikan dijalankan)
	т	DAK 1	TERHA	D			
							Disahkan oleh:
	6	1.ba					- al.
(TAND	ATA	NGAN	PENUL	IS)			(COP DAN TANDATANGAN PENYELIA) NUR FATIHAH BINTI AZMI Pensyarah
							Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Kor Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Duraan Tunggal, Melaka
	-	r	201	11			Tarikh $5.16/2-0.14$

"I hereby declare that this report is result of my own effort except for quotes as cited in the references"

Tandatangan

: Ab

Nama Penulis

Tarikh

: MOHD RASHIDI MD PUZI : 6TH JUNE 2014

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer) with honours"

Tandatangan

...... :.....

Nama Penyelia

: PN NUR FATIHAH BT AZMI

*

C Universiti Teknikal Malaysia Melaka

Tarikh

: 6TH JUNE 2014

iv

Specially dedicated to My beloved family, My supervisor, s who have encouraged, g

My friends who have encouraged, guided and Inspire me throughout my journey of education.

ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to express my deepest gratitude to my project supervisor, Madam Nur Fatihah bt Azmi for her guidance, encouragement and endurance during the whole course of this project. It is indeed my pleasure for her support, invaluable advices and enthusiastic towards my project. My special gratitude is to my beloved family, especially my parents Ramlah bt Awang and Md Puzi bin Daud for their fullest support throughout the years study in University of Technical Malaysia Malacca (UTeM). It is because of them, I am the person who I am today, for all their moral support all these while so that I will be to complete my project successfully. My appreciation is also to my friends especially to my course mates, for their technical advice. To all the people that are assisting me directly and indirectly in this project, once again I would like to say thank you.

ABSTRACT

This project is about the implementation of RISC processor architecture in Simulink and FPGA (Field Programmable Gate Array). RISC processor has been used in many computer-based applications nowadays comparing to CISC. This project aims to design RISC processor architecture in Simulink environment where it used a model-based design. The RISC architecture block diagram and designed in the Simulink, and then the architecture can be developed by gathering the entire required source for the MATLAB function be create the architecture. Most of the block used is the MATLAB function block source code. In the source code, the input and output for the entire module will be defined. To produce a working architecture, all the parameters for the RISC processor architecture can be set in the given parameter setting. Therefore, the error on the architecture can be minimized. By integrating the entire module, the architecture test program to test the functionality of the architecture. The test program used is the bubble sorting, where there will be an array of data to be sorted. The output can be display in the scope provided in the architecture. The HDL code can be generated using the HDL Coder provided in the simulink setting. Using the HDL Coder, the Verilog code can be provided for verification in the FPGA. This project focuses on 8-bit RISC processor and implemented using MATLAB 2013a/Simulink. As for the testing purpose, it will be implemented in Virtex 6 FPGA board.

ABSTRAK

Projek ini adalah mengenai perlaksanaan senibina pemproses RISC di dalam *Simulink* dan FPGA. Pemproses RISC telah digunakan di dalam kebanyakan sistem yang menggunakan aplikasi computer berbanding CISC. Tujuan projek ini adalah untuk merekabenuk senibina pemproses RISC di dalam Simulink di mana ianya menggunakan rekabentuk berasaskan model. Di dalam Simulink, senibina RISC dibentuk dengan berpandukan blok diagram yang berkenaan. Selepas itu, senibina RISC dapat dibangunkan dengan menggabungkan kesemua kod yang diperlukan oleh fungsi MATLAB. Kebanyakan blok yang diguanakan adalah sumber-kod-blok-fungsi MATLAB. Di dalam sumber kod, segala masukan dan keluaran untuk keseluruhan modul senibina ditakrifkan. Untuk menghasilkan senibina yang berjaya, segala parameter untuk pemproses RISC ditetapakan di dalam applikasi Simulink. Dengan itu, segala ralat di dalam senibina dapat dikurangkan kepada tahap minimum. Dengan menggabungkan kesesmua modul yang berkaitan, senibina pemproses RISC dapat diuji dengan menggunakan program ujian yang telah dibentuk. Tujuan program ujian ini adalah untuk mengenal pasti fungsi di dalam pemproses RISC dalam keadaan yang baik. Program ujian yang digunakan adalah algoritma isih yang asas, iaitu isih gelembung. Algoritma isih gelembung digunakan untuk megisih data yang dimasukkan ke dalam masukan pemprose RISC dalam bentuk menaik, iaitu dari nilai yang sedikit ke nilai yang banyak. Keluaran data dipamerkan di dalam skop yang telah disambungkan. Seteleah itu, kod HDL dapat dikeluarkan dengan menggunakan Koder HDL yang terdapat di dalam tetapan Simulink. Dengan mengguanak koder tersebut, kod Verilog dapat dihasilkan untuk tujuan pengesahan di dalam FPGA. Projek ini difokuskan kepada pemproses RISC 8-

TABLE OF CONTENTS

CHAPTER TITLE

PROJECT TITLE	i
REPORT AUTHORIZATION FORM	ii
DECLARATIONS	ii
SUPERVISOR DECLARATIONS	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
ABBREVIATIONS	xvi

I	INTRO	ODUCTION	.1
	1.1	Overview	. 1
	1.2	Objectives	. 1
	1.3	Problem statement	. 1
	1.4	Scope	. 2

PAGE

II

LITERATURE REVIEW			
2.1	Implementation of RISC Processor in FPGA[1]	3	
2.1.1	Introduction	3	
2.1.2	Problem statement	4	
2.1.3	Methodology	4	
2.1.4	Result	4	
2.2	FPGA Prototyping Of A RISC Processor Core For Embed	ded	
	Applications[2]	4	
2.2.1	Introduction	5	
2.2.2	Problem statement	5	
2.2.3	Methodology	5	
2.2.4	Result	5	
2.3	Design Of FPGA-Controlled Power Electronics And Dev	ices	
	Using MATLAB Simulink[3]	5	
2.3.1	Introduction	6	
2.3.2	Problem statement	6	
2.3.3	Methodology	6	
2.3.4	Result	7	

III	METH	HODOLOGY	8
	3.1	Introduction	8
	3.2	8-bit RISC Processor Block	8
	3.2.1	Control unit	8
	3.2.2	Data memory	9
	3.2.3	Accumulator	9

х

3.2.4	Arithmetic Logic Unit (8-bit)	9
3.2.5	Output enable	9
3.2.6	Shifter	9
3.2.7	PC Incrementer	10
3.2.8	Program Counter	10
3.2.9	Instruction memory	10
3.2.10	Instruction register	10
3.3	Flowchart	12
3.3.1	Initiate RISC module in Simulink	12
3.3.2	Develop and test individual RISC module	13
3.3.3	Develop test program	13
3.3.4	Run Simulink	13
3.3.5	Error	13
3.3.6	Generate HDL code for Simulink	13
3.3.7	Verification in FPGA	13
3.3.8	Verified	13
3.3.9	Result analysis	13
3.4	Simulink	14
3.4.1	Introduction	14
3.4.2	Simulink Library Browser	14
3.4.3	Completed Simulink Model	19

4.1	Result	20
4.1.1	Instruction set list	20
4.1.2	Bubble sort algorithm	23

C Universiti Teknikal Malaysia Melaka

4.1.3	Bit sorting	26
4.1.4	Output	30
4.1.5	From accumulator	30
4.1.6	From Output Enable output port	31
4.1.7	Verilog file generation	36
4.2	Discussion	44

V	CONCLUSION	46
---	------------	----

5.1	Conclusion	. 46
5.2	Future Recommendations	. 46

REFERENCES	48
APPENDIX A	49
APPENDIX B	50

LIST OF TABLES

NO	TITLE	PAGES
1.	Table 3.2.1 Function of processor block	11
2.	Table 4.1.1 Instruction set for 8-bit RISC processor	21
3.	Table 4.1.2 Bit sorting process	26
4.	Table 4.1.3 First trial of bit sorting using bubble sort algorithm	27
5.	Table 4.1.4 Second trial of bit sorting using bubble sort algorithm	m 28
6.	Table 4.1.5 Third trial of bit sorting using bubble sort algorithm	28
7.	Table 4.1.6 Fourth trial of bit sorting using bubble sort algorithm	n 29
8.	Table 4.1.7 Fifth trial of bit sorting using bubble sort algorithm	29

xiii

LIST OF FIGURES

NO	P. TITLE P.	AGES
1.	Figure 2.3.1 Method to generate HDL Code from MATLAB and	
	Simulink, with code verification	7
2.	Figure 3.2.1 8-bit processor block	10
3.	Figure 3.3.1 Flowcharts for generating HDL Code using Simulink	12
4.	Figure 3.4.1 Simulink Library Browser windows	14
5.	Figure 3.4.2 Showing the User Defined Functions Block/MATLAB	3
	function	15
6.	Figure 3.4.3 MATLAB Function Block	16
7.	Figure 3.4.4 Example of MATLAB Function Block after source co	de
	written	16
8.	Figure 3.4.5 Scope blocks	17
9.	Figure 3.4.6 Input blocks	17
10.	Figure 3.4.7 Output blocks	17
11.	Figure 3.4.8 Unit delay blocks	18
12.	Figure 3.4.9 Data Type Conversion blocks	18
13.	Figure 3.4.10 Stop simulation blocks	18
14.	Figure 3.4.11 Subsystem blocks	18
15.	Figure 3.4.12 RISC Architecture/Main Systems	19
16.	Figure 3.4.13 RISC Processor Architecture/Subsystems	19
17.	Figure 4.1.1 Scope at the output of accumulator	30
18.	Figure 4.1.2 Output signal from accumulator	30
19.	Figure 4.1.3 Output signal from main system	31
20.	Figure 4.1.4 Output from output enable/Data -5	32
21.	Figure 4.1.5 Output from output enable/Data -2	32
22.	Figure 4.1.6 Output from output enable/Data 2	33

C Universiti Teknikal Malaysia Melaka

23.	Figure 4.1.7 Output from output enable/Data 6	33
24.	Figure 4.1.8 Output from output enable/Data 10	34
25.	Figure 4.1.9 Output from output enable/Data 11	34
26.	Figure 4.1.10 Output from output enable/Data 15	35
27.	Figure 4.1.11 Output from output enable/Data 18	35
28.	Figure 4.1.12 Output from output enable/Data 19	36
29.	Figure 4.1.13 Output from output enable/Data 20	36
30.	Figure 4.1.14 HDL Workflow Advisor option in Simulink	37
31.	Figure 4.1.15 System selection windows for generating HDL code	37
32.	Figure 4.1.16 Main windows for HDL Workflow Advisor in Simulink	38
33.	Figure 4.1.17 Set Target Device and Synthesize Tool windows	39
34.	Figure 4.1.18 Check Global Settings windows	39
35.	Figure 4.1.19 Check Algebraic Loops windows	40
36.	Figure 4.1.20 Check Block Compatibility windows	40
37.	Figure 4.1.21 Check Sample Times windows	40
38.	Figure 4.1.22 Set Basic Option windows	41
39.	Figure 4.1.23 Advanced Options windows	41
40.	Figure 4.1.24 Testbench options windows	42
41.	Figure 4.1.25 Generate RTL Code and Testbench windows	43
42.	Figure 4.1.26 Result windows for generated Verilog code	43

XV

ABBREVIATIONS

RISC - R	educed Instruction	Set Computer
----------	--------------------	--------------

- CISC Complex Instruction Set Computer
- FPGA Field Programmable Gate Array
- DSP Digital Signal Processing
- VHDL Verilog High Description Language
- HDL High Description Language
- MIPS Million instructions per second

CHAPTER I

INTRODUCTION

1.1 Overview

Embedded system application had been used in much computer application. The main core for this application is its processor, whether RISC or CISC. Through many had used CISC for its wide range of use, RISC has its own advantages over the complexity of architecture construction.

1.2 Objectives

The objectives of this project are to design RISC processor architecture in Simulink environment and to generate RISC processor design code using FPGA platform

1.3 Problem statement

This project addresses the limitations for embedded system design using processors. Nowadays, a lot of embedded system are incorporating signal processing algorithm to make the system more suitable in real world applications. As a discrete component, processor possesses limited capabilities in executing complex algorithm such as DSP. Therefore, integrating process design with Simulink software would simplify the development phase of the embedded system.

1.4 Scope

This project will focus on 8-bit RISC processor architecture and it will be implemented using MATLAB 2013a Simulink. For testing purpose, the design will be implemented in Virtex 6 FPGA board.

C Universiti Teknikal Malaysia Melaka

CHAPTER II

LITERATURE REVIEW

This chapter presents the details about literature review of Implementation of RISC Processor Architecture in Simulink and FPGA. It consist reviews on related paper. There are 12 papers involved, but in this project, I will focus on 3 main papers, which are Implementation of RISC Processor in FPGA, FPGA Prototyping of a RISC Processor Core for Embedded Application and Design of FPGA Controlled Power Electronics and Devices Using MATLAB Simulink. The main paper for reference is the Implementation of RISC Processor in FPGA. All the details about the paper will be explained later on.

2.1 Implementation of RISC Processor in FPGA[1]

2.1.1 Introduction

A true 16-bit RISC processor has been designed using VHDL. Hierarchical approach has been used so that basic units can be modelled using behavioural programming.

RISC processor has been designed for specific application to function efficiently and can meet minimum requirements for application in hand. In such design, the main criteria that had been focused is the performance of the processor. The purpose of this project is to match the requirements for small application having such efficient performance of processor. Over the years, CISC processor had gained the most used processor in the marketplace. The reason behind this is the wide range of addressing modes and data types they can support while RISC processor operates on very few data types and does simple operations. RISC supports very few addressing modes and are mostly register based.

2.1.2 Problem statement

The problem stated in this paper is structural hazards, data hazards and control hazards. Data hazards are due to sharing of destination and source resources in succeeding instruction. Structural hazards are due to common program and data memory while control hazards are due to non-sequential execution of instruction.

2.1.3 Methodology

Data hazards can be handled by using method of forwarding. Structural hazards are handled by using the method of prefetching queue in processor and control hazards can be solved by using flushing.

2.1.4 Result

The design has been implemented in FPGA. FPGA is a device used for the verification purpose. Working as a raw IC, where user can implement its design and verify the correctness of design. By using this method, cheaper prototyping can be achieve plus with shorter time for market of hardware design.

2.2 FPGA Prototyping Of A RISC Processor Core For Embedded Applications[2]

2.2.1 Introduction

This paper presents the usage of MIPS RISC processor core as a starting point for hardware/software codesign space exploration. There are numbers of factors that contribute to the choosing of the architecture, such as the provision of a clean starting point for application specific extension and the architecture's popularity in the embedded control market. The lengthy software simulation of a designed model holds very important role in the deploying new architecture.

2.2.2 Problem statement

Software-based simulation has its own disadvantage as it not allow all aspects of a design's functionality to be exercised. Adapting an instruction set is a difficult task.

2.2.3 Methodology

Using the processor core as the basis for designing several applicationspecific processors, the evaluation of the instruction set architecture is the main issue. A common approach is to extend the instruction set by application-specific instructions. To optimized the processor performance, the number of instruction set is minimized only to necessary.

2.2.4 Result

Using the processor extensions generated by the processor core HDL description, the new functionality is added such as fuzzy processing, logic programming and vector and list processing.

2.3 Design Of FPGA-Controlled Power Electronics And Devices Using MATLAB Simulink[3]

2.3.1 Introduction

The design of modern power electronic circuits and system requires knowledge from multiple discipline areas including digital control, to develop innovative and custom-designed products and solutions in a short period of time. Manual coding is tedious, time consuming and error prone. On the other hand, code generation lets designer to make changes is the system level model, and produce an updated HDL implementation in minutes by generating the HDL code. In addition, MATLAB model-based design facilitates creation of FPGA based prototypes and automates HDL code verification by co-simulating it with Simulink and optimizes the models to meet speed-area-power objectives for FPGA.

2.3.2 Problem statement

The main problem is the manual coding that are tedious, time consuming and error prone.

2.3.3 Methodology

A. Code conversion: MATLAB Simulink to VHDL Code

The HDL describes electronics circuits in terms of the circuits operation, design and test to verify its operation by the means of simulation. The first step to code conversion is the new design ideas and algorithms are represented in terms of mathematical models and are tested in MATLAB/Simulink floating point data types. However, implementation of control algorithms in FGPA's and ASICs require fixed-point data type conversion to reduce hardware resources.

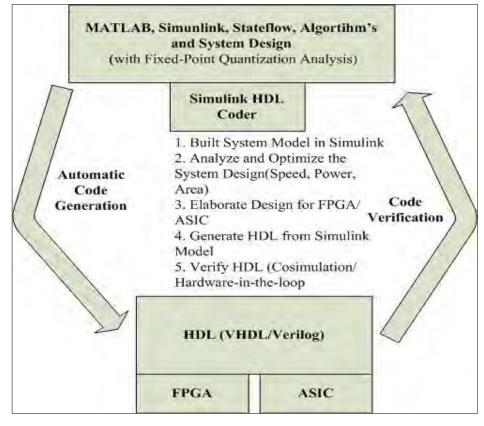


Figure 2.3.1 Method to generate HDL Code from MATLAB and Simulink, with code verification

2.3.4 Result

The method is to facilitate the development and implementation of FPGAbased digital controllers in power electronic converters and drives. The method is faster and provides a greater degree of confidence than traditional manual HDL coding.

CHAPTER III

METHODOLOGY

3.1 Introduction

This chapter will explain more detail about the project methodology that used in the project. This part will explain more detail on the project development, from beginning until it's completed. The steps will be explained in detailed manner.

3.2 8-bit RISC Processor Block

3.2.1 Control unit

The main part of the RISC processor block is the control unit, where its job is to control the flow of the process, programs and functions able to work properly. The control unit also connected with the input and output. It reads and interprets instructions and determines the sequence for processing the data.

It implements the instruction set and performs the tasks of fetching, decoding, managing execution and finally storing results. The control unit manage the translation the instructions to micro-instructions and handles the scheduling of the micro-instructions between various executions. Control unit also controls the flow of data through the processor and coordinates the activities with the other units within it.