NEIGHBORHOOD WIRELESS SECURITY SYSTEM FOR FAST EMERGENCY RESPONSE

NUR ASHIKIN BINTI NOH

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree Bachelor of Electronic Engineering (Computer Engineering)

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
NEIGHBORHOOD WIRELESS SECURITY SYSTEM FOR FAST Tajuk Projek : EMERGENCY RESPONSE
Sesi Pengajian : 1 4 / 1 5
Saya <u>NUR ASHIKIN BINTI NOH</u> (HURUF BESAR) mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
 Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (√):
SULIT**(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD ** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD
Minimu Minimu Kandatangan penulis) No 222 PERSIARAN 6 TAMAN PUNCAK BOUNGAINVILLEA 3000 KUALA KANGSAR, PERAK
Tarikh: 2/7/2015

ii

4

🔘 Universiti Teknikal Malaysia Melaka

I declare that this project report entitled "Neighborhood Wireless Security System For Fast Emergency Response", is the result of my own research except as cited in the references.

Date: 2/7/2a/5

iii

I hereby declare that I have read this project report and in my opinion, this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Electronic Engineering (Computer Engineering).

Signature:

Name of Supervisor: ENGR VIGNESWARA RAO A/L GANNAPATHY

Date: 2/7/2015

iv

Special dedicated to my beloved father, NOH BIN ABDUL ZABIL and also to my lovely mother, HASHIMAH BINTI ISHAK

ACKNOWLEDGEMENT

In the name of Allah S.W.T, I would like to extend my deep gratitude towards the almighty God because of His mercy and kindness, I able to complete my Final Year Project and report in a given time frame.

The most importantly, I would like to express my appreciation to my project supervisor, Engr Vigneswara Rao A/L Gannapathy whose contribution in giving me an ideas and opportunities to do the Final year project under his supervision. I am grateful with his help, suggestions and encouragement. Without the guidance and persistent help from him, this project would not be done successfully.

Not only that, special thanks to my Co. supervisor Mr Ahamed Fayeez Bin Tuani Ibrahim for providing motivation and brilliant tips to complete my final year project. Many thanks go to the guidance given by another supervisor as well as the panels, especially to improve my project presentation.

Last but not least, I would like to thank my family and friends for their support, help, and motivation throughout the year in order to complete this whole project. I thank all the people for their help directly and indirectly to complete my final year project.

ABSTRACT

The Neighborhood Wireless Security System For Fast Emergency Response (NWSS) is developed in order to provide the highest safety level for the community especially in residential areas. Besides, NWSS is a new invention to improve a security system by providing efficient emergency response with a single push button and replace a conventional home security that requires the higher power consumption. The purpose of the NWSS is to provide a security system that facilitates neighborhood to get immediate help and save them when they are in emergency. Burglary is expected to occur in a blind spot area that security guard on patrolling is potentially overlooked at a sheltered housing. Not only that, NWSS is developed based on Zigbee Wireless Network and GSM Technology. The Zigbee specifications are designed to accommodate sensing and control networks with a wide variety of devices, a large number of devices (up to 65,000). In addition, the GSM provides the wide coverages, making the whole system available for almost all the time. Furthermore, NWSS has to be updated with the rapid development of technology to ensure wider coverage, best reliability, and real time operation.

ABSTRAK

Sistem keselamatan kejiranan tanpa wayar untuk tindak balas pantas ketika kecemasan dibangunkan untuk menyediakan tahap keselamatan yang tertinggi bagi masyarakat terutama di kawasan perumahan. Selain itu, NWSS adalah ciptaan baru untuk menambahbaik sistem keselamatan dengan menyediakan tindak balas kecemasan yang cekap bersama butang tekan tunggal dan menggantikan keselamatan rumah konvensional yang memerlukan penggunaan kuasa yang lebih tinggi. Tujuan NWSS adalah untuk menyediakan satu sistem keselamatan yang memudahkan kejiranan untuk mendapatkan bantuan segera dan menyelamatkan mereka apabila berada dalam kecemasan. Pecah rumah dijangka boleh berlaku di kawasan tempat yang kabur dimana pengawal keselamatan rondaan berpotensi terlepas pandang perumahan yang terlindung. Bukan itu sahaja, NWSS dibangunkan berdasarkan rangkaian tanpa Zigbee dan Teknologi GSM. Spesifikasi Zigbee direka untuk menampung rangkaian penderiaan dan kawalan dengan pelbagai jenis peranti, sebilangan besar peralatan (sehingga 65,000). Selain itu, GSM menyediakan liputan meluas, menjadikan keseluruhan sistem tersedia untuk hampir setiap masa. Tambahan pula, NWSS telah dikemaskini dengan perkembangan pesat teknologi untuk memastikan liputan yang lebih meluas, kebolehpercayaan terbaik, dan operasi masa nyata.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	PROJECT TITLE	i
	REPORT STATUS VERIFICATION FORM	ii
	DECLARATION	iii
	SUPERVISOR DECLARATION	iv
	DEDICATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	xviii
	LIST OF SYMBOLS	xix
	LIST OF APPENDICES	XX

I INTRODUCTION

1.1	Introduction of project	1
1.2	Objectives	2
1.3	Problem Statement	3
1.4	Scope of Project	4

II LITERATURE REVIEW

2.1	Introd	luction of security system	4
	2.1.1	Working of security system	5
2.2	Gener	al categories of security system	5
	2.2.1	Monitoring	5
	2.2.2	Installation (professional or DIY)	6
	2.2.3	Home automation	7
2.3	Securi	ity terminology	7
2.4	Туре	of security system	8
	2.4.1	Home security system	8
	2.4.2	Networks of home security systems	9
2.5	Crime statistic		9
2.6	2.6 Neighborhood Watch/Community Patrol		10
	2.6.1	Residential blind spot area	11
2.7	Specif	fication criteria	12
2.8	Select	ed wireless network	12
	2.8.1	Zigbee Technology	13
	2.8.2	Zigbee Wireless Network	13
	2.8.3	Mesh Network	14

C Universiti Teknikal Malaysia Melaka

	2.8.4 DigiMesh Network	15
2.9	Groove –XBee Carrier	15
2.10	Global System for Mobile communication	16
	2.10.1 GSM Modem	16
2.11	Graphic User Interface (GUI)	17
2.12	Researched on several journals	17
	2.12.1 A Low Cost GSM/ GPRS Based Wireless	
	Home Security System	19
	2.12.2 A Remote Home Security System Based on	
	Wireless Sensor Network and GSM Technology	21
	2.12.3 Design of Security System for Smart	
	Residential Neighborhood	23
	2.12.4 Implementation of Zigbee-GSM based Home	
	Security Monitoring and Remote Control system	24
	2.12.5 Low Power, Intelligent, Wireless, Home	
	Security System for the Elderly People.	26

III METHODOLOGY

3.1	Introduction of methodology	27
3.2	Literature review	28
3.3	GUI development & integration	28
	3.3.1 Microsoft Visual Studio 2010	
	Professional	29
	3.3.2 Procedure to develop a GUI	29

C Universiti Teknikal Malaysia Melaka

3.4	Hardware/ Software development & integration	34
	3.4.1 Hardware/Software	35
	3.4.2 Arduino connection	35
	3.4.3 Arduino Pro Mini/Mini Arduino	36
	3.4.4 Arduino software	37
	3.4.5 XBee Pro S1 & Grove-XBee Carrier	37
	3.4.6 Installing USB-to-Serial Port drivers	38
	3.4.7 XBee Pro S1 configuration	39
	3.4.8 Digi X-CTU software	40
3.5	GUI with Hardware and Software integration	42
3.6	Overall system methodology	42

IV RESULT AND DISCUSSION

4.1	Introduction of result & discussion		44
4.2	Graph	ical User Interface design	45
	4.2.1	The development of the NWSS GUI	45
	4.2.2	NWSS GUI description	48
4.3	Hardv	vare design	49
	4.3.1	Structure of NWSS remote control	51
	4.3.2	Structure of the NWSS control center	
		hardware	52
	4.3.3	The use of XBee Series 1 in NWSS hardware	53
	4.3.4	NWSS DigiMesh connection	53
4.4	NWS	S software description	54
4.5	Flowc	chart of NWSS functionality	56
4.6	Block	diagram of NWSS	56

V CONCLUSION AND RECOMMENDATION

5.1	Introduction of conclusion & recommendation	62
5.2	Conclusion	63
5.3	Recommendation	64

REFERENCES

APPENDIX A67APPENDIX B69APPENDIX C70APPENDIX D72APPENDIX E75

C Universiti Teknikal Malaysia Melaka

65

LIST OF TABLES

NO TITLE

2.1	The three ways of triggered alarm system	6
2.2	Glossary of security terms	7
2.3	Actual statistic of crimes	10
2.4	General specification criteria	12
2.5	Specification of Grove-XBee carrier	16
2.6	Nine journals description	18
2.7	AT-commands used in project	24
3.1	Technical specification of Arduino UNO	35
3.2	Connection of Arduino UNO to Grove-XBee Carrier	36
4.1	NWSS remote control connection	51
4.2	NWSS control center hardware connection	52
4.3	NWSS Software	54
4.4	Sustainable development	61

PAGE

LIST OF FIGURES

NO	TITLE	PAGE
2.1	Neighborhood Watch	11
2.2	Blind spot area	11
2.3	Zigbee Network Topology	14
2.4	Full Mesh topology	14
2.5	Partial Mesh topology	14
2.6	DigiMesh topology	15
2.7	Grove - XBee Carrier	16
2.8	GSM modem	17
2.9	Home security system stucture	19
2.10	GSM/GPRS gateway	19
2.11	Flowchart of main program	20
2.12	System structural diagram	21
2.13	Flowchart of center node module	22
2.14	Flowchart of data collecting node module	22
2.15	Design scheme of the Neighborhood SecSys	23
2.16	Process of system initialization & network enabling	23
2.17	Block Diagram	24

2.18	Control flow chart of the design	25
2.19	System Overview	26
3.1	Design project steps of NWSS	28
3.2	Literature review part	28
3.3	GUI development & integration part	29
3.4	Create a new database	30
3.5	Create a new project	30
3.6	Form1.vb[Design]	31
3.7	DataGridView	31
3.8	Choose Data Source type	32
3.9	Choose a table for Data Connection	32
3.10	Database Objects	33
3.11	Table of Database	33
3.12	Additonal Toolbox items	34
3.13	Hardware/ Software development & integration part	34
3.14	Arduino UNO	35
3.15	Arduino Pro Mini	38
3.16	Arduino 1.0.5-r2 interface	37
3.17	XBee Pro S1 and XBee Grove-XBee Carrier	38
3.18	FT232RL USB UART	38
3.19	COM port name	39
3.20	XBee Modules	39
3.21	XCTU software	40
3.22	New version of XCTU software	41
3.23	XBee Recovery in XCTU software	41
3.24	GUI with Hardware and Software integration	42
3.25	Full Methodology	43

4.1	NWSS interface	45
4.2	Homeowner Detail and Database Interfaces	46
4.3	Security Contacts and Database Interfaces	46
4.4	GSM connection	47
4.5	Data and Time with Exit system	47
4.6	Information and Connection Interfaces	48
4.7	Flowchart of NWSS GUI	48
4.8	NWSS remote control with single push button	49
4.9	Prototype of NWSS remote control	50
4.10	NWSS control center hardware	50
4.11	NWSS remote control design	51
4.12	NWSS control center hardware design	52
4.13	DigiMesh Nodes	53
4.14	Same ID Network for each XBee Pro DigiMesh	54
4.15	Each XBee Pro DigiMesh is set as a router	55
4.16	Flowchart of remote control	55
4.17	Flowchart of center	55
4.18	NWSS flowchart	56
4.19	Security control center receiver	57
4.20	Remote control	57
4.21	ID display on the security center interface	57
4.22	Homeowner personal details	58
4.23	Full Interface	58
4.24	Message that is sent from the control center to security mobile phone	59
4.25	The difference between two messages	60
4.26	The operation of NWSS	60

LIST OF ABBREVIATIONS

AT command	-	Attention Telephone/ Terminal commands		
DIY	-	Do It Yourself		
GND	-	Ground		
GPRS	-	General Packet Radio Service		
GSM	-	Global System for Mobile communication		
GUI	-	Graphical User Interface		
IWHSS	-	Intelligent, Wireless, Home Security System		
LCD	-	Liquid Crystal Display		
NWSS	-	Neighborhood Wireless Security System		
PAN	-	Personal Area Networks		
PC	-	Personal Computer		
PDRM	-	Polis DiRaja Malaysia		
PIC	-	Programmable Integrated Circuit		
PSoC	-	Programmable System on Chip		
RF	-	Radio Frequency		
SecSys	-	Security System		
SMS	-	Short Message Service		
WSN	-	Wireless Sensor Network		

LIST OF SYMBOLS

Ft	-	Feet
mA	-	mille Ampere
V	-	Volt
GHz	-	Giga Hertz
mW	-	mille Watt
kbps	-	kilo bits per second
vb	-	visual basic
MHz	-	Mega Hertz
KB	-	Kilo Bytes
ТХ	-	Transmitter
RX	-	Receiver

xix

LIST OF APPENDICES

NO	TITLE	PAGE
A	Specifications of the XBee/XBee-PRO 2.4 DigiMesh	67
В	Mechanical drawings of the XBee/XBee-PRO 2.4 DigiMesh	69
C	XBee/XBee-PRO DigiMesh 2.4 pin signals	70
D	NWSS Graphical User Interface programming	72
Е	NWSS Remote & control center hardware programming	75

CHAPTER 1

INTRODUCTION

1.1 Introduction of project

The violent crime, robbery, aggravated assault, property crime, and also a burglary has been increase in Malaysia. With the rise of a crime statistic, it is most important ways to take action with the community to preserve the highest safety level of residential area. The main concern of communities is resident safety. Unfortunately, even the safest and protected community is susceptible to a crime. Due to high rates of crimes, home security systems have become one of the requirements to be owned by the resident. Nowadays, mostly in the residential area are using a private security guard by paying monthly to ensure resident safety. On the other way to protect residential area is through the Neighborhood Watch. The Neighborhood Watch is a program that involves members of a community is agree to

1

take responsibility for keeping an eye on each other's property together, as a way of preventing crime. While security guard can help keep the eyes on the resident house, they would not be watching continuously. The security guard has their own in charge schedule. Emergencies can happen anywhere and at any time, so it is important for everyone to be prepared. As known, the security forces have served time schedule. They will take turns to look after the safety of residential area. However, when security held an exchange of work time, a residential area may be exposed to danger. The burglar will be happen in the blind spot area. The blind spot area is a hiding place where a person's view is obstructed. The residents should not only rely on the security guard because they may overlook some of the blind spot area which is cannot be seen all the time. Thus, the Neighborhood Wireless Security System for Fast Emergency Response (NWSS) is developed. Furthermore, this NWSS has been updated with the rapid development of the technology to ensure a wide coverage, best reliability, and real time operation. When an emergency occurs, the resident often do not react immediately to grab the mobile phone to call the authorities for seeking help. NWSS is developed to let the resident to contact security assistance in an efficient way by simply triggering a single button on the remote control. The information about the resident will be sent once emergency occurred to the NWSS Graphical User Interface (GUI) at security control center.

1.2 Objective

The goals of this Final Year Project:

- i. To develop a security system that facilitates neighborhood to get immediate help and save them when they are in emergency.
- ii. To improve a security system by providing efficient emergency response with a single push button.
- To design a neighborhood home security system based on Zigbee Wireless Network and GSM Technology.

1.3 Problem statement

NWSS is a new idea and invention to replace a conventional home security, such as the burglar alarm that using the higher power consumption. NWSS offers low cost, low power consumption, low complexity and low transmission rate, which is this entire requirement, is really important in considering developing an excellent system. Currently, most of the residential areas would hire private security guards. The cost of using their services is expensive. Burglary crimes often occur in the residential's blind spot area. Thus, the residents should not only rely on the security guard because they may overlook some of the blind spot area. In addition, a conventional home security system operates through a network of wires that is complicated and requires more electrical energy. The conventional security systems are not only difficult to install, but also more susceptible to simple means of sabotage.

1.4 Scope of work

The scope of this home security system is involved in residential area, which is a private neighborhood area. NWSS is using the Zigbee wireless network that can accommodate up to 65,000 nodes per networks. However, in this Final Year Project, NWSS only covered on three nodes, which including three houses in residential areas by using DigiMesh topology connection. The GUI is provided to display homeowner details for security reference and also a security guard on duty schedule. Database type is chosen in GUI development to display all details. Besides GSM that can send alarm short message to the security guard on duty immediately. SMS is used in the way to facilitate the delivery of emergency messages to the authorities without any boundaries and networking problem such as losing a connection in internet network coverage. **CHAPTER 2**

LITERATURE REVIEW

2.1 Introduction of security system

The security system is the devices designed to protect human property and guard persons' safety against a crime. The most basic definition of any security system can be found out in that given name of a system itself. As an example, this security system's name is the Neighborhood Security System for Fast Emergency Response. The neighborhood is a district, especially one forming a community within a town or city. Then, the fast emergency response is a dangerous situation requiring immediate action.