DEVELOPING A FINGER-VEIN CAPTURING DEVICE

KWAN LIK HOU

This Report is submitted in Partial Fulfilment of Requirements for the Bachelor Degree of Electronic Engineering (Computer)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

MALAYSIA MA		UNIVERSTI TEKNIKAL MALAYSIA MELAKA
EKNIK	FAKULTI K	EJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
*JAINN		BORANG PENGESAHAN STATUS LAPORAN
		PROJEK SARJANA MUDA II
Tajuk Proj	ek : DEVELOPI	NG A FINGER-VEIN CAPTURING DEVICE
Sesi Penga	ajian : 2014/201	5
Saya KWAN I Perpustakaan 1. Laporan a	LIK HOU mengaku n dengan syarat-syarat k dalah hakmilik Univers	nembenarkan Laporan Projek Sarjana Muda ini disimpan di segunaan seperti berikut: siti Teknikal Malaysia Melaka.
2. Perpustak	aan dibenarkan memb	uat salinan untuk tujuan pengajian sahaja.
3. Perpustak	aan dibenarkan memt	ouat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian	tinggi.	
4. Sila tandal	kan (🖌) :	
	SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA
		RAHSIA RASMI 1972)
	TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
\checkmark	TIDAK TERHAD	
		Disahkan oleh:
_		
	(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap:		
Lot D5-0, Phase	e 1,	
Beverly Hills Ap	partment,	
Jalan Bundusar	sabah	
Testh		Teville
[arikh:		larikn:

"I hereby declare that this report is the result of my own work except for quotes as cited in references"

Signature: Author: KWAN LIK HOU Date: "I hereby declare that I have read this report and in my judgment, this report is sufficient in terms of the scope and quality for the award of Bachelor Degree of Electronic Engineering (Computer)"

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is likewise dedicated to my mother, who taught me that even the largest task can be achieved if it is executed one step at a time.

ACKNOWLEDGEMENT

This *Projek Sarjana Muda 2* (PSM 2) report could not have been written without Dr. Syafeeza Binti Ahmad Radzi who not only served as my supervisor, but also encouraged and challenged me throughout my PSM 1. Not only that, my project will not be able to complete successfully without the supply of electronic components, etching machine, tools and applications as well as labs from my faculty, *Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer* (FKEKK). In summation, my parents were also throwing me in both spiritual and economic support until I completed my task. Last but not least, my colleagues also lend me his helping hand to check, discuss and troubleshoot my project, never accepting less than my best exertions. Truly, I thank them all from the deep of my affection.

ABSTRAK

Projek ini adalah untuk membina satu model "Peranti Penangkap Corak Saluran Darah Jari". Peranti ini adalah satu alat yang akan menangkap imej saluran darah jari manusia dan akan digunakan untuk tujuan keselamatan biometrik, contohnya untuk tujuan pengesahan, pengiktirafaan, dan juga pengambilalihan. Cahaya berhampiran inframerah, *Near Infrared* (NIR) akan dikeluarkan oleh satu bank NIR LED menumbusi jari dan diserapkan oleh hemogoblin dalam darah kita. Kawasan-kawasan di mana sinar NIR diserap, iaitu saluran darah jari akan muncul sebagai kawasan gelap dalam imej yang ditangkap oleh kamera CCD yang terletak di sebelah yang bertentangan dengan jari. Imej yang telah ditangkap akan diproses serta dianalisis untuk tujuan keselamatan biometrik pada masa akan dating.

ABSTRACT

The project is focusing on developing a finger-vein capturing device. It is a device that will capture the human finger vein image and will be used for biometric security purposes such as authentication, verification and identification. A near-infrared light (NIR) will be emitted by a bank of NIR Light Emitting Diodes (LEDs) which will penetrate the finger and are absorbed by the haemoglobin in the blood. The areas in which the NIR rays are absorbed (i.e. Veins) thus appear as dark regions in an image conveyed by a CCD camera located on the opposite side of the finger. The image captured is analysed by using Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) to set the suitable potentiometer level and to find determine the best finger-vein image.

TABLE OF CONTENTS

CHAPTER CONTENTS PAGES

PROJECT TITLE	i
CONFIRMATION REPORT STATUS	ii
RECOGNITION	iii
SUPERVISOR AFFIRMATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRAK	vii
ABSTRACT	viii
TABLE OF CONTENTS	ix – xvii
LIST OF TABLES	xviii
LIST OF PICTURES	xix - xxiv
LIST OF SHORT FORMS	XXV

PAGES

6 - 19

I INTRODUCTION 1-4

1.1 Project Introduction	1 - 2
1.2 Project Objectives	2
1.3 Problem Statements	3
1.4 Scopes of Works	4

II LITERATURE REVIEWS

2.1 Theory of Biometrics	
2.2 Theory of Finger-vein Biometrics	
2.3 Features and Comparisons between Finger-vein	
2.3.1 Resistant to Criminal Tampering	8
2.3.2 High Accuracy	8
2.3.3 Unique and Constant	9
2.3.4 Contactless	9
2.3.5 Ease of Feature Extraction	9
2.3.6 Fast Authentication Speed	9
2.3.7 Disadvantages of other Biometrics Traits	10
2.4 Types of Sensors being Used in Camera	
2.4.1 Charge-coupled Device (CCD) Image	11 - 12
Sensor	
2.4.2 Complementary Metal-oxide	12
Semiconductor (CMOS) Image Sensor	
2.5 Finger-vein Pattern Imaging Methods	
2.5.1 Light Reflection Method	13 - 14
2.5.2 Light Transmission Method	15
2.6 Mean Square Error (MSE) and Peak Signal-to-	16
Noise Ratio (PSNR)	
2.7 Summary of Previous Studies	

III

METHODOLOGY

20 - 38

3.1 Introduction	20
3.2 Methodology	
3.2.1 Finger Vein Pattern Imaging Methods	21 - 22
3.2.2 Building the Finger Vein Capturing	23 - 30
Device's Prototype	
3.2.2.1 NIR Illuminating Circuit	24
Design and Simulation	
3.2.2.2 NIR Illuminating Circuit	25
Construction and Testing on	
Breadboard	
3.2.2.3 NIR Illuminating Circuit	26
Etching and Soldering	
3.2.2.4 Modification of Suitable CCD	27 - 29
Webcams	
3.2.2.5 Evaluating and Initial Capture	30
of a Finger-vein Image	
3.2.3 Developing the Finger-vein Image	31 - 32
Analysis Methods	
3.2.3.1 Determine the Standard Finger-	32
vein Image	
3.2.3.2 Determine the Best Finger-vein	32
Image	
3.2.4 Developing the Finger-vein Capturing	33 - 35
Device's GUI	
3.2.5 Correct Methods in Using Finger-vein	36 - 37
Capturing Device	
3.2.6 Analysing and Collecting Results	38
3.2.7 Testing and Troubleshooting	38

IV

RESULTS, ANALYSIS AND DISCUSSIONS	39 - 104
4.1 Simulation of NIR Illuminating Circuit	39 - 41
4.2 NIR Circuit Construction and Testing on	42 - 43
Breadboard	38 - 40
4.3 Results	44
4.3.1 Documentation of The Finger-vein	44 - 56
Capturing Device's Prototype being Built	
4.3.1.1 The Circuit was Constructed in	45
Proteus ISIS	
4.3.1.2 The ISIS Circuit Drawing was	46
then Converted to ARES and Rerouted	
4.3.1.3 The Sensonic Webcam 8000	47
was Scattered	
4.3.1.4 The Lens was Detached from	48
the CCD Sensor	
4.3.1.5 The IR Filter was Detached	49
from the Lens	
4.3.1.6 The Lens was Mount Back to	50
the CCD Sensor	
4.3.1.7 The Electronic Components	51
were Soldered on to the Circuit Board	
4.3.1.8 The Black Exposed Film was	52
Glued to Cover the Webcam	
4.3.1.9 The Body of the Prototype was	53 - 54
Built	
4.3.1.10 Sponge and Transparent	55
Plastic Paper were Added to the Finger	
Placement Section	

4.3.1.11 The Potentiometer's Level as	55
well as the Switch were Labelled	
4.3.1.12 Final Product or Prototype	56
4.3.2 Development of the GUI for the Finger-	57 - 64
vein Capturing Device by Using MATLAB	
4.3.2.1 The GUI Layout for the Finger-	57 - 58
vein Capturing Device was Designed	
4.3.2.2 The Finger-vein Capturing	58 - 59
Device Prototype's Webcam was	
Configured	
4.3.2.3 The Configure Webcam was	60
Previewed in the GUI	
4.2.3.4 The Finger-vein Images was	61
Captured	
4.2.3.5 The Finger-vein Images were	62
Saved to the Particular Directories	
4.2.3.6 The Standard Finger-vein	63
Image from "Capture" Directory was	
Determined	
4.2.3.7 The Best Finger-vein Images	64
from the "Database" Directory was	
Determined	
4.3.3 Steps in Using Finger-vein Capturing	65 - 83
Device and Its GUI	
4.3.3.1 The Finger-vein Capturing	65
Device's Prototype was Connected to	
the Computer via USB Port	
4.3.3.2 The GUI Named	66
"FingerVeinCapture_GUI" was Run	
from MATLAB	
4.3.3.3 The Correct Video Input Device	67
was Selected	
	67

4.3.3.4 The Finger-vein Capturing	
Device ID was Selected	68
4.3.3.5 The Suitable Video Format and	
Resolution was Selected	69 - 70
4.3.3.6 User's Finger was Placed into	
the Prototype	71
4.3.3.7 The Finger-vein Image was	
Previewed from the GUI	72
4.3.3.8 The Finger-vein Image was	
Captured	73
4.3.3.9 The Captured Finger-vein	
Image was Saved	74 - 77
4.3.3.10 Total of First 10 Finger-vein	
Images of Different Brightness were	
Captured and Saved	78
4.3.3.11 The Standard Finger-vein	
Image is Determined	79 - 82
4.3.3.12 Total of Second 10 Finger-	
vein Images Based on Standard	
Potentiometer Level are Captured and	
Saved	82 - 83
4.3.3.13 The Best Finger-vein Image is	
Determined	84 - 104
4.4 Finger-vein Images Analysis	85 - 93
4.4.1 Find the Standard Finger-vein Images	85
4.4.1.1 User was Required to Enter the	
User Number	86
4.4.1.2 The First Ten Captured Finger-	
vein Images from "Capture" folder was	
Read into MATLAB	87
4.4.1.3 The Finger-vein Images were	
Cropped	88

4.4.1.4 The Finger-vein Images were	89
Converted to Type Double	
4.4.1.5 The Finger-vein Images'	
Channel were Reduced from RGB to	89
Grayscale	
4.4.1.6 The Mean Value among the	
First Ten Finger-vein Images was	90
Determined	
4.4.1.7 The MSE of the Ten Captured	
Finger-vein Images to the Mean Value	91
were Determined	
4.4.1.8 The PSNR of the First Ten	
Captured Finger Vein Images were	92
Determined	
4.4.1.9 The Minimum MSE and	
Maximum PSNR were Determined	
4.4.1.10 The User Number, Minimum	92
MSE and Maximum PSNR were	
Displayed	
4.4.1.11 The Standard Finger-vein	93
Image was Determined based on the	
Mean Value	
4.4.2 Find the Best Finger Vein Images	94 - 104
4.4.2.1 The Command Window was	94
Cleared and Global Variables were	
Declared	
4.4.2.2 The Other Ten Captured	95
Finger-vein Images from "Database"	
folder was Read into MATLAB	
4.4.2.3 The Finger-vein Images were	96
Cropped	
4.4.2.4 The Finger-vein Images were	97
Converted to Type Double	

4.4.2.5 The Finger-vein Images'	98
Channel were Reduced from RGB to	
Grayscale	
4.4.2.6 The MSE of the Secondly	99
Captured Ten Finger-vein Images to	
the Standard Image were Determined	
4.4.2.7 The PSNR of the Secondly	100
Captured Ten Finger Vein Images were	
Determined	
4.4.2.8 The Minimum MSE and	101
Maximum PSNR were Determined	
4.4.2.9 The User Number, Minimum	101
MSE and Maximum PSNR were	
Displayed	
4.4.2.10 The Best Finger-vein Image	102
was Determined	
4.4.2.11 Normalized Histograms were	103
Calculated for Both Standard Image	
and Best Image	
4.4.2.12 The Standard Finger-vein	103 - 104
Image and the Best Finger-vein Image	
Together with Their Histograms were	
Displayed	

CONCLUSIONS	105 - 107
5.1 Conclusions	105 - 106
5.2 Novelty and Inventiveness	106
5.3 Future Recommendation	106
5.4 Potential of Commercialization	107

V

CHAPTER	CONTENTS	PAGES
	REFERENCES	108 - 110
	APPENDIX	111 - 128
	APPENDIX A	111 - 113
	APPENDIX B	114 - 124
	APPENDIX C	125 - 126
	APPENDIX D	127 - 128

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

No.	Title	Pages
2.1	Comparisons of Five Major Biometrics Methods	10
2.2	Comparisons of Previous Studies in terms of	17 - 19
	Methods Used, Strengths, and Weaknesses	
3.1	Comparison between Shortlisted Webcams	27
4.1	First 10 Captured Finger Images with 10 Different	75 - 77
	Potentiometer Levels of User 1	
4.2	Database Finger-vein Images with Same	79 - 82
	Potentiometer Levels of User 1	
4.3	MSE Values for Each Firstly 10 "Capture" Finger	90
	Vein Images of User 1	
4.4	PSNR Values for Each Firstly 10 "Capture" Finger	91
	Vein Images of User 1	
4.5	MSE Values for Each 10 "Database" Finger-vein	99
	Images of User 1	
4.6	PSNR Values for Each 10 "Database" Finger Vein	100
	Images of User 1	

C Universiti Teknikal Malaysia Melaka

LIST OF PICTURES

No.	Title	Pages
2.1	CCD and CMOS image sensors Convert Light into	11
	Electrons	
2.2	Light Reflection Method	14
2.3	Light Transmission Method	15
3.1	Light Transmission Method	22
3.2	Flow Chart in Building the Finger-vein Capturing	23
	Device Prototype	
3.3	NIR Illuminating Circuit Design and Simulation	24
3.4	NIR Illuminating Circuit Construction and Testing	25
	on Breadboard	
3.5	NIR Illuminating Circuit after Etching and	26
	Soldering	
3.6	Sensonic Webcam 8000	28
3.7	IR Filter is removed from the Lens of Sensonic	29
	Webcam 8000	
3.8	Finger-vein Image is captured before Building	30
	Prototype	
3.9	Flow Chart in Developing the Finger-vein Image	31
	Analysis Methods	
3.10	Flow Chart in Developing the Finger-vein	33
	Capturing Device's GUI	

C Universiti Teknikal Malaysia Melaka

3.11	Finger-vein Capturing Device GUI Design in "guide" MATLAB	34
3.12	Correct Methods in Using Finger-vein Capturing	36
	Device	
4.1	Simulation with Multisim (0% Potentiometer)	40
4.2	Simulation with Multisim (50% Potentiometer)	40
4.3	Simulation with Multisim (100% Potentiometer)	41
4.4	Dim IR LEDs Brightness due to 0% Potentiometer	42
4.5	Normal IR LED Brightness due to 50%	43
	Potentiometer	
4.6	High IR LED Brightness due to 100%	43
	Potentiometer	
4.7	NIR Illuminating Circuit Design and Simulation in	45
	Proteus ISIS	
4.8	NIR Illuminating Circuit PCB Design in ARES	46
	(Controller Circuit)	
4.9	NIR Illuminating Circuit PCB Design in ARES	46
	(NIR LEDs Circuit)	
4.10	The Sensonic Webcam 8000 is Scattered Apart	47
4.11	The Lens is detached from the CCD Sensor's	48
	Housing	
4.12	The IR Filter is removed from the Lens	49
4.13	The Lens is mounted back to the CCD Sensor's	50
	Housing	
4.14	NIR Illuminating PCB Board for both Controller	51
	and LEDs Circuits	
4.15	An Exposed Black Film is attached to the Sensonic	52
	Webcam 8000	
4.16	NIR Illuminating Circuit being Mounted and	54
	Arranged in a Box placed on top of the Prototype's	
	Body	
4.17	Body of the Finger-vein Capturing Device's	54
	Prototype	

4.18	The Switch and Potentiometer are labelled	55
4.19	Finger-vein Capturing Device Prototype	56
4.20	Layout of FingerVeinCapture_GUI.fig	58
4.21	Codes for button "Configure Cam"	59
4.22	Codes of button "Preview"	60
4.23	Codes of button "Capture Image"	61
4.24	Code of button "Save As"	62
4.25	Codes of button "Analyse Images"	63
4.26	Codes of button "Find Best Image"	64
4.27	USB Connection between Finger-vein Capturing	65
	Device Prototype & Computer	
4.28	FingerVeinCapture_GUI	66
4.29	Video Input Device Selection	67
4.30	Device ID Selection	67
4.31	Video Format & Resolution Selection	68
4.32	The Potentiometer Level was adjusted to Level 1	69
	and Switch was turned OFF	
4.33	Proper Placement of Finger into the Prototype	70
4.34	Finger-vein Image was Previewed Live from the	71
	Prototype in the GUI	
4.35	Finger-vein Image Captured and Previewed in GUI	72
4.36	The Captured Finger-vein Images of User 1 are	73
	saved	
4.37	Cap_User_1_1.jpg	75
4.38	Cap_User_1_2.jpg	75
4.39	Cap_User_1_3.jpg	75
4.40	Cap_User_1_4.jpg	76
4.41	Cap_User_1_5.jpg	76
4.42	Cap_User_1_6.jpg	76
4.43	Cap_User_1_7.jpg	76
4.44	Cap_User_1_8.jpg	77
4.45	Cap_User_1_9.jpg	77
4.46	Cap_User_1_10.jpg	77

4.47	The Standard Finger-vein Image of User 1 was	78
	Determined	
4.48	4.48: DB_User_1_1.jpg	79
4.49	DB_User_1_2.jpg	80
4.50	DB_User_1_3.jpg	80
4.51	DB_User_1_4.jpg	80
4.52	DB_User_1_5.jpg	80
4.53	DB_User_1_6.jpg	81
4.54	DB_User_1_7.jpg	81
4.55	DB_User_1_8.jpg	81
4.56	DB_User_1_9.jpg	81
4.57	DB_User_1_10.jpg	82
4.58	The Best Finger-vein Image was Determined for	83
	User 1	
4.59	Cropped Finger-vein Image and Histograms of the	83
	Standard Image and Best Image of User 1	
4.60	Dialog Box was popped out Asking User to Enter	85
	the User Number	
4.61	The First 10 Captured Finger-vein Images from	86
	User were Read from "Capture" Folder	
4.62	The First 10 Finger-vein Images are cropped after	87
	being Read	
4.63	The First 10 Cropped Finger-vein Images were	88
	converted to Type Double	
4.64	The First 10 Images were reduced Channel from	89
	RGB to Grayscale after being converted to Type	
	Double	
4.65	The Mean Value is determined among the First 10	89
	Finger Vein Images	
4.66	The MSE for each of the Firstly Captured Ten	90
	Finger-vein Images to the Mean Value were	
	determined	

xxii

4.67	The PSNR for each Firstly Captured Ten Finger-	91
	vein Images were determined	
4.68	The Minimum MSE and Maximum PSNR were	92
	determined	
4.69	Displaying the User Number, Min MSE and Max	92
	PSNR	
4.70	Standard Image of User 1 was determined	93
4.71	Results in GUI Showing which User, Min MSE,	93
	MAX PSNR and finally Standard Finger-vein	
	Image	
4.72	Command Window was cleared & Global	94
	Variables were declared	
4.73	Secondly 10 Captured Finger-vein Images from	95
	User in "Database" Folder was read into MATLAB	
4.74	The Secondly Captured 10 Finger-vein Images	96
	were cropped	
4.75	The Secondly Captured 10 Cropped Finger Vein	97
	Images were converted to Type Double	
4.76	The Secondly Captured 10 Images were reduced	98
	Channel from RGB to Grayscale	
4.77	The MSE for each Secondly Captured Ten Finger	99
	Vein Images to the Standard Finger-vein Image	
	were determined	
4.78	The PSNR for each Secondly Captured Ten Finger	100
	Vein Images to the Standard Finger-vein Image	
	were determined	
4.79	The Min MSE and Max PSNR for "Database"	101
	Finger Vein Images of User 1	
4.80	Results Showing User Number, Min MSE and Max	101
	PSNR of "Database" Finger Vein Images of User 1	
4.81	Best Finger-vein Image of User 1 was determined	102
4.82	Results in GUI Showing which User, Min MSE,	102
	MAX PSNR and finally Best Finger-vein Image	

4.83	Image and Best Normalized Histogram for	103
	Standard Image	
4.84	Function in MATLAB to Calculate and Display the	104
	Normalized Histogram of The Standard Finger-	
	vein Image and the Best Finger-vein Image	
4.85	The Standard Finger-vein Image and the Best	104
	Finger-vein Image Together with Their Histograms	
	are displayed	