DESIGN, ANALYSIS AND FABRICATION OF REGENERATIVE AUTOMOTIVE SUSPENSION SYSTEM TEST RIG MODULE

RAZLAN BIN RAZALI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion, this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)"

Signature	:
Supervisor	: DR MOHD AZMAN BIN ABDULLAH
Date	:

DESIGN, ANALYSIS AND FABRICATION OF REGENERATIVE AUTOMOTIVE SUSPENSION SYSTEM TEST RIG MODULE

RAZLAN BIN RAZALI

This report is submitted in partial fulfillment of the requirements for the award Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby declare that the work in this thesis is my own except for summaries and quotations which have been duly acknowledged."

Signature	:
Author	: RAZLAN BIN RAZALI
Date	:

Special to Beloved Mom and Dad

ACKNOWLEDGEMENT

First of all, I am so thankful and grateful to my Allah The Almighty God for giving me this life and health in order to complete my final year project. I have had help every time I encounter many problems and difficulties before and during the completion of the project. Another essential part of my gratitude and respect goes to my supervisor which is Dr. Mohd Azman bin Abdullah and my co-supervisor, En. Herdy bin Rusnandi. They had shown exemplary guidance, monitoring, and encouraging me to complete the project successfully. Their good value will be my essential key to go through the working experience after this. I also would like to thank to Mr. Muhammad Afiq Arfan bin Kamal, the one who helped to open up the Perodua Myvi car and getting the data that I needed. Not to forget, all the fourth year students of Bachelor of Mechanical Engineering (Automotive) for giving me moral support and help when I need their opinion regarding to my project. Besides that, my family whom have supported me in financial and moral support throughout the year. Furthermore, to my housemate, Thaqif bin Hat, Aizat Hazraf, and Mohd Junaidi bin Yusof for their help. Last but not least, to those who have contributed directly or indirectly to the success of this thesis whom I have not mentioned their name specifically. Without all of them, there will be no success to this thesis. I really appreciate them all.

ABSTRACT

The quantity of vehicle nowadays is increasing rapidly from year to year, the automotive sector has undergone a new era by producing hybrid vehicle. The definition of a hybrid is a vehicle utilizes more than one form of on-board energy to achieve propulsion. This means that a hybrid will have an internal combustion engine and fuel tank as usual car, but also will have one or more electric motors and a battery pack. This project is about the energy regenerative suspension system (EReSS). As we know when the car is moving, it would produce waste energy in the suspension system which will be wasted. Normally, this waste energy is dumped in a form of thermal energy in conventional of mechanical shock absorber. This project is about harnessing the energy and convert it to useful energy such as electrical energy to charge the battery pack by using the electromagnet concept. Every time vehicle move on the broken or cracked profile road, then the suspension system will move upward and downwards in vertical motion. The motion will cause the magnet to move together with the absorber. As the result of the process, magnetic flux occurs due to the presence of coil copper wire around the housing which will produce electricity through the copper wires. The main target of this project is to draw EReSS using CATIA V5R20 software and do deformation analysis of the model. Then, fabricate the test rig module was fabricated so that it can be used in the future.

ABSTRAK

Jumlah kenderaan pada masa kini meningkat dengan pesat dari tahun ke tahun. Sektor automotif telah memasuki era baru dengan menghasilkan kenderaan hibrid. Definisi hibrid adalah sesebuah kenderaan yang mempunyai lebih daripada satu tenaga untuk menggerakan kenderaan tersebut. Ini bermakna sebuah kenderaan hibrid akan mempunyai enjin pembakaran dalaman dan tangki minyak seperti mana kenderaan biasa yang lain tetapi akan juga mempunyai satu atau lebih motor elektrik dan pek bateri. Projek ini adalah mengenai sistem tenaga penyerap hentakan regeneratif. Seperti mana yang kita ketahui, apabila kereta bergerak, kereta tersebut akan menghasilkan sisa tenaga yang terbuang dalam penyerap hentakan. Kebiasaannya, sisa tenaga ini akan berbentuk sebagai tenaga haba dalam penyerap hentakan mekanikal. Projek ini akan menggunakan tenaga tersebut dan menukarkannya kepada tenaga yang boleh diguna pakai seperti tenaga elektrik untuk mengecas pek beteri dengan mengguakan konsep electromagnet. Apabila kenderaan bergerak di atas jalan yang rosak atau retak, sistem penggantungan akan bergerak dari atas ke bawah dalam keadaan menegak. Gerakan ini akan mengakibatkan magnet tersebut untuk bergerak bersama dengan penyerap hentakan. Hasil daripada gerakan tersebut, fluk magnet akan terhasil disebabkan oleh kehadiran gegelung wayar tembaga disekeliling perumahan yang akan menghasilkan tenaga elektrik melalui wayar tembaga. Tujuan utama projek ini adalah untuk melukis seluruh sistem penggantungan EReSS menggunakan perisian CATIA V5R20 dan mengkaji perubahan bentuk selepas meletakkan daya ke atas model tersebut menggunakan perisian yang sama. Selepas itu, membuat fabrikasi ke atas model tersebut akan dibuat.

TABLE OF CONTENTS

CHAPTER

TITLE

	DEC	LARATION	ii	
		DICATION	iii	
		NOWLEDGEMENT	iv	
	ABS	v		
	ABS	vi		
	TAB	LE OF CONTENT	vii	
	LIST	Г OF TABLE	х	
	LIST	FOF FIGURE	xi	
	LIST	LIST OF SYMBOLS		
	LIST	XV		
	LIST	FOF APPENDICES	xvi	
CHAPTER 1	INT	1		
	1.0	Introduction	1	
	1.1	Problem Statement	2	
	1.3	Objective	2	
	1.4	Scope of Project	3	
	1.6	Summary	3	
CHAPTER 2	LITI	ERATURE REVIEW	4	
	2.0	Introduction	4	

PAGES

2.1	Vehic	le Suspension System	4
	2.1.1	Background of suspension	4
	2.1.2	Purpose of the Suspension System	6
	2.1.3	Component of Suspension System	6
	2.1.4	Spring	7
	2.1.5	Shock Absorber	9
	2.1.6	Types of Suspension System	11
2.2	Magne	et	15
2.3	Electro	omagnet	16
	2.3.1	Introduction of Faraday's Law	17
	2.3.2	Faraday's Law Concept	17
2.4	Resist	ivity of Conductor	18
2.5	Past R	esearch on Energy	
	Regen	erative System	19
2.6	Previo	us Research Result	21
2.7	Test R	lig	22
2.8	Stress	Analysis	22
2.9	CATL	A Software	23
METI	HODO	LOGY	24
3.1	Backg	round Study	24
3.2	Flowc	hart	25
3.3	Gantt	Chart	27
3.4	CATL	A Drawing	29
	3.4.1	Sketch	29
	3.4.2	Dimension	30
	3.4.3	Installation of EReSS to Perodua Myvi	
		Suspension System	31
	3.4.4	Part by Part of the Design	32
	3.4.5	Spring	32
	3.4.6	Energy Regenerative Suspension System	

CHAPTER 3

			(EReSS)	34
		3.4.7	Shock Absorber	39
		3.4.8	Initial Design	40
		3.4.9	Final Design	41
	3.5	Perod	ua Myvi Specification	43
	3.6	Fabric	ation of Test Rig Module	44
CHAPTER 4	FABRICATION AND ANALYSIS			45
	4.1	Introd	uction	45
	4.2	Fabric	ation	45
		4.2.1	Material	46
		4.2.2	Shearing Machine	46
		4.2.3	Bending Machine	47
		4.2.4	Welding Machine	48
		4.2.5	The Drill Machine	50
		4.2.6	Grinder Machine	52
		4.2.7	The Assemble of Product	53
	4.3	Analy	sis	55
		4.3.1	Calculation Value of C_1 and C_2	55
		4.3.2	Calculation of Force	57
		4.3.3	Deformation Analysis and Safety Factor	58
CHAPTER 5	DISC	CUSSIO	Ν	61
CHAPTER 6	CON	CLUSI	ON	64
	6.1	Concl	usion	64
	6.2	Recon	nmendation	65
	REF	ERENC	ES	66
	APP	ENDICI	ES	69

LIST OF TABLE

NO	TITLE	PAGES
3.1	Gantt Chart for The First Semester	27
3.2	Gantt Chart for The Second Semester	28
3.3	Perodua Myvi Specification	43
4.1	Mass of Vehicle Without Driver	56
4.2	Safety Factor	58

LIST OF FIGURE

NO T	ITLE	PAGES
------	------	-------

2.1	The Basic Component of The Suspension System	5
2.2	Coil Spring Made From Tapered Rod	7
2.3	The Leaf Spring	8
2.4	The Torsion Bar	8
2.5	The Air Spring	9
2.6	Construction of a Simple Shock Absorber	9
2.7	Shock Absorber Mounted and Assembly With The Coil	
	Spring	10
2.8	Double Wishbone Suspensions	11
2.9	McPherson Strut Suspensions	12
2.10	Bags and Strut	13
2.11	Multi-Link Suspensions	14
2.12	Trailing-Arm Suspensions	15
2.13	Electromagnetic Induction	16
2.14	The Resistivity of Material	18
2.15	The Regenerative Brakes	21
2.16	Diameter coil = 0.8 mm at 40 Hz	21
2.17	Diameter coil = 0.5 mm at 40 Hz	21
2.18	Test Rig	22
3.1	CATIA Software V5R20	24
3.2	The Flow Chart	25

PAGES

3.3	The Dimension of Each Component in The Perodua	
	Myvi Car	29
3.4	Taking The Dimension	30
3.5	Jack Up The Perodua Myvi Car and Remove The Tire	30
3.6	Installation of EReSS at Suspension System of Perodua	31
	Myvi	
3.7	Exploded View	32
3.8	Assembly of Spring	32
3.9	Top Cap	33
3.10	Bottom Cap	33
3.11	Spring	33
3.12	Assembly of EReSS	34
3.13	Exploded View of EReSS	34
3.14	Housing	35
3.15	Magnet Configuration	35
3.16	Aluminium Main Shaft	36
3.17	Aluminium Barer Shaft	36
3.18	Magnet Holder	37
3.19	Top Cap	37
3.20	Bottom Cap	37
3.21	Inner Block	38
3.22	Holder Bracket	38
3.23	Shock Absorber	39
3.24	Assembly of Initial Design	40
3.25	Exploded View of Initial Design	41
3.26	Assembly of Last Design	42
3.27	Exploded View of Last Design	42
3.28	Side View of Perodua Myvi	44

PAGES

3.29	Mild Steel	46
4.1	Mild Steel (Thickness 3mm)	46
4.2	(a) The Front Side Shearing Machine (b) The Back Side	
	Shearing Machine	46
4.3	Cutting The Mild Steel	47
4.4	The Steering if Bending Machine	47
4.5	(a) Bending Process (b) The Work Piece of Bottom	48
	Mounting	
4.6	The MIG Welding Machine	48
4.7	(a) Spring Weld Top and Bottom Cape (b) Cape is	49
	Being Weld With Screw	
4.8	Top Mounting Being Weld	49
4.9	Drill Machine and its Component	50
4.10	(a) Smaller Screw Being Drill (b) Larger Screw	50
4.11	Oil to Cold The Area and Extend Lifespan of Screw	51
4.12	Spring Attach to The Bottom Mounting	51
4.13	(a) The Grinder Machine (b) The Cylinder Rod is Being	
	Cut to Four Similar	52
4.14	(a) Bottom Mounting Assemble (b) Top and Bottom	
	Mounting	53
4.15	Complete Assemble of The Test Rig Module	54
4.16	(a) The Side from EReSS (b) The Side From Spring	54
4.17	Perodua Myvi Wheelbase	54
4.18	Data of Vehicle Mass With Drive	56
4.19	Lower Mounting (Displacement)	59
4.20	Lower Mounting (Von Misses)	59
4.21	Upper Mounting (Displacement)	60
4.22	Upper Mounting (Von Misses)	60

LIST OF SYMBOLS

Ν	=	Newton
°C	=	Degree Celsius
H_{z}	=	Frequency
V	=	Volt
%	=	Percentage
kg	=	Kilogram
mm	=	Millimeters
W	=	Weight
F	=	Force

xiv

LIST OF ABBREVIATION

- EReSS = Energy Regenerative Suspension System
- KERS = Kinetic Energy Recovery System
- CATIA = Computer Aided Three-dimensional Interactive Application
- EMF = Electromotive Force
- DASYLab = Data Acquisition System Laboratory
- MATLab = Matrix Laboratory
- COG = Centre of Gravity

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Different Angle View of Complete Fabrication	70
В	Drafting Drawing Test Rig Module	

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

Today's world is full of technologies and commitment, the need of a person to be at one place after another is a must. Therefore, a vehicle is a necessity for a person to do such thing.

Harvesting energy from vibration is one of the most promising technologies. There were researches to figure out where energy is being wasted in a moving vehicle. Some hybrid cars are already recovering the energy from breaking. Therefore, the research interest had been searching elsewhere and narrowed down on the suspension system. There were different types of car models, which had been attached sensors to the suspension, to determine energy potential and then recorded the sensor data from laptop computers. The test revealed that a significant amount of energy was being wasted in conventional suspension system (Zuo & Tang, 2013).

The waste energy will be used for good, this Energy Regenerative Suspension System (EReSS) is designed to change the waste energy to form another type of energy which is electrical energy. The energy then can be used by attempted system. For this project, we can use the electrical energy to recharge the battery pack. The energy conversion that will take place is from kinetic energy to electrical energy. In order to convert this energy, electromagnetic concept is implemented. The magnet will be used to generate electricity by moving the magnet inside the coil for the regenerative system. This project is to make sure that the test rig module will be used in the future to compare the data and increase the voltage by research.

1.1 PROBLEM STATEMENT

There was waste energy produced in suspension system while travelling. This project is to ensure that the waste energy produced from the vibration of suspension system can be used for something useful. This Energy Regenerative Suspension System (EReSS) can change the waste energy which is kinetic energy created by the movement of suspension due to the condition of the road surface to electrical energy using the theory of electromagnet. This voltage from EReSS can be used to recharge the battery pack. Unfortunately the voltage produced is in small scale. Therefore, mathematical models should be developed in order to make a simulation so that the parameter can be changed and run easily. Therefore, this test rig module is essential to be used in comparison to EReSS being put at Perodua Myvi to find ways to increase the voltage in the future.

1.2 OBJECTIVE

The objective of this project are to design, to do analyze and fabricate the EReSS test rig module.

1.3 SCOPE OF PROJECT

The scope of this project is to do the drawing of suspension system with the three main components which are spring, absorber and EReSS using CATIA V5R20 software. After that, deformation analysis will be done using the CATIA V5R20 software. Then, fabrication will be done using mild steel to produce the top and lower mounting of the suspension system for test rig module.

1.4 SUMMARY

In this chapter, the introduction, background, problem statement, objective and scope of the project are being described. The EReSS should be implanted to the future vehicles. This is to ensure that we can use the waste energy for good purposes. This one invention would leads to the development of the green technologies that the world needed right now.

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

The regenerative energy from the suspension is the method that uses energy resulting from the vibration of the vehicle while driving on the road. The kinetic energy can be converted into useful energy such as electrical energy. The electrical energy can be used to recharge the battery pack. The product that's being designed in this project is called as "Energy Regenerative Suspension System" (EReSS). Based on the study that had been done, the profile of the road surface in this country, mostly bumpy, uneven and cracked which will help to produce vibration in the vehicle while driving. Therefore, the energy regenerative vibration can be produced. This chapter will discuss the vehicle suspension system, the use of magnets and coil to produce regenerative energy.

2.1 VEHICLE SUSPENSION SYSTEM

2.1.1 Background of Suspension

The suspension of the vehicle has been traditionally designed to have a compromise between the three factors of conflicting criteria. The three factors are passenger comfort, load carrying and road holding. The suspension system needs to support the vehicle, provide the effective isolation of passenger or payload from the road disturbance and give the proper directional control during handling maneuvers.

The thing needed to give good ride comfort is soft suspension, while insensitivity to applied loads requires stiff suspension. So to give good handling of the vehicle, it would require a suspension setting between the soft and stiff. The ability to store energy via a spring and to dissipate the energy via a damper is called as passive suspension system. While the ability to store, dissipate and to introduce energy to the system is called as an active suspension system. So due to the demands of consumers, the suspension need to be designed as something of a compromise. Usually, it will be determined by the type of use for which the vehicle was designed. **Figure 2.1** shows an example of the vehicle suspension system.

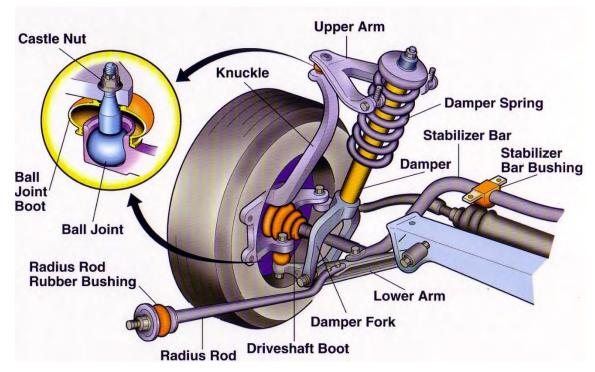


Figure 2.1: The basic component of the suspension system (Source: Hdabob, 2009)

In the early 19th century, British horse carriage has a spring suspension system installed in their design. Made of low-carbon steel, the spring suspension system took the form of multi-layer leaf spring. However, the British spring suspension system is not suitable for American carriage design due to the rough road condition. In 1820's, an antique suspension system, the coaches were supported on a leather strap that give a swinging motion instead of up and down movement caused by the spring suspension system (Uniquecar, 1999).

As the innovation of auto development, the steed drawn enhancing vehicles into fueled by interior burning motor, the suspension framework utilized for the carriage was esteemed out of date because of the distinction in velocity since the suspension framework for the carriage is inadmissible for motor controlled vehicle. The suspension framework was later modify by Mors of Paris in 1901, when the car organization fitted a safeguard to their vehicle. Henri Fournier won the prestigious Paris-to-Berlin race on the twentieth of June 1901 because of this change.

Torsion bar was presented as a component of the suspension framework in 1921 via Leyland Motors. In 1922, independent front suspension was utilized as part of the outline of Lancia Lambda and get to be regular in mass business sector vehicle since 1932.

2.1.2 **Purpose of the Suspension System**

The suspension system is located between the wheel axles and the vehicle body or frame. The purpose of suspension system are to support the weight of the vehicle, to maintain the traction between the tires and the road, cushion bumps and hole in the road and hold the wheels in alignment.

The suspension system allows the vehicle to travel over rough surfaces with a minimum of up and down body movement. Besides that, it will also allow the vehicle to corner with minimum roll to lose the traction between the road surfaces and the tires. This provides a cushioning action so road shocks have a minimal effect on the occupants and load in the vehicle. Road shock is the result of action from tires moving up and down as they meet bumps or holes in the road.

2.1.3 Component of Suspension System

The component of suspension system includes the spring and all the related parts that support the weight of the vehicle body on the wheels and axles. The main part of suspension system is the shock absorber and springs. The shock absorber will help to control the spring action, while the spring will support the weight of the vehicle