DESIGN OF CONTROL UNIT/ DATA PATH FOR PRODUCTION MONITORING SYSTEM USING FPGA BASED ON OVERALL EQUIPMENT EFFECTIVENESS (OEE)

CHANG SHI MEI

This Report Is Submitted In Partial Fulfillment Of The Requirements For The Bachelor Degree Of Electronic Engineering (Industrial Electronic)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUNE 2015

C Universiti Teknikal Malaysia Melaka

WALAYSIA HERE	FAKULTI		UTER.	AAN EI ANG PE	LEKTRO	AL MALAYSIA MELAKA DNIK DAN KEJURUTERAAN KOMPUTER HAN STATUS LAPORAN CJANA MUDA II
Tajuk Projek	PRO BAS	DDUC	TION N OV	MON ERAI	NITOR LL EQ	NIT/ DATA PATH FOR LING SYSTEM USING FPGA UIPMENT
Sesi Pengajian	: 1	4	1	1	5	
	narkan Lap			Sarjana	Muda ir	ni disimpan di Perpustakaan dengan
syarat-syarat kegu 1. Laporan adal				°eknika	l Malay	sia Melaka.
2. Perpustakaan	n dibenarka	n memł	ouat sa	alinan u	ntuk tuj	uan pengajian sahaja.
 Perpustakaan institusi peng 			ouat sa	alinan la	aporan i	ni sebagai bahan pertukaran antara
4. Sila tandakar						the second
su	LIT*		kepent	ingan N		mat yang berdarjah keselamatan atau seperti yang termaktub di dalam AKTA 2)
TER	RHAD**					umat terhad yang telah ditentukan oleh na penyelidikan dijalankan)
ТІВ	AK TERHA	D				
(Aur					Disahkan oleh:
(TAN)	/ ATANGAN F	PENULIS)		(Ō	COP DAN TANDATANGAN PENYELIA) IMRAN BIN HINDUSTAN Pensyarah
						akulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka (UTeM)

"I hereby, declare this report is the result of my own research except as cited in the references."

Signature	:	
Author Name	:	CHANG SHI MEI
Date	:	8 JUNE 2015

"I hereby declare that I have read through this report and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Electronic Engineering (Industrial Electronic)."

Signature	:	
Name	:	EN. IMRAM BIN HINDUSTAN
Date	:	8 JUNE 2015

To my beloved father and mother

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGMENT

In preparing this thesis, I had contacted with many peoples and academicians in helping me completing this project. They have contributed toward my understanding, and also guidance. First of all, I wish to express my sincere appreciation to my thesis supervisor En Imran Bin Hindustan for the kindness, encouragement, valuable guidance, advices, suggestion and providing useful information throughout this project.

My sincere gratitude is also extended to all lecturers in Universiti Teknikal Malaysia Melaka who have being teaching me for their contribution and knowledge. Moreover I would like to thanks all my friends and other individuals who provide assistance on various occasions. Their view, suggestions and tips are useful in helping me to complete this thesis.

Lastly, I would like to thank everyone that involved directly or indirectly during my process in completing this thesis. Hopefully this project would give benefit to others in future.

ABSTRACT

A Production Monitoring System (PMS) is a set of equipment placed on a production line to monitor the status of a process or manufacturing line. It collects, process, stores and displays production information. Nowadays, with the rapid grow of technologies, the conventional PMS is not suggested to be used in industries. This method is not efficient because it's time consuming and the collected data are not reliable and inaccuracies due to human errors and intervention. Hence, an automated PMS project is proposed. The automated PMS is fully automated in data collection, processing and recording. Basically, the aims of this project is to design a Control Unit /data path by translating the Overall Equipment Effectiveness (OEE) concept into a set of logic units that described using Very High speed integrated circuit Hardware Description Language (VHDL) and to be implemented in a programmable digital logic chip called Field Programmable Gate Array (FPGA). Normally, the performance and efficiency of a machine are measured by using OEE. It's a concept of determining the performance indicators of a production line, which involves arithmetic and logic operations for data processing. In conclusion, the project is efficient because it's useful and fully automated yet the price is reasonable, portable and applicable to many industries.

ABSTRAK

Sistem Pemantauan Pengeluaran (PMS) adalah satu set peralatan yang diletakkan pada barisan pengeluaran untuk memantau status sesuatu proses atau pembuatan talian. Ia mengumpul, memproses, menyimpan dan memaparkan maklumat pengeluaran. Pada masa kini, dengan kepesatan teknologi, PMS konvensional tidak dicadangkan untuk digunakan dalam industri. Kaedah ini tidak berkesan sebab ia memakan masa dan data yang dikumpul tidak boleh dipercayai dan tidak tepat kerana kesilapan manusia. Oleh itu, projek PMS automatik dicadangkan. PMS automatik adalah automatik sepenuhnya dalam pengumpulan data, pemprosesan dan rakaman. Pada asasnya, matlamat projek ini adalah untuk mereka bentuk laluan Unit Kawalan / Data Jalan dengan menterjemahkan Keberkesanan Peralatan Keseluruhan konsep (OEE) ke dalam satu set unit logik yang diterangkan menggunakan kelajuan tinggi Sangat litar bersepadu Perkakasan Penerangan Bahasa (VHDL) dan akan dilaksanakan dalam cip logik digital diprogramkan dipanggil Field Programmable Gate Array (FPGA). Biasanya, prestasi dan kecekapan mesin diukur dengan menggunakan OEE. Ia adalah satu konsep menentukan petunjuk prestasi garis pengeluaran yang melibatkan aritmetik dan logik operasi untuk pemprosesan data. Kesimpulannya, projek ini adalah berkesan kerana ia berfungsi dan automatik sepenuhnya lagi dengan harga yang berpatutan, mudah alih dan boleh digunakan dalam pelbagai industri.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	PROJECT TITLE	i
	PROJECT STATUS FORM	ii
		•••

STUDENT'S DECLARATION	iii
SUPERVISOR'S DECLARATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvii

I INTRODUCTION

1

1.1	Production Monitoring System (PMS)	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Project	3
1.5	Outline of Thesis	5

II LITERATURE REVIEW

2.1	Production Line			6	
2.2	Types of	Types of Production Lines			
2.3	Factors to	owards I	nefficiency in Production	10	
	Lines				
	2.3.1	Mach	nine Efficiency	10	
	2.3.2	Man	power Utilization	11	
	2	2.3.2.1	Supporting Department	11	
	2	2.3.2.2	Operators and Workers	12	
2.4	Existing Production Monitoring System				
	(PMS)				
	2.4.1	The c	concept of JIDOKA	12	
	2.4.2 Whi		e board or Tracking sheets	13	
	2.4.3	Real	time Production Monitoring	14	
		Syste	em (PMS)		
	2.4.4	Embe	edded controller for PMS	15	
		based	l on OEE using FPGA		
	2.4.5	Com	parison between related	16	
		proje	ct journal		
2.5	Overall Equipment Effectiveness (OEE)				
	2.5.1	OEE	Losses	20	
	2.5.2	OEE	Factors	22	
2.6	Hardward	Hardware Description Language (HDL)			

III METHODOLOGY 27

3.1	Methodology	27
3.2	Project Development	28

C Universiti Teknikal Malaysia Melaka

х

6

Project Planning			29
Block diagram of Production Monitoring			31
System	l		
Block I	Diagram of	f Processor	32
3.6 Design Process			33
3.6.1	Deve	lopment of instruction	34
	seque	ences	
3.6.2	Desig	n of Logic Circuit	37
	3.6.2.1	Control Unit	37
	3.6.2.2	Data Path	44
3.6.3	Descr	ribe Logic Units in VHDL	45
	Block of System Block I Design 3.6.1 3.6.2	Block diagram of System Block Diagram of Design Process 3.6.1 Deve seque 3.6.2 Desig 3.6.2.1 3.6.2.2	Block diagram of Production Monitoring System Block Diagram of Processor Design Process 3.6.1 Development of instruction sequences 3.6.2 Design of Logic Circuit 3.6.2.1 Control Unit 3.6.2.2 Data Path

IV RESULTS AND DISCUSSIONS 47

4.1	VHDL N	Aodules		47
4.2	VHDL 7	VHDL Test Bench		
	4.2.1	Four	– Bit Adder	48
	4	.2.1.1	Adder with 2 Inputs	48
	4	.2.1.2	Adder with 3 Inputs	49
	4.2.2	Regi	ster	51
	4.2.3	Cont	rol Unit	53
	4.2.4	Proc	essor	57

V CONCLUSION 67 5.1 Project Conclusion 67 5.2 Recommendation 68

C Universiti Teknikal Malaysia Melaka

xi

REFERENCES	70
APPENDIX	72
APPENDIX A	72
APPENDIX B	95
APPENDIX C	104

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO	TITLE	PAGE
2.1	Comparison between the related project journal	17
2.2	The three general OEE loss	21
2.3	OEE factors and efficiency loss	22
2.4	World class percentage for each OEE factors	24
2.5	Production line data of the industry	25
2.6	Calculation of support variable based on Table 2.5 information	25
2.7	Calculation of OEE factor percentage	26
3.1	The six external data enters the data path	32
3.2	Assignment of alphabet to every involved OEE parameter	34
3.3	Efficiency loss and OEE factors	35
3.4	The instruction sequences without present of clock signal	35
3.5	The instruction sequences with present of clock signal	36
3.6	The next state/ implementation table according to instruction sequences	39
4.1	The three conditions of register	51
4.2	The register output with three conditions	52

4.3	The next state/ implementation table according to		
	instruction sequence	54	
4.4	Three set of examples going to test the processor	57	
	VHDL program	57	

xiv

LIST OF FIGURES

NO	TITLE		
1.1	Block diagram of control unit/data path for		
	production monitoring system.	4	
2.1	Types of production lines	8	
2.2	Manual manufacturing process	8	
2.3	Semi-automated manufacturing process	mi-automated manufacturing process 9	
2.4	Automated manufacturing line	9	
2.5	Three major factor affecting production lines in		
	industries	10	
2.6	The interaction of andon system	13	
2.7	The white board uses to record the production		
	status	14	
2.8	Block diagram of the real time PMS	14	
2.9	Embedded controller for Production Monitoring		
	System	16	
3.1	Flow chart of project development	28	
3.2	The project Gantt chart	30	
3.3	Block Diagram of Production Monitoring System	31	
3.4	Block diagram of initial design of processor to be		
	embedded on an FPGA	33	
3.5	The finalized logic circuit design for the processor	38	

3.6	The K-maps and excitation for control signals and	
	D flip-flops	40
3.7	The logic circuit of control unit	43
3.8	The logic circuit of data path	46
4.1	The simulation waveform of 2 inputs adder	49
4.2	The simulation waveform of 3 inputs adder	50
4.3	The logic symbol of register used in project	51
4.4	The simulation waveform of register	52
4.5	The simulation waveform of control unit	55
4.6	The RTL schematic of control unit	56
4.7	The simplified simulation behavioral model of	
	processor with output 1101	58
4.8	The simulation behavioural model of processor in	- 0
	details with output 1101	59
4.9	The simplified simulation behavioral model of	<i>c</i> .
	processor with output 1000	61
4.10	The simulation behavioural model of processor in	(2)
	details with output 1000	62
4.11	The simplified simulation behavioral model of	(2)
	processor with output 0111	63
4.12	The simulation behavioural model of processor in	<i>C</i> A
	details with output 0111	64
4.13	The RTL schematic of processor	66
5.1	The block diagram of automated Production	(0)
	Monitoring System	69

LIST OF ABBREVIATION

ALU	-	Arithmetic Logic Unit
FSM	_	Finite State Machine
FPGA	_	Field Programmable Gate Array
GUI	_	Graphical User Interface
IC	_	Integrated Circuit
IR	_	Infrared
LCD	_	Liquid Crystal Display
LED	_	Light Emitting Diode
OEE	_	Overall Equipment Effectiveness
PC	_	Personal Computer
PCB	_	Printed Circuit Board
PMS	_	Production Monitoring System
PPC	_	Production Planning and Control
TQM	_	Total Quality Management
VHDL	_	Very High speed integrated circuit Hardware Description
		Language

CHAPTER 1

INTRODUCTION

This chapter will discuss about the overview of process that involved in design the control unit and data path. It discuss about the introduction, problem statement, objectives and scope of the project. The end of this chapter will list the thesis outline.

1.1 Production Monitoring System (PMS)

A production line is a set of sequential operations established on a factory shop floor whereby materials are put through a refining process to produce an end product that is suitable for onward consumption or components are assembled to make finished goods (Siva, 2009). A set of equipment called Production Monitoring System (PMS) is necessary to place on production line to monitor the current status of manufacturing line. A Production Monitoring System (PMS) consists of a real time display for monitoring production line problems and a systematic and accurate online data collecting system for production lines. Besides that, PMS is a useful data collection tool and reporting system which able to collect, process, and displaying the p roduction line targets concurrently acts as a calling unit to inform respective personnel at the right time on production line problems.

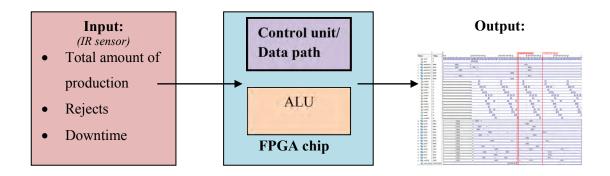
From research, a number of production floors are utilizing manual methods of data collection for producing reports. Manual data compilation leaves room for both inconsistencies and inaccuracies. When manual data collection is practiced, it always involves manual data compiling. This is mostly accomplished by entering in the information into spreadsheets for recording. Whenever the human intervention occurs on the recording or collection of data, the truthfulness of the collected data is no longer reliable. Factors affect the collected data may not be truthful are due to the improper monitoring system, the inaccuracy of the monitoring device and human intervention.

Therefore, this study is conducted to explain the usefulness of an automated data collection tool and display system for production lines. Develop an automated real time PMS to replace human supervision on production lines is extremely needed due to information obtained from production lines is essential for the management to enhance the production yield in all stages. Capturing and interpreting this production data without human intervention is a major challenge for the management.

1.2 Problem Statement

A production line is a very efficient way of manufacturing and assembling a product. The inefficiencies of production line will be the main factor that caused a company to achieve less yield and hence less profit. A Production Monitoring System (PMS) such a data collection tool and reporting system is required to be placed on a production line to monitor the status of a process or manufacturing line. The system enables to monitor and evaluate the real time performance and process improvement towards achieving a targeted production yield.

Nowadays, there are various types of monitoring systems practiced in the industries. Monitoring system involve manual approach such as charting on a white board or tracking sheets. A person in-charged is responsible on keeping tracks of the line status and records the operation performance, such as the amount of good or reject products on a white board. This method is not efficient because it is time consuming and there is a possibility that the collected data are not reliable and less accurate due to human errors and intervention.


In year 2009, a real time PMS was developed by Siva Kumar. This system is used in real time to record production line problems. It is built by using programmable logic controller and sensor to collect data from production lines. However the processing and recording parts were still done manually. It is not practical to process and record a big set of information manually due to possibilities of human errors and workers lack of good work ethic. A line supervisor or operator might forget to record or simply miscount the number of goods, caused the management team, maintenance and engineering personnel misinterpret the status of production line. In addition, in some circumstances, faults and mistakes which occur on the process line can be overwritten and fabricated. Thus, an automated production monitoring system is needed in data collection, processing and recording to improve the data accuracy and reliability.

1.3 Objectives

The aim of this study is to develop a control unit program based on Overall Equipment Effectiveness (OEE) concept. A Control Unit or data path is designed by translating the OEE concept into a set of logic units and the logic units are described using Very High-speed-integrated-circuit Hardware Description Language (VHDL). Next is to compare the simulation results with mathematical calculations based on OEE. This is to verify the workable and efficient of the VHDL program.

1.4 Scope of Project

This study is conducted to further enhance the existing production monitoring system (PMS). The system should be able to perform automated data collection, processing and recording. The automated data inputs are three important information that need to be monitored by a production monitoring system (PMS) from the production line. They are total amount of production over a certain period of time, total amount of rejects and total downtime or breakdown time. Through the data processing done by an FPGA chip, the system displays the output on a text Liquid Crystal Display (LCD) display module. Figure 1.1 illustrates the suggested system to be designed.

Figure 1.1: Block diagram of control unit/data path for production monitoring system.

- This project is part of a bigger system. The project is only concern about the design of control unit/ data path for production monitoring system (PMS) but not involve the ALU part.
- The FPGA chip is programmed to work as a processing unit, it capable to control more data inputs from production lines.
- 3. The Overall Equipment Effectiveness (OEE) concept is used in this project to measure the performance and efficiency of production line.
- 4. The OEE concept is translated into a set of logic units which are described using Very high speed integrated circuit Hardware Description Language (VHDL).
- For the processor, the received data inputs perform data processing to determine Overall Equipment Effectiveness (OEE) indicator and its parameters (Availability, Performance, Quality and OEE).

- **6.** This project used Xinlinx ISE Design Suite 11 for design entry, design analysis and synthesis. ISim simulator is used for design simulation.
- **7.** Finally, comparison between the simulation results and mathematical calculations is required to verify the VHDL program is validate.

1.5 Outline of Thesis

In this thesis, there are involve of five chapter to describe the project of Design of control unit/ data path for Production Monitoring System by using FPGA based on overall equipment effectiveness which is starting with Introduction, Literature Review, Methodology, Result and Discussion and Conclusion and Recommendation.

Chapter 1: Introduction of the project that discussed the background of the study, problem statement, scopes and objectives of developing this project.

Chapter 2: Literature Review consist the background study and research before developing this project. The content of the background studies such as the information about the Production Monitoring System, VHDL, OEE concept and etc.

Chapter 3: Methodology described about the methods or approaches used in solving the project. In this chapter, it contains a block diagram and flow chart to explain the procedures of designing the project. The circuit design is discussed as well.

Chapter 4: Concentrates on the result and discussion of this project. This chapter consists of the simulation, results and analysis of the product performance.

Chapter 5: Conclusion consists of the summary of the project. After the project is done, recommendations are made for the betterment of the project or upgrades that might be done in the future.

CHAPTER 2

LITERITURE REVIEW

This chapter contains the literature review on theoretical concepts applied in this project. It contains the information that the project required in order to develop and complete the entire project.

2.1 **Production Line**

Refer to Cambridge dictionaries, production line is a set of machines and worker in a manufacturing plant that a product flows along while it is being made or produced. Every machine or worker must be complete performs specific job before the product proceeds to the next station in production line.

Production lines were operated by workers before the initiation of computer control and robots. Each person executes a limited number of tasks and the product would be passed to the next person continually until the product was completely assembled. Currently, the production lines of worldwide manufactory can be classified into three types, which are manual production lines, semi-automated production lines and automated production lines. Accuracy and efficiency on the production lines allow an improved production and application of usable resources within industries (Siva, et. al., 2009). The better line efficiency will be able to assist companies or industries to generate higher yield and revenue. Hence, a Production Monitoring System (PMS) is essential to install at manufacturing line to help collect and distribute line information to everyone in the shop floor as production are happening. The task of the production tool is to aid the manufacturing team to perform their best within the usable resources. Moreover, improve quality matters and reducing overheads.

Generally, the Overall Equipment Effectiveness (OEE) as an ultimate efficiency tool for machineries and equipment in manufactory. It is concept of determining the performance indicators of a production line, which involves arithmetic and logic operations for data processing.

2.2 Types of Production Lines

The type of a production line is depending on the complexity of the manufacturing parts, production volume, restricted or dangerous manufacturing process, the sensitivity of the product and price (Siva, 2009). Based on specific production requirements shows how the administration in industries going to design and plan their production layout. The combination of machineries and mans would be the ordinary source of manufacturing resources which is practice in worldwide to perform this task. The practice of both machines and mans is various types of production lines are demonstrated as in Figure. 2.1.