ROBOT CONTROLLED USING DTMF TECHNIQUE FOR CHEMICAL TRANSPORTATION PURPOSES

MELISSA SARA ECHA ANAK GABRIEL

This Report Is Submitted In Partial Fulfillment of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronic)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

Fakulti Kejur	VERSTI TEKNIKAL MALAYSIA MELAKA uteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Robot Con Tajuk Projek : Transporta	trolled Using DTMF Technique for Chemical tion Purposes
Sesi : 1 4 Pengajian	/ 1 5
 Saya MELISSA SARA ECHA ANAK G disimpan di Perpustakaan dengan syarat-sy 1. Laporan adalah hakmilik Universiti Te 2. Perpustakaan dibenarkan membuat sal 3. Perpustakaan dibenarkan membuat sal tinggi. 	ABRIEL mengaku membenarkan Laporan Projek Sarjana Muda ini rarat kegunaan seperti berikut: eknikal Malaysia Melaka. inan untuk tujuan pengajian sahaja. inan laporan ini sebagai bahan pertukaran antara institusi pengajian
 4. Sila tandakan (√): SULIT* 	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Tarikh:	Tarikh:

C Universiti Teknikal Malaysia Melaka

"I hereby declare this thesis is the result of my own work except for quotes as cited in the references."

Signature	:
Name	: MELISSA SARA ECHA ANAK GABRIEL
Date	:

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics)."

Signature	:
Name	: MR. ADIB BIN OTHMAN
Date	:

To my beloved mother, brother, sisters and my friends that given me strength and spirit in completing this final year project"s thesis.

ACKNOWLEDGEMENT

First of all, I am grateful to The Almighty God for establishing me to complete this thesis titled "Robot Controlled Using DTMF Technique for Chemical Transportation Purpose."

I wish to express my sincere thanks to Mr. Adib bin Othman, my project supervisor, for his valuable guidance and encouragement during my completion of this project.

I place on record, my sincere gratitude to Assoc Professor Dr. Abdul Rani bin Othman, Dean of Faculty of Electronic Engineering for his constant encouragement and also sincere thanks to all the lecturers and technicians that providing me all the facilities such as laboratory and electronic components.

Deepest thanks and appreciation to my parent, and family for their cooperation, encouragement, constructive suggestion and full of support for the report completion, from the beginning till the end. Also thanks to all my friends, my course-mates and others that have been contributed by supporting my work and help me during the final year project progress till it is fully completed.

Last but not least, my thanks to all the committees of PSM 2015, for a great commitment and cooperation during my final year project.

ABSTRAK

Makmal bahan kimia sentiasa menghadapi isu tentang keselamatan menguruskan bahan kimia. Bahan kimia tersebut mempunyai ciri-ciri seperti menghakis, berbahaya, dan mudah terbakar dan mempunyai kesan yang merbahaya terutamanya terhadap manusia. Oleh itu, tujuan utama projek ini dibuat adalah untuk menggantikan tenaga kerja manusia yang membawa tabung uji daripada satu tempat ke tempat yang lain. Oleh itu, tahap keselamatan boleh ditingkatkan. Objektif projek ini adalah untuk megawal robot menggunakan telefon bimbit. Dalam melaksanakan projek ini, perisian dan perkakasan akan digunakan. Perisian yang digunakan ialah Proteus Professional 8 untuk mereka bentuk projek litar. Selain itu, PIC C Compiler akan digunakan untuk tujuan pengaturcaraan C. Komponen yang digunakan dalam projek ini ialah PIC Microcontoller iaitu PIC18F4550 sebagai komponen utama, dan IC MT8870 yang digunakan untuk mengaplikasikan teknik DTMF. Hasil kajian mendapati bahawa robot berjaya dikawal oleh telefon bimbit. Semasa panggilan dibuat, jika ada papan kekunci yang ditekan pada telefon yang membuat panggilan robot akan bergerak kiri, kanan, depan, belakang atau berhenti bergantung kepada butang yang ditekan dan bagaimana ia diprogramkan. Secara kesimpulannya, teknik DTMF dapat diaplikasi untuk pergerakkan robot ini supaya dapat membawa tabung uji tersebut dari satu tempat ke tempat yang lain di dalam makmal. Dengan ini, keselamatan akan dapat ditingkatkan dan mengurangkan risiko kemalangan yang melibatkan bahan kimia.

ABSTRACT

A chemical laboratory always has an issue regarding the safety of handling the chemical liquid. A chemical can be corrosive, harmful and flammable which is very dangerous, especially to the human. Therefore, the motivation of conducting this project is to replace the manpower that transfer a test tube contains liquid chemical from one station to another station for storage purposes. Hence, the safety measure at the working place can be increased. The main objective of this project is to construct a mobile robot that can be controlled by using a mobile phone. In completing this project both software and hardware are involved. The software that been used is Proteus Professional 8 for both circuit design and the circuit layout. Besides that, PIC C Compiler software is also used to create the C programming. The components involve in this project is PIC Microcontroller named PIC18F4550 as the main component and MT 8870 as the second main component so that DTMF technique can be applied. The result shows that the robot is successfully controlled by using a mobile phone. The user will call the embedded mobile phone that will attach to the robot. During the call, if any button is pressed at the transmitting mobile phone, the robot moves forward, backward, left, right or stop based on the programming. In conclusion, the movement of the robot can be controlled by applying DTMF technique to move a chemical filled test tube in a small laboratory. Hence, it will increase the safety measure in the laboratory and decrease the potential of occurring involved with chemical accidents.

LIST OF CONTENTS

CONTENT		PAGE
ACKN	OWLEDGEMENT	vi
ABSTI	RAK	vii
ABSTI	RACT	viii
LIST (DF CONTENTS	ix
LIST (OF FIGURES	xii
LIST (OF TABLES	xvi
LIST (OF ABBREVIATIONS	xvi
LIST (OF APPENDICES	xix
СНАР	TER 1	1
1.1	Project Introduction	1
1.2	Objectives	2
1.3	Problem Statements	3
1.4	Scope	3
1.5	Methodology Summary	4
1.6	Report Structure	4
СНАР	TER 2	6
2.1	Global System for Mobile Communication (GSM)	8
2.2	Dual Tone Multi Frequency (DTMF) Technology	9

2.3	PIC Microcontroller	17	
2.4	Motors	21	
2.5	2.5 Critical Review		
СНАРТ	TER 3	29	
3.1	Hardware and Software	32	
3.1.	1 Mobile Phone	34	
3.1.	2 DTMF Decoder	35	
3.1.	3 PIC Microcontroller	37	
3.1.	4 DC Motors	38	
3.1.	5 Proteus Professional 8	40	
3.1.	6 PIC C Compiler	41	
3.2	Project Coding	43	
3.3	Circuit Fabrication, Checking Connectivity, Drilling and Soldering Process	45	
3.3.	1 Etching Process	46	
3.3.	2 Checking Connectivity	48	
3.3.	3 Drilling and Soldering Process	48	
CHAPTER 4 5		50	
4.1	Result and Discussion	50	
4.1.	1 Project Simulation	51	
4.1.	2 Project"s Coding	53	
C	Coding for project"s simulation	53	
C	Coding for Project's prototype	56	
4.1.	3 Prototype of the Robot	61	
C	Circuits Involved	61	
V	Vhole Project's Prototype	62	
4.1.	4 PROJECT OUTPUT	65	
CHAPTER 5 7		70	
5.1	Conclusion	70	

5.2	Recommendation	72
REFER	ENCES	73
APPEN	DICES	76

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

No	Title	Page
1.	Figure 2. 1: Example of Mobile Robot [2]	7
2.	Figure 2. 2: Example of Stationary Robot (Arm Robot) [1]	7
3.	Figure 2. 3: Mobile Phone Keypad	9
4.	Figure 2. 4: When Button 2 is Pressed	11
5.	Figure 2. 5: When Button 5 is Pressed	11
6.	Figure 2. 6: When Button 8 is Pressed	
7.	Figure 2. 7: When Button 4 is Pressed	12
8.	Figure 2. 8: When Button 6 is Pressed	13
9.	Figure 2. 9: Circuit Connection of Mt8870 [6]	14
10.	Figure 2. 10: Harvard Architecture [7]	18
11.	Figure 2. 11: Pic 18f4550 Pins Diagram	
12.	Figure 2. 12: Development Stage C Programming Before Burn Into The	
	Microcontroller	19
13.	Figure 2. 13: Pic C Compiler Software Interface	20
14.	Figure 2. 14: Hid Bootloader Application Interface	20
15.	Figure 2. 15: A) Dc Motor B) Ac Motor C) Servo Motor D)Stepper Motor	21
16.	Figure 2. 16: Diagram of Ac Motor [10]	22

17.	Figure 2. 17: Diagram of Dc Motor [13]		
18.	Figure 2. 18: H-Bridge Circuit Connection Of Dc Motor		
19.	Figure 2. 19: L293d H-Bridge Ic Pin Diagram [12]		
20.	Figure 3. 1: Flowchart of The Methodology For The Project	31	
21.	Figure 3. 2: Flow of The Project Function	32	
22.	Figure 3. 3: Overall Connection for The Project	32	
23.	Figure 3. 4: Earphone Audio Jack. Ground Cable is Connected to Ground		
	Decoder And Left/Right Headphone Cable (Signal Cable) is Connected to The	e	
	Dtmf Input [15]	33	
24.	Figure 3. 5: 4x4 Keypad Mobile Phone	34	
25.	Figure 3. 6: Pin Diagram of Mt8870 And Ic Mt8870	35	
26.	Figure 3. 7: Pin Diagram of Pic18f4550 And The Ic	37	
27.	Figure 3. 8: Pin Diagram of Motor Driver L293d And The Ic	38	
28.	Figure 3. 9: Interface of Proteus Professional 8 Software	40	
29.	Figure 3. 10: Interface of Ares Layout For Pcb Fabrication Circuit Design	41	
30.	Figure 3. 11: Interface of Pic C Compiler Software	42	
31.	Figure 3. 12: C Programming Algorithm	44	
32.	Figure 3. 13: Circuit of The Project Without Dtmf Decoder	45	
33.	Figure 3. 14: Pcb Layout on Transparent Paper	46	
34.	Figure 3. 15: UV Process	47	
35.	Figure 3. 16: Pcb Board After Etching Process	47	
36.	Figure 3. 17: Checking Connectivity Using Analog Multimeter	48	
37.	Figure 3. 18: Drilling Process	49	

38.	Figure 4. 1: Simulation Circuit using Proteus 8 Professional Without using The	
	Dtmf Decoder	51
39.	Figure 4. 2: Coding for Project's Simulation	53
40.	Figure 4. 3: Declaration Of Pic, Delay, Fuses and Ports Used for The Project	54
41.	Figure 4. 4: 'If Else' Statement is Used	54
42.	Figure 4. 5: Coding for Project's Prototype	56
43.	Figure 4. 6: Additional Part Coding for Project's Prototype	57
44.	Figure 4. 7: Functional Decode Table	57
45.	Figure 4. 8: Switch-Case Statement	58
46.	Figure 4. 9: Default Command	58
47.	Figure 4. 10: Command for The Robot to Move Forward	58
48.	Figure 4. 11: Command for The Robot to Turn Left	59
49.	Figure 4. 12: Command for The Robot to Turn Right	59
50.	Figure 4. 13: Command for The Robot to Move Backward	59
51.	Figure 4. 14: Command for The Robot to Immediate Stop	60
52.	Figure 4. 15: Pic 18f4550 Microcontroller Pcb Board and Its Solder	61
53.	Figure 4. 16: Motor Driver L293d Pcb Board and Its Solder	61
54.	Figure 4. 17: Dtmf Pcb Board Circuit and Its Solder	62
55.	Figure 4. 18: Side View of The Project Prototype	62
56.	Figure 4. 19: Front, Back And Top Views of Project Prototype	63
57.	Figure 4. 20:Test Tube Holder Prototypes	63
58.	Figure 4. 21: Mobile Phone Holder	64
59.	Figure 4. 22: When Button 2 is Pressed The Binary Output is 1010	65
60.	Figure 4. 23: When Button 5 is Pressed The Binary Output is 1111	65
61.	Figure 4. 24: When Button 6 is Pressed The Binary Output is 1000	66
62.	Figure 4. 25: When Button 8 is Pressed The Binary Output is 0101	66
63.	Figure 4. 26: When Button 4 is Pressed The Binary Output is 0010 (But Led	
	Connected to B1 is Not Function)	67

xiv

- 64. Figure 4. 27: Liquid is Put in The Test Tube for Transportation Purposes 67
- 65. Figure 4. 28: Starting from Making Call to The Embedded Phone and Control The Movement ff The Robot, and at The Same Time Transporting Test Tube From 1 Place to Another
 68

LIST OF TABLES

No	Title	Page
1.	Table 2. 1: Frequency Set Applied by Dtmf Technology	10
2.	Table 2. 2: Functional Decode Table	16
3.	Table 2. 3: Summarizations of Previous Researchers' Journals	28
4.	Table 4. 1: Overall Results of The Project	68

xvi

LIST OF ABBREVIATIONS

1.	DTMF	Dual Tone Multi-Frequency
2.	DC	Direct Current
3.	FFT	Fast Fourier Transform
4.	GPRS	General Packet Radio Service
5.	GSM	Global System for Mobile Communications
6.	HID BOOTLOADER	Human Interface Device Bootloader
7.	IC	Integrated Circuit
8.	INH	Inhibit
9.	IR SENSOR	InfraRed Sensor
10.	ISDN	Integrated Services Digital Network
11.	UMTS	Universal Mobile Telecommunications System
12.	РСВ	Printed Circuit Board
13.	PIC	Peripheral Interface Controller
14.	RC NETWORK	Resistor-Capacitor Circuit Network
15.	RPM	Rotation Per Minute
16.	SMS	Short Message Service
17.	TOE	Three State Output Enable
18.	USB	Universal Serial Bus
19.	UV	Ultraviolet

21. 2G, 3G, 4G

world wide web Second, Third, Fourth Generation

LIST OF APPENDICES

No	Title	Page
1	DTMF DATASHEET	76
2	L293D DATASHEET	78
3	PIC18F4550 DATASHEET	80

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 **Project Introduction**

DTMF (Dual Tone Multi Frequency) technique or also known as the tone dialing system has been widely used in a digital telephony method. DTMF signal is encoded as a pair of sinusoidal (sine wave) tones and mixed with each other. The examples of applications are PSTN (Public Switched Telephone Network) and Voice Response system for Telephone Banking. The system can also be applied in others different application such moving a mobile robot. It is known that mobile phone is an essential tool in everyday life and any application based on this device has wide acceptance [1]. Due to the wide coverage of mobile networks (GSM, GPRS, 3G, 4G, UMTS), to use them in

the field of the remote or telematics control seems indispensable in engineering nowadays. The method is controlling other device by using the signals generated by the DTMF systems through a simple telephone call [1].

The remarkable development of robotics and communication field has led to combination of both technologies in producing sophisticated and yet helpful system and tools [2]. Therefore, application based on microcontroller has been implemented. The application is about the communication between the adapted mobile phone and the autonomous mobile robot. This microcontroller will cooperate with DTMF decoder receiver which recognizes the DTMF tones generated by the keyboard of a telephone in digital mode (being converted to 4-bit quantities). These binary data act as the inputs and the movement of the robot is the output.

The robot can be defined as Reprogrammable Multifunctional Automatic Manipulator. The robots undertake many tasks where accuracy is important such as robots in positioning a tube with hazardous substance to a certain place in a laboratory [3]. It can be said that the used of robot is purposely to minimize the factor of human error as the robot work more efficiently and effectively as they are programmed.

1.2 Objectives

The objectives of this project are as follows:

- 1. To construct a mobile robot using microcontroller PIC 18F4550.
- 2. To implement the DTMF technique using IC MT 8870 to the mobile robot.
- 3. To control the movement of the mobile robot using mobile phone in transporting chemical filled test tube.

1.3 Problem Statements

There is always a safety issue concerning on human error in a small laboratory. Usually in a laboratory, the chemical that need to be stored at another station, needed to be carry by a person. This may be very dangerous as human error can sometimes lead to accidental drop of the test tube which leads to contamination to the environment. It is suspected that the used of mobile robot controlled by a mobile phone using DTMF technique increase the safety measure as its material is more durable to chemical hazardous compared to human.

1.4 Scope

The mobile robot is only limited to carry one test tube contains only liquid chemical at once. The test tube is limited to about 13×100 mm size. The size of the robot itself is about width 150 mm, length 200 mm and 120 mm height. Besides that, the robot only carries the test tube contains chemical (with a weight less than 200 grams) about distance of 1 meter. The function of the mobile robot is only to transport the chemical in a test tube which is not included how the test tube is carried out of the robot compartment. The mobile phone that used to control this robot must have network coverage and does not have to be a smartphone. The supply of the robot is from battery supply which is a DC power supply. Besides that, this project is only handled liquid form of non-flammable chemical. The characteristic of chemical liquid that will be handled by this mobile robot is that toxic, acidic, oxidize, and corrosive.

1.5 Methodology Summary

The methodology of this research is briefly about how the project being conducted at the first step until the project is finished. The project is involving hardware and software. The hardware of this project is that the mobile robot itself and can be controlled using a mobile phone. The software of this project is a coding developed by using C programming. Further details will be discussed in Chapter 3 of this thesis.

1.6 Report Structure

- Chapter 1 : Cover the overview of the project. It will include the introduction of the project, the project objective, problem statements of the project, scope of the project, methodology review and the report structure.
- Chapter 2 : This part is the medium to get information in order to develop the project. In this chapter, the background of the project and the theory of each component are explained. The information is from the reference book, websites, articles and some related interview with the lecturer, including the differentiation of project of previous researchers. It is mostly about the Global System for Mobile Communication (GSM), Dual Tone Multi Frequency (DTMF) technique, PIC Microcontroller and finally about the DC Motors
- Chapter 3 : It will cover all the methodology and the project implementation process. This chapter also explains the procedures that have been taken during the project implementation. The methodology of the work consists of the explanation on the project.

- Chapter 4 : This is the important chapter in this project report. This chapter contains the implementation of the whole project and its result. It also contains discussions on the result obtained.
- Chapter 5 : This chapter is the final chapter of the report. In this chapter, it will include the conclusion and future recommendation for this project.

C Universiti Teknikal Malaysia Melaka