THE HUMAN ANALYSIS AND ERGONOMICS FOR THE SEAT DESIGN OF ELECTRIC SCOOTER

MUHAMAD NORAZAMUDIN BIN NOORDIN B051110242

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE HUMAN ANALYSIS AND ERGONOMICS FOR THE SEAT DESIGN OF ELECTRIC SCOOTER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design)(Hons.)

by

MUHAMAD NORAZAMUDIN BIN NOORDIN B051110242 900516-06-5379

FACULTY OF MANUFACTURING ENGINEERING 2015

DECLARATION

I hereby, declared this report entitled "The Human Analysis and Ergonomics for the Seat Design of Electric Scooter" is the result of my own research except as cited in references.

Signature	:
Author's Name	: Muhamad Norazamudin Bin Noordin
Date	: 1 July 2015

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) with Honours. The member of the supervisory committee is as follow :-

(Signature of Supervisor)

(Official Stamp of Supervisor)

UNIVERSITI TEKNIKAL MALAYSIA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: THE HUMAN ANALYSIS AND ERGONOMICS FOR THE SEAT DESIGN OF ELECTRIC SCOOTER

SESI PENGAJIAN: 2015/2016

Saya Muhamad Norazamudin Bin Noordin

Mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kehunaan seperti berikut :-

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD

SULIT

Disahkan oleh :

Alamat tetap : No 166, Lorong 11, Balok Maju, Balok, 26100, Kuantan, Pahang. Cop rasmi :

Tarikh : 1 Julai 2015

Tarikh : 1 Julai 2015

🔘 Universiti Teknikal Malaysia Melaka

ABSTRACT

The development of ergonomic is developed and recognized during the Second World War. This is because, for the first time, human technology and science are applied together systematically. Word ergonomic comes from the Greek Word meaning work law. Some countries used the terms human factors. The ergonomics purpose to design appliances, technical system and tasks in such way as to improve the safety of human, health, comfort and performances.

The project is based on the human analysis and ergonomics for the seat design of the electric scooter. The scooter seat is a seat placed in a limited space, which when in motion, undergoes dynamic forces, among which the centrifugal force, plays an important role to cause discomfort to the driver. Engineers may design the electric scooter to be ergonomically friendly, it doesn't mean that one design will work for all users, especially if the electric scooter is designed for a person of certain proportions. The finding is expected to explain and give better understanding about the ergonomic seat design for electric scooter. Based on the anthropometric measurement data and the ergonomics principles, the electric scooter seat can be improved by using RULA analysis method. The results and discussion is analyzing the electric scooter seat and design the ergonomic electric scooter seat in order to prevent musculoskeletal.

The data that has been collected such as the dimension of the electric scooter and the correct posture used by the rider has been used to complete the design and analysis. The primary focus will be on the redesign the electric scooter seat for improving the body

posture of the rider and validate the redesign electric scooter seat based on the RULA analysis.

Based on the RULA analysis and the results shown, it proved that the modified design of the electric scooter seat design is better than the existing design. The most crucial part is the distance between the handle and the seat, which give big effect to the comfort of the rider. Besides, the height of the seat also gives an impact to the posture of the rider during riding the electric scooter.

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pembangunan ergonomik dibangunkan dan diiktiraf semasa Perang Dunia Kedua. Ini kerana, buat kali pertama, teknologi manusia dan sains digunakan bersama-sama secara sistematik. Ergonomik perkataan berasal dari bahasa Yunani yang bermaksud undangundang kerja. Sesetengah negara menggunakan istilah faktor manusia. Tujuan ergonomik adalah untuk mereka bentuk alat, sistem teknikal dan tugas-tugas untuk meningkatkan keselamatan manusia, kesihatan, keselesaan dan persembahan.

Projek ini adalah berdasarkan kepada analisis manusia dan ergonomik untuk reka bentuk tempat duduk skuter elektrik. Kerusi skuter adalah kerusi yang diletakkan di dalam ruang yang terhad, yang apabila bergerak, mengalami daya dinamik, antara yang daya empar, memainkan peranan yang penting untuk menyebabkan ketidakselesaan kepada pemandu. Jurutera boleh mereka bentuk skuter elektrik menjadi mesra secara ergonomik, ia tidak bermakna bahawa satu reka bentuk sesuai untuk semua pengguna, terutamanya jika skuter elektrik direka untuk seseorang dengan ukuran badan yang tertentu. Penemuan itu dijangka menjelaskan dan memberi kefahaman yang lebih baik tentang reka bentuk kerusi ergonomik untuk skuter elektrik. Berdasarkan data pengukuran antropometri dan prinsip-prinsip ergonomik, kerusi skuter elektrik boleh diperbaiki dengan menggunakan kaedah analisis Rula. Keputusan dan perbincangan adalah menganalisis kerusi skuter elektrik dan reka bentuk tempat duduk skuter elektrik yang ergonomik untuk mengelakkan otot.

Data yang telah dikumpulkan seperti dimensi skuter elektrik dan postur yang betul yang digunakan oleh penunggang telah digunakan untuk melengkapkan reka bentuk dan analisis. Tumpuan utama akan diberikan kepada reka bentuk semula kerusi skuter elektrik untuk memperbaiki postur badan penunggang dan mengesahkan reka bentuk semula kerusi skuter elektrik yang berdasarkan analisis Rula.

Berdasarkan analisis Rula dan keputusan menunjukkan, ia membuktikan bahawa reka bentuk yang diubahsuai daripada elektrik reka bentuk tempat duduk skuter adalah lebih baik daripada reka bentuk yang sedia ada. Bahagian yang paling penting ialah jarak antara pemegang dan tempat duduk, yang memberi kesan besar kepada keselesaan penunggang. Selain itu, ketinggian kerusi itu juga memberi kesan kepada postur penunggang semasa menunggang skuter elektrik.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my supervisor, Professor. Dr. Md. Dan Bin Md. Palil, for his supervision and constant support. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I would like to express my appreciation to the Dean, Faculty of Manufacturing Engineering UTeM, PM. Dr. Rizal Bin Salleh and also to the Deputy Dean, Dr. Zamberi Bin Jamaluddin and PM. Dr. Hambali Bin Arip@Ariff for their support and help towards my postgraduate affairs. My acknowledgement also goes to all the technicians and office staffs of Faculty of Manufacturing Engineering for their co-operations. Sincere thanks to all my friends for their kindness and moral support during my study. Thanks for the friendship and memories.

Last but not least, my deepest gratitude goes to my beloved parents; Mr. Noordin Bin Hassan and Mrs. Zahrah Binti Umar and also to my siblings for their endless love, prayers and encouragement. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

TABLE OF CONTENTS

Abstract	i
Abstrak	iii
Acknowledgement	v
Table of Content	iv
List of Tables	vii
List of Figures	ix
List of Abbreviations	xii

CHAPTER 1 INTRODUCTION

1.0	Introduction	1
1.1	Background of Study	1
1.1.1	Product Description	2
1.2	Problems Statement	4
1.3	Objectives of Study	4
1.4	Scope and Limitation of Study	5
1.5	Benefits of the Study	5
1.6	Structure of the Study	6

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction	8
2.1	Previous Research	8
2.1.1	Ergonomics Electric Scooter Design Guidelines	9
2.1.2	RULA for Motorcycles	10
2.2	Ergonomics in Automobile Industry	12
2.2.1	Definition of Ergonomics	14

🔘 Universiti Teknikal Malaysia Melaka

vi

2.2.2	Ergonomics Vehicle Seat Design	15
2.3	Electric Scooter	15
2.3.1	History of Electric Motorcycles	16
2.4	Ergonomics Electric Scooter Seat	17
2.4.1	Ergonomics Principles in Seat Design	17
2.4.2	Ergonomics Factors in Seat Design	18
2.5	Anthropometrics Measurement	19
2.5.1	Anthropometry and its Uses in Ergonomics	21
2.5.2	Types of Anthropometric Data	22
2.5.2.1	Structural Anthropometric Data	22
2.5.2.2	Functional Anthropometric Data	23
2.6	Riding Posture	23
2.6.1	Motorcycle Riding Posture	24
2.6.2	Scooter Riding Posture	25
2.7	Musculoskeletal Disorder (MSD)	26
2.7.1	Definition of Musculoskeletal Disorder	26
2.7.2	Musculoskeletal Disorder for Motorcycle Rider	27
2.7.3	Causes of Musculoskeletal Disorder	28
2.7.4	Signs and Symptoms of Musculoskeletal Disorder	28
2.7.5	Risk Factors of Musculoskeletal Disorder	29
2.8	Rapid Upper Limb Assessment (RULA) Analysis	30
2.8.1	Definition of RULA Analysis	30
2.9	Summary	32

CHAPTER 3 METHODOLOGY

3.0	Introduction	33
3.1	Process Flow of the Project	34
3.2	Data Collection	38
3.2.1	Qualitative Data	39
3.2.1.1	Observation	39

3.2.1.2	Interview	39
3.2.2	Quantitative Data	40
3.2.2.1	The Electric Scooter Seat Measurement	40
3.2.3	Secondary Sources for Data Collection	40
3.2.3.1	Journals or Articles	41
3.2.3.1	Books	41
3.2.3.2	Internet	41
3.3	Data Collected	42
3.3.1	Standard Anthropometric Postures	42
3.3.2	United States Anthropometric	44
3.3.2.1	List of Body Dimension	46
3.4	Data Analysis and Validation	48
3.4.1	Human Modelling Analysis	49
3.5	Summary	50

CHAPTER 4 RESULT AND DISCUSSION

4.0	Introduction	51
4.1	Design of the Existing Electric Scooter Using Solid Work 2014	51
4.1.1	The Dimension Used For Existing Design of Electric	52
	Scooter	
4.1.2	The 3D Drawing of the Existing Electric Scooter	53
4.2	Rapid Upper Limb Assessment (RULA) Analysis	54
4.3	Analysis of the Existing Electric Scooter Using CATIA	55
	(RULA Analysis)	
4.3.1	Body Posture of Human Manikin	55
4.3.2	RULA Analysis Result for Existing Electric Scooter	57
4.4	Redesign of the Electric Scooter Using Solid Work 2014	61
4.4.1	Redesign of The Electric Scooter's Seat	62
4.4.2	The 3D Drawing of the Redesign Electric Scooter	62
4.4.3	Adjustable Seat	63

4.5	RULA Analysis for Redesign Electric Scooter	64
4.5.1	Result for Redesign Electric Scooter	66
4.5.2	Summary of Improvement	72
4.6	Summary	73

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.0	Introduction	74
5.1	Conclusion	74
5.2	Future Work	76

REFERENCES

🔘 Universiti Teknikal Malaysia Melaka

77

LIST OF TABLES

2.1	The suggested characteristic angles of riding postures for scooter riders	10
2.2	RULA action levels	13
2.3	List of body dimensions selected for measurement	31
2.4	Score that represents the level of MSD risk	32
3.1	Relationship between Methodology and Objectives	38
3.2	US Civilian Body Dimension With Specific Percentile (cm)	44
3.3	Description of RULA score and Action Level	49
4.1	Score Range in RULA Analysis	54
4.2	The comparison of the scores between existing and modified electric scooter	73

LIST OF FIGURES

1.1	Official Logo	2
1.2	Factory	2
1.3	GW 800ES Electric Scooter	3
2.1	The Physical Dimension of Electric Scooter	9
2.2	The characteristic points and angles for anthropometric measurement	21
2.3	Motorcycle Riding Posture	24
2.4	Standard Scooter Riding Posture	25
2.5	Dissection of Body Posture part	27
3.1	Project Development Planning	34
3.2	Details of Project Development Planning	37
3.3	Body Dimension	43
3.4	Body Dimension	45
4.1	The dimension of the existing electric scooter	52
4.2	3D drawing of the existing electric scooter	53
	C Universiti Teknikal Malaysia Melaka	xi

4.3	2d view of electric scooter 3D drawing	53
4.4	Focused body area that considered in RULA analysis	56
4.5	The body posture of the 5 th percentile rider	57
4.6	The score for 5 th percentile	58
4.7	The body posture of the 50 th percentile rider	59
4.8	The score for 50 th percentile	59
4.9	The body posture of the 95 th percentile rider	60
4.10	The score for 50 th percentile	61
4.11	The redesign electric scooter	62
4.12	2D view of redesign electric scooter	63
4.13	The adjustable seat	63
4.14	The mechanism of the slider	64
4.15	The position of the seat for existing and modified electric scooter	65
4.16	The body posture of the 5 th percentile rider	67
4.17	The score for 5 th percentile	67

xii

4.18	The body posture of the 50 th percentile rider	69
4.19	The score for 50 th percentile	69
4.20	The body posture of the 95 th percentile rider	71
4.21	The score for 95 th percentile	71

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

MSD	-	Musculoskeletal Disorder
RULA	-	Rapid Upper Limb Assessment
MSF	-	The Motorcycle Safety Foundation
WHO	-	World Health Organization
CTDs	-	Cumulative Trauma Disorders
RSIs	-	Repetitive Strain Injuries
WMSDs	-	Work-related Musculoskeletal Disorders
WCB	-	The Workers Compensation Board
UTeM	-	Universiti Teknikal Malaysia Melaka
NASA	-	The United States National Aeronautics and Space Administration
US	-	The United States
CATIA	-	Computer Aided Three-dimensional Interactive Application
CAD	-	Computer Aided Design

CHAPTER 1 INTRODUCTION

1.0 Introduction

This chapter clarify about the background of study, the problem statement, objective of the study, and the scope as well as limitation in completing this study. From the background of the study, the problem statement will attain to identify the objective of the study. The basic fundamental of the human analysis and ergonomics will be discussed in the background study. Then, from the objective, the limitation and the scope will be identified. This study is mainly about the human analysis and ergonomics of seat design for the Electric Scooter that manufactured by G-Wheel Revolution Manufacturing.

1.1 Background of Study

The development of ergonomics is developed and recognized during the Second World War. This is because, for the first time, human technology and science are applied together systematically. Word ergonomics comes from the Greek Word meaning work law. Some countries used the terms human factors. The ergonomics purpose to design appliances, technical system and tasks in such way as to improve the safety of human, health, comfort and performances. The main focus of this study is to study and analyze

the ergonomics seat for the Electric Scooter. Hence, this study takes place at G-Wheel Revolution Manufacturing.

Figure 1.1: Official Logo (Source: <http://www.gwheel.com.my>)

Figure 1.2 : Factory (Source: <http://www.gwheel.com.my>)

The electric vehicles that the G-Wheel Revolution Manufacturing produced are Electric Bicycles, Electric Buggies, Electric Trams, Electric Wheelchairs and Electric Surrey Bikes, and Electric Scooter. Electric Bicycles consist of eight models which are Lasak, Iris, Musytari, Neutron, Nucleas, Revo-X and Revo-Z. All the models have their own specialization. There are three types of Electric Buggies. There are two seaters, four seaters, and six seaters Electric Buggies. The Electric Trams has 14 seaters, single unit and double units. The Electric Wheelchairs can be categorized into two types which are Power Wheelchair GW003 and Power Wheelchair GW003. The Electric Surrey Bikes consist of Multi-rider vehicles (2, 4, 6, and 8 seaters). There are only one type of Electric Scooter, which needed to conduct some analysis on its front seat. This analysis is needed to be done because the company needs to be considering the ergonomics aspects for the product before it can enter to the market. This is important to make sure the seat is safe and comfortable enough for the user. There are several factors that needed to be considered to prove the seat is ergonomically enough, that will be analyzed throughout this study.

1.1.1 Product Description

This is the Electric Scooter that manufactured by G-Wheel Manufacturing.

Figure 1.3: GW 800ES Electric (Source: http://www.gwheel.com.my)

Motor Type	: 800w brushless
Battery Type	: 48V20AH PbCu (Free Maintenance Battery)
Maximum Seed	: ≤40km/h
Continuous Distance	: 50km
Consumption Per 100 km	: <1.0kw/h
Minimum Slope Ability	:>12°
Brake Quality	: <4m(speed at 30km/h)
Brand	: Schneider Electric

1.2 Problems Statement

Based on literature review and previous studies, there are several aspects that need to be considered to design an ergonomics scooter seat. The design concept of the scooter seat is quite similar to the motorcycles seat or any other 2-wheels vehicles. The motorcycle or scooter seat is a seat placed in a limited space, which when in motion, experiences dynamic forces, in the middle of centrifugal force, plays an important role to cause discomfort to the motorcyclist. While engineers may design motorcycles to be ergonomically friendly, it doesn't mean that one design will work for all users, especially if the motorcycles are designed for a person of certain balances.

The ergonomics design involving motorcycles is a complicated process as it involves a very oblige space between the rider and the motorcycle. In any adjustment of the design of the motorcycle, the different needs of the motorcyclist must be considered. Generally, the most important aspect of a motorcycle design is to provide the safety and comfort for the rider by reducing or eliminating fatigue during the riding process.

1.3 Objectives of the Study

Based on the problem issue, the objectives of the study were defined are:

- i. To study the existing design of the seat for the Electric Scooter.
- ii. To test and analyze the ergonomics design of the existing Electric Scooter's seat by using 3 type of measurement percentile of human modelling $(5^{th}, 50^{th}, 95^{th})$.
- iii. To suggest, recommend and propose the improvement design for the seat of the Electric Scooter.

1.4 Scope and Limitation of the Study

This study focused on the human analysis and ergonomics for the seat of the Electric Scooter that manufactured by G-Wheel Revolution Manufacturing. In this study, the aspects that will be look are ergonomics requirement, ergonomics principle and ergonomics problem faced by the user. Besides, other aspects such as anthropometric measurement, riding posture, muscle fatigue, musculoskeletal disorder (MSD), RULA analysis and also covered in this study. However, there has some limitation in this study because the simulation focus only on the Electric Scooter that produced by G-Wheel Manufacturing.

1.5 Benefits of the Study

This study bring many benefits to all especially among the G-Wheel Revolution Manufacturing customer. Benefits of this study are identifying how the scooter seat can helps the rider feel more comfortable during riding the scooter. Besides, based on the anthropometric measurement data and the ergonomics principles, the scooter seat can be improved by using RULA analysis method. The overall study benefit is to analyze the Electric Scooter seat that produce by G-Wheel Revolution Manufacturing and design the ergonomics seat for the Electric Scooter.