
i

i

IMPLEMENTATION OF RISC ARCHITECTURE IN SIMULINK

AND FPGA

MOHD RASHIDI BIN MD PUZI

This Report Is Submitted In Partial Fulfilment of Requirements For

The Bachelor Degree of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

JUNE 2014

ii

DECLARATIONS

iii

iv

SUP

SOR DECLARATIONS

v

DEDICATION

Specially dedicated to

My beloved family,

My supervisor,

My friends who have encouraged, guided and

Inspire me throughout my journey of education.

vi

ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to express my deepest

gratitude to my project supervisor, Madam Nur Fatihah bt Azmi for her guidance,

encouragement and endurance during the whole course of this project. It is indeed

my pleasure for her support, invaluable advices and enthusiastic towards my project.

My special gratitude is to my beloved family, especially my parents Ramlah bt

Awang and Md Puzi bin Daud for their fullest support throughout the years study in

University of Technical Malaysia Malacca (UTeM). It is because of them, I am the

person who I am today, for all their moral support all these while so that I will be to

complete my project successfully. My appreciation is also to my friends especially to

my course mates, for their technical advice. To all the people that are assisting me

directly and indirectly in this project, once again I would like to say thank you.

Thank you

vii

ABSTRACT

This project is about the implementation of RISC processor architecture in

Simulink and FPGA (Field Programmable Gate Array). RISC processor has been

used in many computer-based applications nowadays comparing to CISC. This

project aims to design RISC processor architecture in Simulink environment where it

used a model-based design. The RISC architecture block diagram and designed in the

Simulink, and then the architecture can be developed by gathering the entire required

source for the MATLAB function be create the architecture. Most of the block used

is the MATLAB function block source code. In the source code, the input and output

for the entire module will be defined. To produce a working architecture, all the

parameters for the RISC processor architecture can be set in the given parameter

setting. Therefore, the error on the architecture can be minimized. By integrating the

entire module, the architecture test program to test the functionality of the

architecture. The test program used is the bubble sorting, where there will be an array

of data to be sorted. The output can be display in the scope provided in the

architecture. The HDL code can be generated using the HDL Coder provided in the

simulink setting. Using the HDL Coder, the Verilog code can be provided for

verification in the FPGA. This project focuses on 8-bit RISC processor and

implemented using MATLAB 2013a/Simulink. As for the testing purpose, it will be

implemented in Virtex 6 FPGA board.

viii

ABSTRAK

Projek ini adalah mengenai perlaksanaan senibina pemproses RISC di

dalam Simulink dan FPGA. Pemproses RISC telah digunakan di dalam kebanyakan

sistem yang menggunakan aplikasi computer berbanding CISC. Tujuan projek ini

adalah untuk merekabenuk senibina pemproses RISC di dalam Simulink di mana

ianya menggunakan rekabentuk berasaskan model. Di dalam Simulink, senibina

RISC dibentuk dengan berpandukan blok diagram yang berkenaan. Selepas itu,

senibina RISC dapat dibangunkan dengan menggabungkan kesemua kod yang

diperlukan oleh fungsi MATLAB. Kebanyakan blok yang diguanakan adalah

sumber-kod-blok-fungsi MATLAB. Di dalam sumber kod, segala masukan dan

keluaran untuk keseluruhan modul senibina ditakrifkan. Untuk menghasilkan

senibina yang berjaya, segala parameter untuk pemproses RISC ditetapakan di

dalam applikasi Simulink. Dengan itu, segala ralat di dalam senibina dapat

dikurangkan kepada tahap minimum. Dengan menggabungkan kesesmua modul yang

berkaitan, senibina pemproses RISC dapat diuji dengan menggunakan program ujian

yang telah dibentuk. Tujuan program ujian ini adalah untuk mengenal pasti fungsi di

dalam pemproses RISC dalam keadaan yang baik. Program ujian yang digunakan

adalah algoritma isih yang asas, iaitu isih gelembung. Algoritma isih gelembung

digunakan untuk megisih data yang dimasukkan ke dalam masukan pemprose RISC

dalam bentuk menaik, iaitu dari nilai yang sedikit ke nilai yang banyak. Keluaran

data dipamerkan di dalam skop yang telah disambungkan. Seteleah itu, kod HDL

dapat dikeluarkan dengan menggunakan Koder HDL yang terdapat di dalam tetapan

Simulink. Dengan mengguanak koder tersebut, kod Verilog dapat dihasilkan untuk

tujuan pengesahan di dalam FPGA. Projek ini difokuskan kepada pemproses RISC 8-

ix

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 PROJECT TITLE i

 REPORT AUTHORIZATION FORM ii

DECLARATIONS ii

SUPERVISOR DECLARATIONS iv

DEDICATION v

ACKNOWLEDGEMENT vi

ABSTRACT vii

TABLE OF CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xiv

ABBREVIATIONS xvi

I INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Objectives ... 1

1.3 Problem statement .. 1

1.4 Scope .. 2

x

II LITERATURE REVIEW .. 3

2.1 Implementation of RISC Processor in FPGA[1] 3

2.1.1 Introduction 3

2.1.2 Problem statement 4

2.1.3 Methodology 4

2.1.4 Result 4

2.2 FPGA Prototyping Of A RISC Processor Core For Embedded

Applications[2] ... 4

2.2.1 Introduction 5

2.2.2 Problem statement 5

2.2.3 Methodology 5

2.2.4 Result 5

2.3 Design Of FPGA-Controlled Power Electronics And Devices

Using MATLAB Simulink[3] .. 5

2.3.1 Introduction 6

2.3.2 Problem statement 6

2.3.3 Methodology 6

2.3.4 Result 7

III METHODOLOGY ... 8

3.1 Introduction .. 8

3.2 8-bit RISC Processor Block .. 8

3.2.1 Control unit 8

3.2.2 Data memory 9

3.2.3 Accumulator 9

xi

3.2.4 Arithmetic Logic Unit (8-bit) 9

3.2.5 Output enable 9

3.2.6 Shifter 9

3.2.7 PC Incrementer 10

3.2.8 Program Counter 10

3.2.9 Instruction memory 10

3.2.10 Instruction register 10

3.3 Flowchart .. 12

3.3.1 Initiate RISC module in Simulink 12

3.3.2 Develop and test individual RISC module 13

3.3.3 Develop test program 13

3.3.4 Run Simulink 13

3.3.5 Error 13

3.3.6 Generate HDL code for Simulink 13

3.3.7 Verification in FPGA 13

3.3.8 Verified 13

3.3.9 Result analysis 13

3.4 Simulink ... 14

3.4.1 Introduction 14

3.4.2 Simulink Library Browser 14

3.4.3 Completed Simulink Model 19

IV RESULT AND DISCUSSION ... 20

4.1 Result .. 20

4.1.1 Instruction set list 20

4.1.2 Bubble sort algorithm 23

xii

4.1.3 Bit sorting 26

4.1.4 Output 30

4.1.5 From accumulator 30

4.1.6 From Output Enable output port 31

4.1.7 Verilog file generation 36

4.2 Discussion ... 44

V CONCLUSION ... 46

5.1 Conclusion .. 46

5.2 Future Recommendations ... 46

REFERENCES 48

APPENDIX A 49

APPENDIX B 50

xiii

LIST OF TABLES

NO TITLE PAGES

1. Table 3.2.1 Function of processor block 11

2. Table 4.1.1 Instruction set for 8-bit RISC processor 21

3. Table 4.1.2 Bit sorting process 26

4. Table 4.1.3 First trial of bit sorting using bubble sort algorithm 27

5. Table 4.1.4 Second trial of bit sorting using bubble sort algorithm 28

6. Table 4.1.5 Third trial of bit sorting using bubble sort algorithm 28

7. Table 4.1.6 Fourth trial of bit sorting using bubble sort algorithm 29

8. Table 4.1.7 Fifth trial of bit sorting using bubble sort algorithm 29

xiv

 LIST OF FIGURES

NO. TITLE PAGES

1. Figure 2.3.1 Method to generate HDL Code from MATLAB and

Simulink, with code verification 7

2. Figure 3.2.1 8-bit processor block 10

3. Figure 3.3.1 Flowcharts for generating HDL Code using Simulink 12

4. Figure 3.4.1 Simulink Library Browser windows 14

5. Figure 3.4.2 Showing the User Defined Functions Block/MATLAB

function 15

6. Figure 3.4.3 MATLAB Function Block 16

7. Figure 3.4.4 Example of MATLAB Function Block after source code

written 16

8. Figure 3.4.5 Scope blocks 17

9. Figure 3.4.6 Input blocks 17

10. Figure 3.4.7 Output blocks 17

11. Figure 3.4.8 Unit delay blocks 18

12. Figure 3.4.9 Data Type Conversion blocks 18

13. Figure 3.4.10 Stop simulation blocks 18

14. Figure 3.4.11 Subsystem blocks 18

15. Figure 3.4.12 RISC Architecture/Main Systems 19

16. Figure 3.4.13 RISC Processor Architecture/Subsystems 19

17. Figure 4.1.1 Scope at the output of accumulator 30

18. Figure 4.1.2 Output signal from accumulator 30

19. Figure 4.1.3 Output signal from main system 31

20. Figure 4.1.4 Output from output enable/Data -5 32

21. Figure 4.1.5 Output from output enable/Data -2 32

22. Figure 4.1.6 Output from output enable/Data 2 33

xv

23. Figure 4.1.7 Output from output enable/Data 6 33

24. Figure 4.1.8 Output from output enable/Data 10 34

25. Figure 4.1.9 Output from output enable/Data 11 34

26. Figure 4.1.10 Output from output enable/Data 15 35

27. Figure 4.1.11 Output from output enable/Data 18 35

28. Figure 4.1.12 Output from output enable/Data 19 36

29. Figure 4.1.13 Output from output enable/Data 20 36

30. Figure 4.1.14 HDL Workflow Advisor option in Simulink 37

31. Figure 4.1.15 System selection windows for generating HDL code 37

32. Figure 4.1.16 Main windows for HDL Workflow Advisor in Simulink 38

33. Figure 4.1.17 Set Target Device and Synthesize Tool windows 39

34. Figure 4.1.18 Check Global Settings windows 39

35. Figure 4.1.19 Check Algebraic Loops windows 40

36. Figure 4.1.20 Check Block Compatibility windows 40

37. Figure 4.1.21 Check Sample Times windows 40

38. Figure 4.1.22 Set Basic Option windows 41

39. Figure 4.1.23 Advanced Options windows 41

40. Figure 4.1.24 Testbench options windows 42

41. Figure 4.1.25 Generate RTL Code and Testbench windows 43

42. Figure 4.1.26 Result windows for generated Verilog code 43

xvi

ABBREVIATIONS

RISC - Reduced Instruction Set Computer

CISC - Complex Instruction Set Computer

FPGA - Field Programmable Gate Array

DSP - Digital Signal Processing

VHDL - Verilog High Description Language

HDL - High Description Language

MIPS - Million instructions per second

1

CHAPTER I

INTRODUCTION

1.1 Overview

Embedded system application had been used in much computer application.

The main core for this application is its processor, whether RISC or CISC. Through

many had used CISC for its wide range of use, RISC has its own advantages over the

complexity of architecture construction.

1.2 Objectives

The objectives of this project are to design RISC processor architecture in

Simulink environment and to generate RISC processor design code using FPGA

platform

1.3 Problem statement

This project addresses the limitations for embedded system design using

processors. Nowadays, a lot of embedded system are incorporating signal processing

algorithm to make the system more suitable in real world applications. As a discrete

component, processor possesses limited capabilities in executing complex algorithm

such as DSP. Therefore, integrating process design with Simulink software would

simplify the development phase of the embedded system.

2

1.4 Scope

This project will focus on 8-bit RISC processor architecture and it will be

implemented using MATLAB 2013a Simulink. For testing purpose, the design will

be implemented in Virtex 6 FPGA board.

3

CHAPTER II

LITERATURE REVIEW

This chapter presents the details about literature review of Implementation of

RISC Processor Architecture in Simulink and FPGA. It consist reviews on related

paper. There are 12 papers involved, but in this project, I will focus on 3 main

papers, which are Implementation of RISC Processor in FPGA, FPGA Prototyping of

a RISC Processor Core for Embedded Application and Design of FPGA Controlled

Power Electronics and Devices Using MATLAB Simulink. The main paper for

reference is the Implementation of RISC Processor in FPGA. All the details about

the paper will be explained later on.

2.1 Implementation of RISC Processor in FPGA[1]

2.1.1 Introduction

A true 16-bit RISC processor has been designed using VHDL. Hierarchical

approach has been used so that basic units can be modelled using behavioural

programming.

4

RISC processor has been designed for specific application to function

efficiently and can meet minimum requirements for application in hand. In such

design, the main criteria that had been focused is the performance of the processor.

The purpose of this project is to match the requirements for small application having

such efficient performance of processor. Over the years, CISC processor had gained

the most used processor in the marketplace. The reason behind this is the wide range

of addressing modes and data types they can support while RISC processor operates

on very few data types and does simple operations. RISC supports very few

addressing modes and are mostly register based.

2.1.2 Problem statement

The problem stated in this paper is structural hazards, data hazards and

control hazards. Data hazards are due to sharing of destination and source resources

in succeeding instruction. Structural hazards are due to common program and data

memory while control hazards are due to non-sequential execution of instruction.

2.1.3 Methodology

Data hazards can be handled by using method of forwarding. Structural

hazards are handled by using the method of prefetching queue in processor and

control hazards can be solved by using flushing.

2.1.4 Result

The design has been implemented in FPGA. FPGA is a device used for the

verification purpose. Working as a raw IC, where user can implement its design and

verify the correctness of design. By using this method, cheaper prototyping can be

achieve plus with shorter time for market of hardware design.

2.2 FPGA Prototyping Of A RISC Processor Core For Embedded

Applications[2]

5

2.2.1 Introduction

This paper presents the usage of MIPS RISC processor core as a starting

point for hardware/software codesign space exploration. There are numbers of

factors that contribute to the choosing of the architecture, such as the provision of a

clean starting point for application specific extension and the architecture’s

popularity in the embedded control market. The lengthy software simulation of a

designed model holds very important role in the deploying new architecture.

2.2.2 Problem statement

Software-based simulation has its own disadvantage as it not allow all aspects

of a design’s functionality to be exercised. Adapting an instruction set is a difficult

task.

2.2.3 Methodology

Using the processor core as the basis for designing several application-

specific processors, the evaluation of the instruction set architecture is the main

issue. A common approach is to extend the instruction set by application-specific

instructions. To optimized the processor performance, the number of instruction set

is minimized only to necessary.

2.2.4 Result

Using the processor extensions generated by the processor core HDL

description, the new functionality is added such as fuzzy processing, logic

programming and vector and list processing.

2.3 Design Of FPGA-Controlled Power Electronics And Devices Using

MATLAB Simulink[3]

6

2.3.1 Introduction

The design of modern power electronic circuits and system requires

knowledge from multiple discipline areas including digital control, to develop

innovative and custom-designed products and solutions in a short period of time.

Manual coding is tedious, time consuming and error prone. On the other hand, code

generation lets designer to make changes is the system level model, and produce an

updated HDL implementation in minutes by generating the HDL code. In addition,

MATLAB model-based design facilitates creation of FPGA based prototypes and

automates HDL code verification by co-simulating it with Simulink and optimizes

the models to meet speed-area-power objectives for FPGA.

2.3.2 Problem statement

The main problem is the manual coding that are tedious, time consuming and

error prone.

2.3.3 Methodology

A. Code conversion: MATLAB Simulink to VHDL Code

The HDL describes electronics circuits in terms of the circuits operation,

design and test to verify its operation by the means of simulation. The first

step to code conversion is the new design ideas and algorithms are

represented in terms of mathematical models and are tested in

MATLAB/Simulink floating point data types. However, implementation of

control algorithms in FGPA’s and ASICs require fixed-point data type

conversion to reduce hardware resources.

7

Figure 2.3.1 Method to generate HDL Code from MATLAB and Simulink,

with code verification

2.3.4 Result

The method is to facilitate the development and implementation of FPGA-

based digital controllers in power electronic converters and drives. The method is

faster and provides a greater degree of confidence than traditional manual HDL

coding.

8

CHAPTER III

METHODOLOGY

3.1 Introduction

This chapter will explain more detail about the project methodology that used

in the project. This part will explain more detail on the project development, from

beginning until it’s completed. The steps will be explained in detailed manner.

3.2 8-bit RISC Processor Block

3.2.1 Control unit

The main part of the RISC processor block is the control unit, where its job is

to control the flow of the process, programs and functions able to work properly. The

control unit also connected with the input and output. It reads and interprets

instructions and determines the sequence for processing the data.

It implements the instruction set and performs the tasks of fetching, decoding,

managing execution and finally storing results. The control unit manage the

translation the instructions to micro-instructions and handles the scheduling of the

micro-instructions between various executions. Control unit also controls the flow of

data through the processor and coordinates the activities with the other units within

it.

