DESIGN AND DEVELOP AN INTERGRATED SYSTEM FOR LAKE WATER TREATMENT AT UTeM'S LAKE – FILTRATION DEVICE AND DEBRIS COLLECTION

THAQIF BIN HAT

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)"

Signature	:
Supervisor	:PM. IR. DR. ABDUL TALIB BIN DIN
Date	:

DESIGN AND DEVELOP AN INTERGRATED SYSTEM FOR LAKE WATER TREATMENT AT UTeM'S LAKE – FILTRATION DEVICE AND DEBRIS COLLECTION

THAQIF BIN HAT

This report is submitted in partial fulfillment of the requirements for the award Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby declare that the work in this thesis is my own except for summaries and quotations which have been duly acknowledged."

Signature	:
Author	:PM. IR. DR. ABDUL TALIB BIN DIN
Date	:

DEDICATION

Especially for

Beloved mother and father

Hat Bin Arop

Noraini Binti Bakar

ACKNOWLEDGEMENT

First and above all, I praise Allah s.w.t for providing me this opportunity and granting me the capability to accomplish this project. I also would like to express my gratitude to my supervisor PM. Dr. Ir. Abdul Talib bin Din for his guidance and support, Universiti Teknikal Malaysia Melaka (UTeM) for providing useful data regarding to this projects. My thanks also go to all my best colleagues for their open handle and kindly guided, assisted and encouraged me to proceed successfully. Last but not the least, I would like to thank my dearest family for supporting me spiritually and encouraging me with their best wishes throughout this project. Actually it was not possible for me to complete a severe task without such help. So I pray the long life and good health for the entire person who has helped me.

iv

ABSTRACT

The main objective of this project is to build waste filtration systems for Teknikal Malaysia Universiti of Malaka (UTeM). The main factor that needs to deal with on implementing this project is the most suitable waste filtration systems selections based on a few other factors such as water quality, water depth and flow rate of UTeM's lake. For the selection of suitable filtration systems, research was carried out about waste filtration systems. In an attempt to reserve required maximum oxygen for UTeM's lake, quality of water and rate of waste disposal must be known first. At the same time, mechanical characteristics and factors should be considered for the purpose of designing that waste filtration systems. Besides reducing the waste disposal at maximum level, this machine must not interrupt the water flow and any activities at UTeM's lake while the contruction cost and material choosing affordable.

ABSTRAK

Tujuan utama projek ini adalah untuk membangunkan sistem panapisan sampah bagi tasik Universiti Teknikal Malaysia Melaka (UTeM). Faktor utama yang harus di ambil berat ketika menjalankan projek ini adalah pemilihan sistem penapisan sampah yang paling sesuai berdasarkan beberapa faktor lain seperti kadar kualiti air, faktor kedalaman dan aliran tasik UTeM. Bagi pemilihan sistem yang sesuai, kajian di jalankan berkaitan sistem penapisan sampah. Dalam usaha untuk membekalkan keperluan oksigen yang maksimum untuk tasik UTeM, kadar kualiti air dan kadar sisa terbuang harus diketahui terlebih dahulu. Pada masa yang sama juga, ciri-ciri dan faktor-faktor mekanikal harus di ambil kira bagi tujuan mereka sistem panapisan sampah tersebut. Selain dapat mengurangkan sisa terbuang secara maksimum, reka bentuk sistem ini hendaklah tidak menghalang arus aliran dan sebarang aktiviti di tasik UTeM di samping kos pembuatan dan bahan yang tidak terlalu mahal.

TABLE OF CONTENTS

CHAPTER CONTENT

PAGES

	DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES		ii iii iv v vi vii ix x
		APPENDICES ABBREVIATION AND SYMBOLS	xii xiii
CHAPTER 1	1.1 BA	UCTION ACKGROUND BJECTIVE	1 3
		COPE	3
		COBLEM STATEMENT	3
		EA CONCEPT DESIGN	4
		EPORT OUTLINE	5
	1.7 RE	ESEARCH METHOFOLOGY	6
CHAPTER 2		FURE REVIEW	
		CREENING	7
	2.1.1		8
	2.1.2	5	9
	2.1.3	e	9
	2.1.4	Screening Retained on Fine Screens	10
	2.2 2.2.1	COARSE SCREENS(BAR RACKS) Manually Cleaned Coarse Screens	11 11
	2.2.1	Mechanically Cleaned Coarse Screens	11
	2.2.2	Design of Coarse Screen Installations	12
	2.3	FINE SCREENS	16
		AICROSCREENS	16
		RIMARY SEDIMENTATION	17
	2.5.1	Rectangular Tanks	18
	2.5.2	Circular Tanks	19
	2.6 E	BIOCHEMICAL OXYGEN DEMAND	19
	A	AND CHEMICAL OXYGEN DEMAND	
	2.6.1	Biochemical Oxygen Demand (BOD)	19
	2.6.2	Chemical Oxygen Demand (COD)	20

CHAPTER	CONTENT	PAGES
CHAPTER 3	METHODOLOGY	
	3.1 INTRODUCTION	22
	3.2 PROJECT PLANNING	22
	3.3 FLOW CHART	23
	3.4 GANTT CHART	24
	3.5 PROCESS FLOW EXPLANATIONS	25
	3.5.1 Identify Problem Statement	25
	3.5.2 Literature Review	25
	3.5.3 Idea Development	26
	3.6 CONCEPT GENERATION	28
	3.7 FLOAT BALL DESIGNED	28
	3.8 QUALITY FUNCTION DEVELOPMENT	30
	3.9 CES EDUPACK SELECTION	31
	3.10 CONCEPT DESIGN SELECTION	38
CHAPTER 4	CONCEPT DESIGN AND ANALYSIS	
	4.1 INTRODUCTION	39
	4.2 DRAWING	40
	4.2.1 Sketch	40
	4.2.2 Part by Part of The Design	41
	4.3 DESIGN ANALYSIS	44
	4.4 RESULT OF QUALITY FUNCTION	47
	DEVELOPMENT(QFD)	
	4.5 CES EDUPACK ANALYSIS	48
CHAPTER 5	RESULT AND DISCUSSION	
	5.1 INTRODUCTION	49
	5.2 SCREENING PROCESS	49
	5.3 SEDIMENTATION PROSESS	50
	5.4 FLOAT VALVE SELECTION	52
	5.5 THE QUALITY OF WATER	54
	5.6 DATA CALCULATION	54
	5.6.1 Head Losses in Straight Pipe	54
	5.7 ANSYS SOFTWARE	55
CHAPTER 6	CONCLUSION	
	6.1 CONCLUSION	57
	6.2 RECOMMENDATION	58
	REFERENCES	59
	APPENDIX	61

LIST OF TABLES

No.	TITLE	PAGE
Table 2.1	Typical information on the characteristics and	10
	quantities of screenings removed from wastewater	
	with coarse screens	
Table 2.2	Typical information on the characteristics and	11
	quantities of screenings removed from wastewater	
	with various types of screens	
Table 2.3	Advantages and disadvantages of various types of	14
	bar screens	
Table 3.1	Gantt chart for the 1 st semester	24
Table 3.2	Gantt chart for the 2 nd semester	25
Table 3.3	Quality Function Development (QFD)	31
Table 4.1	Sketch of the Project	40-41
Table 4.2	Comparison of Von Mises Stress between materials	45
Table 4.3	Comparison of Translation Displacement between	46
	materials	
Table 4.4	Result of Quality Function Development(QFD)	47
Table 5.1	Type of sludge	51

LIST OF FIGURES

No.	TITLE	PAGE
Figure 1.1	Map of UTeM's lake	2
Figure 1.2	Typically the waste condition	4
	(a) Jebat River (b) Putat River	
Figure 1.3	Locations of machine along the lake	5
Figure 1.4	Flow process for PSM	6
Figure 2.1	General classifications for the types of screens	8
Figure 2.2	Typical mechanically-cleaned coarse screens	13
	(a)chain driven (b)reciprocating rake	
Figure 2.3	Typical microscreen	17
Figure 2.4	Typical rectangular sedimentation tanks	18
Figure 2.5	Typical circular sedimentation tanks	19
Figure 3.1	Methodology chart	23
Figure 3.2	Typically standard float valve	29
Figure 3.3	4 ypes of float balls	29-30
	(a) cube (b) pyramid (c) cylinder (d) rectangular	
Figure 3.4-	Step For Run The CES EDUPACK Selection	32-37
3.15		
Figure 4.1	Water Tank	41
Figure 4.2	Waste Tank	41
Figure 4.3	Submersible Pump	42
Figure 4.4	Waste Collector Tank	42
Figure 4.5	Sludge Tank	42
Figure 4.6	Sludge Tank Removal	42
Figure 4.7	Sludge Collector	43
Figure 4.8	Motor	43
Figure 4.9	Float Valve	43
Figure 4.10	Float Valve Tank	43
Figure 4.11	Final Design	44
Figure 5.1	Screening process	50
Figure 5.2	Screening process with waste	50
Figure 5.3	Sedimentation operation with sludge	52
Figure 5.4	Take the average reading size of sand	52
Figure 5.5	Float valve	53

C Universiti Teknikal Malaysia Melaka

xi

LIST OF APPENDICES

No.	TITLE	PAGE
А	Maps of Tasik UTeM	61
В	Comparison Table	63
С	Drafting	67

xii

LIST OF ABBREVIATIONS AND SYMBOLS

UTeM	-	Universiti Teknikal Malaysia Melaka
FKM		Fakulti Kejuruteraan Mekanikal
	-	(Faculty of Mechanical Engineering)
BOD	-	Biochemical Oxygen Demand
COD	-	Chemical Oxygen Demand
Ра	-	Pascal's
DO	-	Dissolve Oxygen
CAD	-	Computer Aided Design
CFD	-	Computational Fluid Dynamic
MATLAB	-	Matrix laboratory
W	-	Watt
V	-	Volt
Ν	-	Newton
J	-	Joule
cm	-	centimetre
m	-	metre
mm	-	milimetre
in	-	inch
kg	-	kilogram
mg	-	miligram
L	-	Litre
mL	-	Mililitre
HP	-	Horse Power
min	-	minute
°F	-	Degree Fahrenheit
°C	-	Degree Celsius

Κ	-	Kelvin
Ø	-	Diameter
ft	-	feet
ppm	-	Parts per million
Hg	-	Mercury
FAS	-	Ferrous ammonium
QFD	-	Quality Function Development
HoQ	-	House of Quality
SOTR	-	Standard Oxygen Transfer Rate
R	-	Rating
WR	-	Weighted Rating
IW	-	Importance Weight

xiv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Water is the most valuable resource and humans need it for survival. One of the ways to obtain it is from lake beside of rain, lake and others. Lake has been played such an essential role in daily life since thousand years as an early location for settlement.

Throughout human history, lakes have served as important sources of drinking water, food and irrigation for crops. In the earlier days, peoples preferred to settle at the lake because it not only supply water for their domestic needs and agricultural purposes but also enabled them to move from place to place using boats or rafts as their transport.

Nowadays, people depend on the lake for living purposes such as dam, to collect for fresh water source and in the same time as a source of electricity.

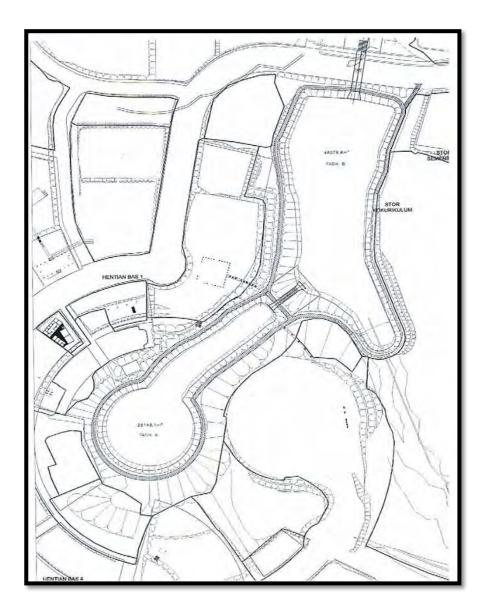


Figure 1.1: Map of UTeM's lake

1.2 OBJECTIVE

Design and develop an integrated system of device for lake water treatment in such a way to reduce BOD, COD, TSS and also to increase the content of dissolved oxygen in lake water- Filtration device and debris collection

1.3 SCOPE

Make research for overall UTeM's lake water based on analysis of water quality research made by UTeM Development Office especially in parameters of solid waste therapy and semi float.

1.4 PROBLEM STATEMENT

In this project, careful thought need to be given to several aspects. First of all is to design a suitable screening and sedimantation system composed base on biological oxygen demand (BOD) and chemical oxygen demand (COD) value.

Next, the level of BOD and COD in UTeM's lake need to be calculated precisely so that a proper amount of oxygen can be supplied by the screening and sedimentation system. Figure 1.2 shows the typical waste condition.

(b)

Figure 1.2: Typical waste condition (a) Jebat River (b) Putat River

1.5 IDEA CONCEPT DESIGN

The UTeM's lakes have 2 sides. There are lake A and B. In this project, a machine will be placed in the middle at the bottom of the lake for $26148.1m^2$ and 48076.8m2 respectively. This machines will be operated depending on BOD and COD of the water.

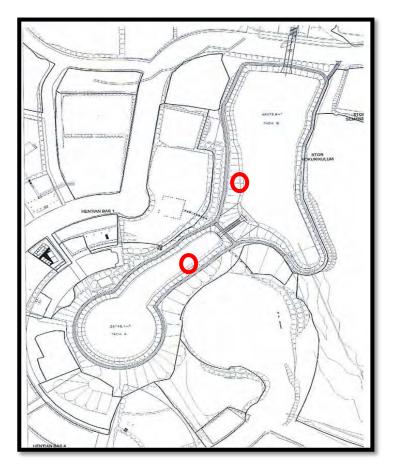


Figure 1.3: Locations of machine along the lake

1.6 REPORT OUTLINE

This project consist of two parts which are PSM 1 and PSM 2. PSM 1 consist of five parts which are introduction, literature review, methodology, concept design and conclusion.

Introduction describes about the definition, objectives, scope and the problems statement connected to the project. Literature review will briefly explain in term of method and measurement applied to obtain the data. Methodology consists of the technique applied in gaining the data. Result and discussion will be described in PSM 2.

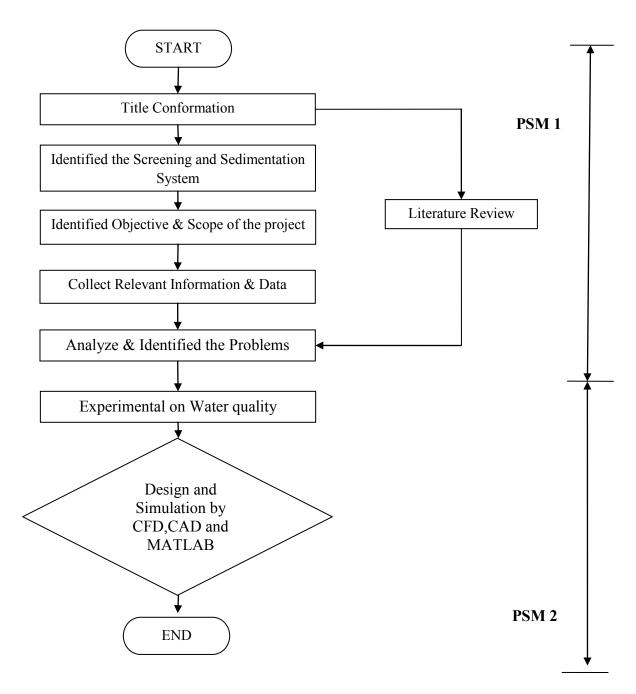


Figure 1.4: Flow process for PSM

CHAPTER 2

LITERATURE REVIEW

2.1 SCREENING

Screening is normally the first unit operation used at wastewater treatment plants. Our definition of a screen is that it is the equipment that protects the downstream process from objects that could cause disturbance and maintenance issues. It is a device with openings, commonly of regular size, that is utilized to hold on large solids discovered in the influent wastewater to the treatment plant. The general purpose of screen is to get rid of huge objects such as rag, paper, plastics, metal and other debris. These objects if not get rid of, may harm the pumping and sludge removal equipment, thus creating risky plants operations and maintenance problems. Fine screens are sometimes utilized in place where greater remotion of solids is needed to protect equipment which may be more sensitive to solids such as membrane bioreactors.

In the utilization of screening devices, all facet of screenings removal, transport and disposal must be analyse including the level of screenings removal required due to the possible effect on downstream treatment operation and equipment, health and safety of the operators smell potential and requirement for handling, transport, prior to disposal and disposal choices. Thus, to accomplish effective screenings management an incorporated approach has to be enforced.

2.1.1 Classification of Screens

Wastewater screenings are generally categorized into either coarse screening or fine screening. Both are used in preliminary treatment of waste water. Fine screens may also be utilized as an optional primary treatment process or for getting rid of extra organic solids from sludge streams prior to sludge processing. The principal applications for microscreens are to remove undissolved solids from secondary effluent and from stabilization-pond effluent.

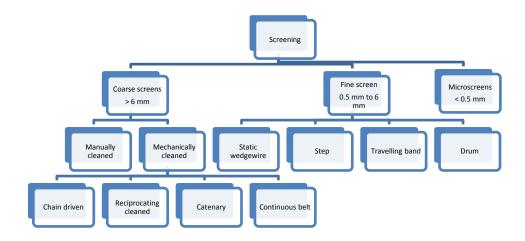


Figure 2.1: General classification for the types of screens